MOS Mode of operation

Equivalent circuit of an NMOS transistor with all terminals biased to ground

NMOS transistor with a O<VGS<VTH.

- current cannot flows between Source and
- Drain, and the device is still in cut-off region.

Linear or triode region

- When VGS>VTH, the NMOS transistor is on, i.e. the conducting channel is formed, then a current flow
- between Source and Drain can exist.

$$I_{DS} = \frac{N \cdot q}{t_d} = \frac{Q_{ch}}{t_d}$$

$$Q_{ch} = C_{ox} \cdot L \cdot W \cdot (V_{GS} - V_{TH}) = C_{ox} \cdot L \cdot W \cdot V_{ox}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$t_{ox} = \frac{L_{min}}{50}$$

- In standard CMOS technologies of the last twenty years t_{ox} is about fifty times lower than the minimum channel length L_{min}
- $t_d = \frac{z}{v_d}$ Drift time, t_a , is directly proportional to the channel length L, and inversely proportional to the drift velocity of electrons, v_a ,

Linear or triode region

- $v_d = \mu_n \cdot \varepsilon_y$ Drift velocity, vd, is proportional to the horizontal electric field, ε_y ,
 - $\varepsilon_y = \frac{v_{DS}}{L}$ where μn is the electron mobility in the channel. The value of the horizontal electric field ε_y I_{DS}

$$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH}) \cdot V_{DS} = 2 \cdot k_n \cdot V_{ov} \cdot V_{DS}$$

$$k_n = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L}$$

the NMOS transistor acts like a variable resistance, *R*_{on}, whose value depends on *V*_{ov}

$$R_{on} = \frac{1}{2 \cdot k_n \cdot (V_{GS} - V_{TH})} = \frac{1}{2 \cdot k_n \cdot V_{on}}$$

Linear or triode region

• a more accurate calculation of the channel charge is get by adding $V_{\text{\tiny DS}}/2$

$$Q_{ch} = C_{ox} \cdot L \cdot W \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right)$$

$$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) \cdot V_{DS} = 2 \cdot k_n \cdot \left(V_{ov} - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

Saturation region

$$V_{GD} = V_{GS} - V_{DS} = V_{GS} - (V_{GS} - V_{TH}) = V_{TH}$$

$$I_{DS} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH})^2 = k_n \cdot (V_{GS} - V_{TH})^2 = k_n \cdot V_{ov}^2$$

As *vD*s approaches *vGS-vTH*, the channel charge approaches zero at the Drain end.

In facts, the channel charge is sustained by a Gate-Drain voltage, *VGD*, at the drain side, which is less than *VGS* at the Source side. When *VDS* compensates for the overdrive voltage *VGS-VTH*, *VGD* results to be equal to the threshold voltage *VTH*

Saturation region

 $L_{eff} = L - \Delta L$

Weak inversion-leakage

 $I_{DS} = I_S \cdot e^{\frac{Vsur}{Vt}}$

$$I_{DS} = I_0 e^{\frac{V_{GS}}{nVt}}$$

Summary for NMOS

Region of operation	Characteristic equation	V _{GS}	V _{DS}	VDD
Cut-off	<i>I_{DS}</i> =0	<v<sub>TH</v<sub>	-	
Linear or triode	$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right)$	>V _{TH}	<v<sub>GS- V_{TH}</v<sub>	
Saturation	$I_{DS} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH})^2 \cdot (1 + \lambda \cdot V_{DS})$	>V _{TH}	>V _{GS} - V _{TH}	-
Weak inversion	$I_{DS} = I_0 \cdot e^{\frac{V_{GS}}{n \cdot Vt}}$	≅V _{TH}	>0 V	-

Micrwind video: https://youtu.be/MDARZD9OLNI

$$\frac{\mu_n}{\mu_p} \cong 2.5$$

As in the PMOS transistor, I_{sp} is due to the drift of holes, the hole mobility, μ_p , has to be considered. The mobility of holes is quite less than electrons,

Therefore, a PMOS transistor has to be larger than a NMOS transistor in the same bias conditions in order to provide the same current.

MOS REGIONS OF OTERATION
NMOS
CUTOFF : Ves < Vt
Ves > Vt
IF VOS > VGS-Vt - SATURATION
IF NOS < YES- VE - TRIODE/LINEAR
Vos-Ves > - Vt
VGD X VE - SATURATION VGD XVE - SATURATION VGD >VE - TRIOUR / LINEAR
PMDS
CUTOFF VSG < IVt]
VSE > IVEI
VSD > VSE - IVE -> SATURATION
VSD × VSG - IVE - TRIDDE / LINEAR