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Agenda

• Intro (What is timing all about)

• Static timing versus dynamic timing

• Timing primer

• Flop based timing

• How clock uncertainty impacts timing analysis

• Latch based timing (transparency, time borrowing, time borrowing FFs etc)

• What is a design window? 

• Gated clock & domino timing

• Phase paths, MCPs & cycle adjusted margins

• Understanding EVRs & BVRs

• Full chip rollups and slack allocation

• Advanced Topics (loop paths, zero-cycle paths)
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What do we mean by “Timing” ?

• Timing Analysis is a method of analyzing and solving timing 

problems to ensure that the design meets the target frequency. 

• A circuit meets target frequency when all of the signals:

• Arrive just before they are needed.

• Remain until no longer needed.

• Be guaranteed stable in between.

• Critical paths are paths in the circuit along which the signal doesn’t 

reach its destination on time; this causes the functionality of that part 

of the circuit to be impaired.
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Static Timing

• Static timing analysis computes the worst 

case delays for paths in a given circuit.  

• It is a non-simulation approach to timing 

analysis used to analyze the propagation 

of delays.

• Pathmill and Tango-XT are examples of 

static timing tools.
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Static Timing

• Searches path by path.  Performs static timing analysis (STA) of 
a circuit by analyzing the circuit in a non-simulated way (no input 
vectors.)

• Traverses all possible paths between each source-sink pair.

• Calculates the path delay and the arrival time at each signal 
along the path and internal sampling requirements.

• Sorts the paths by the amount of violation at their sink node 
and prints them in a report.

• Report can be used to:

• Determine how to fine tune the timing of the design to meet 
the target frequency

• Analyze timing violations and performance bottlenecks in 
circuits.
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Static vs. Dynamic Timing

• Static timing Analysis:

• Non simulation approach used to analyze propagation 

of delays.

• Computes worst case path delays by accumulating 

pre-characterized device delays along a given path.

• Path determination is based on the possibility of an 

event on a device input causing an event on a device 

output.

• Dynamic Timing Analysis:

• Circuit simulation approach that obtains a very 

accurate timing analysis of a path.

• Uses input waveforms and path sensitization, 

generates output waveforms.
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Comparison of Static vs. 

Dynamic Timing

Static (path analysis)
• No input vectors; full coverage

• Points to exact origin of timing 
problems (critical paths)

• Ensures full coverage (Much 
faster than simulation)

• Relies on approximated models 
which are less accurate than 
simulation

• Inherent problem: false paths

• Simulates only one input switching 
at a time

• Gives worst case delays only

Dynamic (simulation)
• Uses input vectors; coverage 

depends on vector selection

• Requires a debug process to find 
the origin of timing problems

• Requires a lot of CPU time for 
good coverage

• Highest degree of accuracy 
possible through software 
simulation

• Inherent problem: test vector 
generation

• Simulates multiple inputs 
switching simultaneously

• Gives precise delay information
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When do we use Static or 

Dynamic Timing?
• Static Timing is used more often due to 

the size of the designs.

• Dynamic timing is typically used where 

analog behavior is expected and not 

modeled correctly by static timing.

8



Static vs. Dynamic Timing: 

Example 1

• Given a simple two-input NAND gate, static analysis will yield four 
paths analyzed:

• In1 rising -> output falling

• In1 falling -> output rising

• In2 rising -> output falling

• In2 falling -> output rising

• Given the same NAND gate, dynamic analysis can yield six main 
transitions.  The above four, as well as

• In1 rising & In2 rising -> output falling

• In1 falling & In2 falling -> output rising

• Theoretically, Dynamic Timing has an infinite number of different 
paths, as the user determines the exact timing of the rise/fall of the 
inputs in relation to each other.

In1

In2
Output
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Static vs Dynamic Timing: 

Example2

• Static timing analysis is based upon the possibility of 

a path existing.  

• All paths are traversed and delays are calculated.  

• These delays are used to check signal arrival times in 

order to determine setup and hold margin. 

A

O

B

C

D

H

G

20

30

30

30

30

20

Path #1 A -> O

A Rising -> G Falling -> O Rising

20ps       +   30ps     =  50ps

Path #2 A -> O

A Falling -> G Rising -> O Falling

30ps        +   30ps     =  60ps
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Static vs Dynamic Timing: 

Example2 (cont.)

• Using Dynamic Timing on the same example, 

inputs B, C, and D need to be sensitized to exercise 

the path:  A rising -> G falling -> O rising

• B must be set high

• C and D must be set low

A

O

B

C

D

H

G

20

30

30

30

30

20

A

G

O

20ps

30ps
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Timing Primer

• Terms we need to learn very very well:

• Reference Clock

• Lead edge signals

• Trail edge signals

• Valid Windows

• Required Windows

• Margin

• Margin Violations
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What is a Reference Clock?

• An ideal clock that does not have jitter or 

skew

• Generally does not exist anywhere in the 

design

• All timing is analyzed and specified against a 

reference clock

• There may be more than one per design
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What are Lead Edge Signals ?

• The lead edge is the time that the signal become 
stable/active.  

• If a signal rises and becomes active, this is lead_up.

• If the signal falls and becomes active, it is a lead_dn
edge.

• A signal may have multiple lead up edges at different 
times. For this case we can describe them using the 
terms: early_lead and late_lead

early_lead_up

late_lead_up early_lead_dn

late_lead_dn
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What are Trail Edge Signals ?

• The trail edge is the time that the signal 

become inactive (or goes away).  

• The trail_up edge (falling edge) refers to the 

trail edge of the “up” (logical 1) window.  

• The trail_dn edge (rising edge) refers to the 

trail of the “dn” (logical 0) window.

early_trail_dn

late_trail_dnearly_trail_up

late_trail_up
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What are Valid Windows?
• Valid windows are referenced to a clock 

event and indicate the time when a signal is 

stable.

• The valid_lead_up edge and the 

valid_lead_dn edge need not have the same 

timing.  These edges may come from entirely 

different paths of logic.

valid_lead valid_trail

• valid_lead will correspond to 

late_lead

• valid_trail will correspond to 

early_trail
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Valid Window Examples
• Valid times are conventionally specified 

as 

AR or AF (after rise or after fall)

0 15105 0 15105

valid_lead = 4 ar CLK

valid_trail = 2 ar CLK

CLK
CLK

valid_lead = -1 ar CLK

valid_trail = -3 ar CLK

A:

A

B:

B
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What are Required Windows?
• Required windows indicate the time when a 

signal must be valid or active to meet timing.  
This signal must be valid for the whole time of 
the defined window.  

• Required windows come from circuit timing 
requirements for setup times and hold times.

required_lead required_trail

• required_lead will 

correspond to early_lead

• required_trail will 

correspond to late_trail

19



Required Window Examples
• Required times are conventionally 

specified as 

BR or BF (before rise or before fall)

0 15105 0 15105

required_lead = 4 br CLK

required_trail = -3 br CLK

CLK
CLK

required_lead = 5 br CLK

required_trail = 2 br CLK

required_lead = 2 bf CLK

required_trail = -1 bf CLK

A:

A

B:

B C

C:
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A Note about Coloring 

Conventions
• The color (af/ar) of the VALID lead is always 

referenced to the “opening” edge of the closest 

sequential element to the output along a path.

• The color (bf/br) of the REQUIRED lead edge is 

always referenced to the “closing” edge of the closest 

sequential element to the input along a path.

in out
For the example:

VALID = af

REQUIRED = bf
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Max/Min Delay Margins 

Example 3

FF FF
Logic

in a b out

clk1 clk2

in

clk2

clk1

a

b

out
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Max/Min Delay Margins 

Example 3 (cont.)

FF FF
Logic

in a b out

clk1 clk2

in

clk2

clk1

a

b

out

Max Delay 

Failure!!!

On the second ff

23



Max/Min Delay Margins 

Example 3 (cont.)

FF FF
Logic

in a b out

clk1 clk2

in

clk2

clk1

a

b

out

Min Delay 

Failure!!!
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Sources of Clock Uncertainty
• Skew – Unintentional mismatch in the arrival of two local 

clock edges produced by the same global clock edge.  

Main causes are:

• RC mismatch in the clock network

• Cross-coupling in the clock network

• (P)rocess, (V)oltage, (T)emperature mismatch in the 

clock distribution network

• Jitter* – Variation in the cycle time of the global clock.  

Main causes are:

• PLL Jitter

• Coupling in the global clock distribution network

* My definition of jitter might vary from what other people call 

jitter.  For our conversation we’ll use my definition 25



Clock Skew Illustrated

Idealized 

Reference 

Clock

Local Clock A

Local Clock B

Grid Clock 

(POD)

•Variations in distribution cause unexpected 

delay differences from the POD (point of 

divergence) to the local clock @ the 

sequential

•Skew impacts both setup and hold checks

FF FF

Local 

Clock B

Local 

Clock A

Tcycle = 

250ps

250 ps - skew

FF

Local 

Clock A

Target delay

Tskew due to variations 

from target delay

Launch Cycle N Data Launch Cycle N + 1 Data

Launch Cycle N Data
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Clock Jitter Illustrated

Idealized 

Reference 

Clock

Local Clock A

Local Clock B

Grid Clock 

(POD)

•Variations in PLL & global distribution 

network cause jitter

•Jitter only impacts setup checks

Tcycle = 

250ps

250 ps - jitter

FF FF

Local 

Clock B

Local 

Clock A

FF

Local 

Clock A

Launch Cycle N Data Launch Cycle N + 1 Data

Launch Cycle N Data

Tjitter due to variations 

from in global clock 

network
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How Skew & Jitter Fit in the Setup Margin Calculation

• Without Skew/Jitter

• Marginsetup = Requiredabs – Validabs

• With Skew/Jitter

• Marginsetup = Requiredabs - Validabs – MaxSkew

• For the example above:

Marginsetup = Tcycle – Clk->QFF1 – Td1 – SetupFF2 – ( MaxSkewck1-ck2 + Jitter )

Marginsetup = Tcycle – Clk->QFF2 – Td2 – SetupFF3 – ( MaxSkewck2-ck3 + Jitter )

Each cycle pays setup, skew & jitter

FF

1
Td1

Ck2Ck1 Ck3

Td2FF

2

FF

3
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Setup Margin Examples

Td1 0.185 Td2 0.155

Clk->QFF1 0.023 SetupFF1 0.038

Clk->QFF2 0.025 SetupFF2 0.037

Clk->QFF3 0.024 SetupFF3 0.041

MaxSkewCk1-

Ck2

0.015 MaxSkewCk2-

Ck3

0.010

Tcycle 0.250 Jitter 0.016

Marginsetup FF1->FF2 = Tcycle – Clk->Q??? – Td?? – Setup??? – ( MaxSkew??? + Jitter )

= 250-(23+185+37+15+16)

= 250-276=-26ps

Marginsetup FF2->FF3 = Tcycle – Clk->Q??? – Td??? – Setup??? – ( MaxSkew??? + Jitter ) 

=  250 –(25+155+41+10+16)

=250-247=3ps

FF

1
Td1

Ck2Ck1 Ck3

Td2FF

2

FF
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How Skew Fits in the Hold 

Margin Calculation
• Without Skew

• Marginhold = Validabs – Requiredabs

• With Skew

• Marginhold = Validabs - Requiredabs – MinSkew

• For the example above:

Marginhold = Clk->QFF1 + Td1 – HoldFF2 – MinSkewck1-ck2

Marginhold = Clk->QFF2 + Td2 – HoldFF3 - MinSkewck2-ck3

FF

1
Td1

Ck2Ck1 Ck3

Td2FF

2

FF

3
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Hold Margin Examples

Td1 0.055 Td2 0.040

Clk->QFF1 0.018 HoldFF1 0.026

Clk->QFF2 0.020 HoldFF2 0.025

Clk->QFF3 0.022 HoldFF3 0.028

MinSkewCk1-Ck2 0.045 MinSkewCk2-Ck3 0.040

Marginhold FF1->FF2 =  Clk->Q??? +   Td?? – Hold??? - MinSkew???

= 18+55-25-45

= 3

Marginhold FF2->FF3 =  Clk->Q??? +   Td?? – Hold??? - MinSkew???

=20+40-28-40

=-8

FF

1
Td1

Ck2Ck1 Ck3

Td2FF

2

FF

3



Clock Uncertainty Key Notes

• Always assume worst case skew

• Launching clocks are slow in setup analysis, capturing clocks are fast

• Launching clocks are fast in hold analysis, capturing clocks are slow

• Skew can be minimized by the designer, jitter cannot

• Since skew is related to local clock variation, you can control this by 

keeping the POD as close as possible

• Jitter is mainly caused by the PLL & the global grid, you can’t impact 

this as a fub designer

• Max skew and Min skew are different

• Min skew is bigger because it must encompass more of the natural 

variation because a hold failure is fatal

• Max skew is smaller because a setup failure only impacts binsplit
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What is a Transparency 

Window?
• Transparency Window

• The time when a data input flows unblocked through a sequential

• Inputs may switch anytime in this window, so long as they are valid 

before the capturing edge of the clock, and remain valid until the hold 

time (+ skew)

clk

Opening edge Capturing edge

Transparent 

Window
Setup 

Time

Hold 

Time

Required

Early

Lead

Required

Late

Trail

Required

Early

Transparenc

y

Must

Be

Stable
data

May pass 

through freely

dat

a

clk

out
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Flop vs. Latch Timing 

Requirements

clk

Capturing edge

Setup 

Time

Hold 

Time

Required

Early

Lead

Required

Late

Trail

Must

Be

Stable
data

dat

a

clk

out

Master Slave

clk

Opening edge
Capturing edge

Transparent 

Window
Setup 

Time

Hold 

Time

Required

Early

Lead

Required

Late

Trail

Required

Early

Transparenc

y

Must

Be

Stable
data

May pass 

through freely

FLOP Timings

Latch Timings

dat

a

clk

out
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FF
FF

A Real World Example of 

Transparency
• Level sensitive latches allow transparency

• When the latch opens, data may arrive and pass 

freely from input to output without waiting for clock

• Data only needs to be stable when the latch 

closes

• Think of a latch like a street light and a flop light a 

stop sign.  Catch the green and it’s a free ride

!?#!

@?

!!
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Why Transparency Helps

• Transparency reduces the impact of clock uncertainty

• If the opening clock edge is early, the valid time at the output of the 

latch for a transparent path is unchanged

• If the opening clock edge is late, but not as late as the transparent data, 

the valid time at the output is unchanged

• As long as the data is switching somewhere in the middle of the 

transparency window, the clock has no impact on the timing through 

this latch

clk

Opening edge Capturing edge

Transparent 

Window
Setup

Time
Hold

Time

Required

Early

Lead

Required

Late

Trail

Required

Early

Transparency

Must

Be

Stable
data

May pass

through freely

dat

a

clk

out

Note that the width of the 

transparency window directly 

impacts your ability to meet this 

requirement
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What Are Gated Clocks?
• When a data signal is used to enable/disable 

a clock, we call the resulting clock a gated 

clock

• In general we prefer that the resulting clock 

timing is dependent only upon the driving 

clock, not the data

• This is not always possible

clk

enable
gated clk

clk

enable

gated clk

Clock Is Enabled Clock Is Disabled
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Fullchip Timing Concepts

• Sea of BVRs

• Fullchip RC-Extract

• .rcdly

• Timing Window Propagation
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Sea of BVRs

• The block, p6core, contains 4 instances of 3 BVRs (note that 

BVR “bob” is instantiated twice).

• Note that the node names do not necessarily agree with the pins 

the nodes connect to.

• Timing/Electrical information for p6core (3 pins) will be coming 
from p6core.evr.

bob1{bob}

%o1

%o2

%i1

%i2

%o2

%o1

bob2{bob}

%i2

%i1

n1

n2

a1

a2

foobob foohank

%xxi1

%xxi2

%xxo1
fred

%a1

%a2

%f1
%f2 hank

%i1

%i2

%xxo

{p6core}
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• The nodes in p6core have RCDLY and need to be timed, but before we can do 

that we need to extract the Rs and Cs. This occurs during the FC RCEXT. One 

output format for FC RCEXT is a NTCL file:
.MACRO FOOBOB BOB1%I2 BOB2%I2 FRED%F1

R1 FRED%F1 N0 5

R2 N0 BOB1%I2 5

R3 N0 BOB2%I2 5

C1 N0 30fF

C2 FRED%F1 10fF

C3 BOB1%I2 5 fF

C4 BOB2%I2 15 fF

.EOM

Fullchip RC Extract

bob1{bob}

%o1

%o2

%i1

%i2

%o2

%o1

bob2{bob}

%i2

%i1

n1

n2

a1

a2

foobob foohank

%xxi1

%xxi2

%xxo1
fred

%a1

%a2

%f1
%f2 hank

%i1

%i2

%xxo

{p6core}

BOB1%I2

n0

BOB2%I2

FRED%F1
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• Now that we have the parasitic extraction, we need to compute the delay 

between the BVRs. 

• The specifics on how to generate the RCDLY file will not be discussed here, but 

here’s what a .rcdly file looks like:

# drivingpin receivingpin MaxRCDlyUp MaxRCDlyDn MinRCDlyUp 

MinRCDlyDn MaxRcvrSlopeUp MaxRcvrSlopeDn MinRcvrSlopeUp 

MinRcvrSlopeDn

FRED%F1 BOB1%I2 0.100 0.100 0.080 0.080 0.050 0.050 0.040 0.040

FRED%F1 BOB1%I2 0.120 0.120 0.085 0.085 0.060 0.060 0.045 0.045

BOB1%O2 FRED%A1 0.030 0.032 0.022 0.023 0.040 0.043 0.037 0.039

RCDLY generation

bob1{bob}

%o1

%o2

%i1

%i2

%o2

%o1

bob2{bob}

%i2

%i1

n1

n2

a1

a2

foobob foohank

%xxi1

%xxi2

%xxo1
fred

%a1

%a2

%f1
%f2 hank

%i1

%i2

%xxo
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SRAM PROJECT:

https://www.youtube.com/watch?v=68Dn1x6cZ4g

https://www.youtube.com/watch?v=SHJPFNI5Mzo

https://www.youtube.com/watch?v=KrqyvpU9Cu0

Multiplier -A Comparative Study On Low Power Multiplier Using Microwind Tool 

• https://www.youtube.com/watch?v=4-l_PGPog9o 

• https://www.youtube.com/watch?v=MCFG7XD16Ek 

• http://www.ijsret.org/pdf/EATHD-15026.pdf

• https://www.youtube.com/watch?v=rqwkrUcNyH4

• https://www.youtube.com/watch?v=4-l_PGPog9o

• https://www.youtube.com/watch?v=WxSR2Yhnqk4&t=30s

• https://www.acsu.buffalo.edu/~phaniram/bootstrap-prestructure22_files/images/paper_1.pdf

?

http://www.ijsret.org/pdf/EATHD-15026.pdf
http://www.ijsret.org/pdf/EATHD-15026.pdf
http://www.ijsret.org/pdf/EATHD-15026.pdf
https://www.youtube.com/watch?v=4-l_PGPog9o

