

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #5

Static CMOS Logic part2

Cell Based Automated Design

Concept of Automated Design

 Any digital function can be easily converted to a logic circuit. Synthesis tool uses this to automatically synthesize circuit from functional description.

Concept of Automated Design (2)

 If primitive (standard) cells are previously designed, large number of various digital circuits can be built using these parts

Basic Steps of Synthesis

Digital IC Specification

- Description of Digital IC functionality
- With the help of Verilog or VHDL in the specification
- An example of specification line:
 - if incoming_call AND line_is_available then RING;
- The specifications of contemporary Digital IC can contain millions of lines, can be created by a collective of numerous participants within a few months

Logic Synthesis

 Logic synthesis is the process which produces logic circuit from circuit description

Logic Synthesis (2)

- Logic synthesis also optimizes the circuit.
 - The problem:
 - circuit simply created from function can possibly operate not as expected.

The delay of U1 element will affect final result

Additional elements should be added to the circuit to ensure correct operation

Main Optimization Trade-Offs

- Circuit design is a tradeoff of timing, power and area
- Timing optimization
 - Goal: small delays
- Power optimization
 - Goal: low power consumption
- Area optimization
 - Goal: small area

Same function: Y=a+b+c+d

Test Creation

 Automatic test patterns (ATPG) are generated for synthesized circuit that can be used to test the design after fabrication.

Physical Synthesis

Physical synthesis is the process that produces layout of logic circuit.

Physical Synthesis Steps

- Floorplanning
- Placement
- Routing

Floorplanning

• During the floorplanning step the overall cell is defined, including: cell size, supply network, etc.

Floorplan

Placement

- Placement exact placement of modules (modules can be standard cells, IPs)
 - The goal is to minimize the total area and interconnect length

Unit Tile

- Placement uses grid in which cells are placed
- Floorplanning 'unit tile' cell to build this grid
 - Unit tile is defined by a library developer
 - All the cells in the library are designed to be multiple to unit tile

Routing

- Routing connects placed cells according to schematic
 - The goal is minimal impact of interconnects on circuit operation

Placed design

Routed design

Digital IC Design Flow

Design Environment of Logic Synthesis

Constraints

Design Environment of Physical Synthesis

Circuit Optimization During Physical Synthesis

- Physical synthesis not only places and routes the cells of a circuit but also optimizes the cell as required by the designer
- Optimizations
 - Area
 - Interconnect length
 - Power density
 - Clock distribution
 - ...

Physical Synthesis Circuit Optimization Example: Clock Delay Problems

 All clock pins are driven by a single clock source

Physical Synthesis Circuit Optimization Example: Clock Tree Synthesis

• A buffer tree is built to balance the loads and minimize the delays

Digital Standard Cell Library

- Digital standard cell library (DSCL) is a set of cells which is used to design large ICs
- Cell number can be minimal, but the larger and more comprehensive is the set the more flexible will be synthesis, and the better will be the resulting circuit operation.

Digital Standard Cell Library: Gates

- Boolean logic is a set of functions defined on binary valued variables
 - Variable values may be defined in any of several ways: {1,0}, {True,False}, {On,Off}, {High,Low}, {2.5V,0V}, {VDD, VSS}
 - A logic function performs transformation on a set of boolean variables and constants

Basic Logic Gates

Basic Logic Gates (2)

Basic Logic Gates (3)

XOR: XOR(0,1)=XOR(1,0)=1, otherwise 0

XNOR: NOT(XOR) (Equivalent Gate)

Standard Cell Specification Example

- The SAED_EDK32/28_CORE Digital Standard Cell Library will be built using SAED32/28nm 1P9M 1.05V/1.8V/2.5V design rules.
- The library will be created aimed at optimizing the main characteristics of designed integrated circuits by its help.
- The library will include typical miscellaneous combinational and sequential logic cells for different drive strengths.
- Besides, the library will contain all the cells which are required for different styles of low power (multi-voltage, multi-threshold) designs. Those are: Isolation Cells, Level Shifters, Retention Flip-Flops, Always-on Buffers and Power Gating Cells.
- The presence of all these cells will provide the support of integrated circuits design with different core voltages to minimize dynamic and leakage power.

Low Power Design Techniques Overview

Standard Cell General Information

Symbol	State
L ("0")	LOW Logic Level
H ("1")	HIGH Logic Level
Z	High-impedance State
LH ("0"→"1")	LOW to HIGH Transition
HL ("1"→"0")	HIGH to LOW Transition
Х	Either HIGH or LOW Logic Level

Operating Conditions

 SAED_EDK32/28_CORE Digital Standard Cell Library specification is given for 1.2V operation. The used process technology will be SAED32/28nm 1P9M 1.05V/1.8V/2.5V, but only the 1P1M option will be used.

Parameter	Min	Тур	Max	Units
Power Supply (VDD) range	0.945	1.05	1.061	V
Operating Temperature range	-40	+25	+125	°C
Operating Frequency (F)	-	300	-	MHz

DC Parameters and Measurement Conditions of Digital Cells

Ν	Parameter	Unit	Symbol	Figure	Definition
1.	Voltage Transfer Characteristic	-	VTC		DC functional dependence between input and output voltages.
2.	Output high level voltage (nominal)	V	V _{OHN} =V _{DD}		Output high voltage at nominal condition, usually equals to V _{DD}
3.	Output low level voltage (nominal)	V	V _{OLN} =0 (V _{OLN} =V _{SS})		Output low voltage at nominal condition, usually V _{OLN} =0
4.	Switching point voltage	V	V _{SP}	Vout V _{DD} V _{SP} V _{SP} V _{SP} V _{DD} V _{IN}	Point on VTC where VOUT =VIN

DC Parameters and Measurement Conditions of Digital Cells (2)

Ν	Parameter	Unit	Symbol	Figure	Definition
5.	Output high level minimum voltage	V	V _{OHMIN}	VOUT VDD OHMIN 0 VDD VDD VDD VDD VDD VDD VDD VDD VDD V	Highest output voltage at slope= -1
6.	Output low level maximum voltage	V	V _{OLMAX}	VOLTAX	Lowest output voltage at slope= -1
7.	Input minimum high voltage	V	V _{IHMIN}		Highest input voltage at slope = -1
8.	Input maximum low voltage	V	V _{ILMAX}		Lowest input voltage at slope = -1

Determine the HIGH level noise margin for 3.3V CMOS, given the voltage levels below:

DC Parameters and Measurement Conditions of Digital Cells (3)

Ν	Parameter	Unit	Symbol	Figure	Definition
9.	High state noise Margin	V	NMH= V _{OHMIN} -V _{IHMIN}	Voltage	The maximum input noise voltage which does not change the output state when its value is subtracted from the input high level voltage
10.	Low state noise margin	V	NML=V _{ILMAX} -V _{OLMAX}	Voltage Undefined VILMAX	The maximum input noise voltage which does not change the output state when added to the input low level voltage
11.	Static leakage current consumption at output on high state	uA	I _{LEAKH}	None	The current consumed when the output is high
12.	Leakage power consumption (dissipation) at output	pW	$P_{LEAKL} = V_DD \ge I_{LEAK}$	None	The power consumed when the output is high

DC Parameters and Measurement Conditions of Digital Cells (4)

Ν	Parameter	Unit	Symbol	Figure	Definition
13.	Leakage power consumption (dissipation) at output on high state	рW	$P_{LEAKL} = V_{DD} \times I_{LEAKH}$	None	The power consumed when the output is high
14.	Leakage power consumption (dissipation) at output on high state	рW	PLEAKL=VDD x ILEAKL	None	The power consumed when the output is low

AC Parameters and Measurement Conditions of Digital Cells

Ν	Parameter	Unit	Symbol	Figure	Definition
1.	Rise transition time	ns	t _R	$V_{SS} \xrightarrow{0.1V_{DD}} t_{R}$	The time it takes a driving pin to make a transition from kV_{DD} to (1-k) V_{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
2.	Fall transition time	ns	t _F	V_{DD} 0.9V _{DD} $0.1V_{DD}$ t_F	The time it takes a driving pin to make a transition from $(1-k)V_{DD}$ to kV_{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
3.	Propagation delay low-to-high (Rise propagation)	ns	t _{PLH} (t _{PR})		Time difference between the input signal crossing a $0.5V_{DD}$ and the output signal crossing its $0.5V_{DD}$ when the output signal is changing from low to high

AC Parameters and Measurement Conditions of Digital Cells (2)

Ν	Parameter	Unit	Symbol	Figure	Definition
4.	Propagation delay high-to-low (Fall propagation)	ns	t _{PHL} (t _{PF})		Time difference between the input signal crossing a $0.5V_{DD}$ and the output signal crossing its $0.5V_{DD}$ when the output signal is changing from high to low
5.	Average supply current	uA	$I_{V_{DD}AVG} = {\begin{matrix} T \\ 0 \end{matrix}} I_{V_{DD}}(t)dt$		The power supply current average value for a period (T)
6.	Supply peak current	uA	$I_{VDDPEAK} = \\ = max(I_{VDD}(t)) \\ t \in [0;T]$		The peak value of power supply current within one period (T)
7.	Dynamic power dissipation	рW	P _{DISDYN} = =I _{VDDAVG} x V _{DD}		The average power consumed from the power supply
8.	Power-delay product	nJ	PD=PDISDYN x x max (tPHL,tPLH)		The product of consumed power and the largest propagation delay

AC Parameters and Measurement Conditions of Digital Cells (3)

Ν	Parameter	Unit	Symbol	Figure	Definition
9.	Energy-delay product	nJs	ED=PD x x max(t _{PHL} ,t _{PLH})		The product of PD and the largest propagation delay
10.	Switching fall power	nJ	$P_{SWF} = (C_{LOAD} + C_{OUTF}) x$ $x V_{DD}^{2/2}$		The energy dissipated on a fall transition. $(C_{OUTF}$ is the output fall capacitance)
11.	Minimum clock pulse (only for flip-flops or latches)	ns	t _{PWH} (t _{PWL})		The time interval during which the clock signal is high or low, so that it ensures proper operation of a flip-flop or a latch
12.	Setup time (only for flip-flops or latches)	ns	t _{PWH} (t _{PWL})		The time interval during which the clock signal is high or low, so that it ensures proper operation of a flip-flop or a latch
13.	Setup time (only for flip-flops or latches)	ns	t _{su}		The minimum period in which the input data to a flip-flop or a latch must be stable before the active edge of the clock occurs

AC Parameters and Measurement Conditions of Digital Cells (4)

Ν	Parameter	Unit	Symbol	Figure	Definition
14.	Hold time (only for flip-flops or latches)	ns	t _H		The minimum period in which the input data to a flip-flop or a latch must remain stable after the active edge of the clock has occurred
15.	Clock-to-output time (only for flip-flops or latches)	ns	t _{CLKQ}		The amount of time that takes the output signal to change after clock's active edge is applied
16.	Removal time (only for flip-flops or latches with asynchronous Set or Reset).	ns	t _{REM}	SET (RESET) 0.5VDD CLOCK	The minimum time in which the asynchronous Set or Reset pin to a flip-flop or latch must remain enabled after the active edge of the clock has occurred

AC Parameters and Measurement Conditions of Digital Cells (5)

Ν	Parameter	Unit	Symbol	Figure	Definition
17.	Recovery time (only for flip-flops and latches with asynchronous Set or Reset)	ns	t _{REC}		The minimum time in which Set or Reset must be held stable after being deasserted before next active edge of the clock occurs
18.	From high to Z-state entry time, (only for tri-state output cells)	ns	t _{HZ}	0.5V _{DD} SET (<u>RESET)</u> CLOCK	The amount of time that takes the output to change from high to Z-state after control signal is applied
19.	From low to Z-state entry time, (only for tri-state output cells)	ns	t _{LZ}		The amount of time that takes the output to change from low to Z-state after control signal is applied
20.	From Z to high-state exit time (only for tri-state output cells)	ns	t _{ZH}		The amount of time that takes the output to change from Z to high-state after control signal is applied
21.	From Z to low-state exit time (only for tri-state output cells)	ns	t _{ZL}		The amount of time that takes the output to change from Z to low-state after control signal is applied
22.	Input pin capacitance	pF	C _{IN}		Defines the load of an output pin
23.	Maximum capacitance	pF	C _{MAX}		Defines the maximum total capacitive load that an output pin can drive

Standard Cell List Example

No	Cell Description	Drive Strength	Cell Name
	Inverters. Buffers		
1.	Inverters	$1 \mathrm{x} \mathrm{C}_{\mathrm{sl}}$	INVX1
2.	Inverters	$2 \mathrm{x} \mathrm{C}_{\mathrm{sl}}$	INVX2
3.	Non-inverting Buffer	4x C _{sl}	NBUFFX4
4.	Non-inverting Buffer	8x C _{sl}	NBUFFX8
5.	Tri-state inverting inverting Buffer W/ Low active enable	2x C _{sl}	TIBUFFL1X2
6.	Tri-state inverting inverting Buffer W/ Low active enable	3x C _{sl}	TIBUFF1X3

Standard Cell List Example (2)

No	Cell Description	Drive Strength	Cell Name
	Logic Gates		
7.	AND 2-input	2x C _{sl}	AND2X2
8.	AND 2-input	3x C _{sl}	AND2X3
9.	NAND 2-input	2x C _{sl}	NAND2X2
10.	NAND 2-input	3x C _{sl}	NAND2X3
11.	OR 2-input	3x C _{sl}	OR2X3
12.	OR 2-input	4x C _{sl}	OR2X4
13.	NOR 2-input	2x C _{sl}	NOR2X2
14.	NOR 2-input	3x C _{sl}	NOR2X3

Standard Cell List Example (3)

No	Cell Description	Drive Strength	Cell Name
	Complex Logic Gates		
15.	AND OR 2/1	2x C _{sl}	AO21X2
16.	AND OR 2/1	3x C _{sl}	AO21X3
17.	AND-OR-Invert 2/1	2x C _{sl}	AOI21X2
18.	AND-OR Invert 2/1	3x C _{sl}	AOI21X3
19.	OR AND 2/2	3x C _{sl}	OA22X3
20.	OR AND 2/2/1	2x C _{sl}	OA221X2
21.	OR AND Invert 2/2/1	2x C _{sl}	OAI221X2
22.	OR AND Invert 2/2/1	3x C _{sl}	OAI221X3
23.	OR AND Invert 2/2/2	3x C _{sl}	OAI222X2

Standard Cell List Example (4)

No	Cell Description	Drive Strength	Cell Name
	Multiplexers		
24.	Multiplexer 2 to 1	2x C _{sl}	MUX21X2
25.	Multiplexer 2 to 1	Зх С _{sl}	MUX21X3
26.	Multiplexer 4 to 1	2x C _{sl}	MU421X2
27.	Multiplexer 4 to 1	3x C _{sl}	MUX41X3
	Decoders		
28.	Decoder 2 to 4	2x C _{sl}	DEC24X2
29.	Decoder 2 to 4	3x C _{sl}	DEC24X3
	Adders and Subtractors		
30.	Half Adder 1 bit	2x C _{sl}	HADDX2
31.	Half Adder 1 bit	3x C _{sl}	HADDX2
32.	Full Adder 1 bit	2x C _{sl}	FADDX2

Standard Cell List Example (5)

No	Cell Description	Drive Strength	Cell Name
	D Flip-Flops		
32.	Pos edge D Flip-Flop	2x C _{sl}	DFFX2
33.	Pos edge D Flip-Flop	4x C _{sl}	DFFX4
34.	Pos edge D Flip-Flop, w/ Async low active Set	2x C _{sl}	DFFASBX2
35.	Pos edge D Flip-Flop, w/ Async low active Set	4x C _{sl}	DFFASBX4
36.	Neg edge D Flip-Flop	2x C _{sl}	DFFNX2
37.	Neg edge D Flip-Flop	4x C _{sl}	DFFNX
38.	Neg edge D Flip-Flop, w/ Async low active Set	2x C _{sl}	DFFNASBX2
39.	Neg edge D Flip-Flop, w/ Async low active Set	4x C _{sl}	DFFNASBX4
	Scan D Flip-Flops		
40.	Scan Pos edge D Flip-Flop	2x C _{sl}	SDFFX2
41.	Scan Pos edge D Flip-Flop	4x C _{sl}	SDFFX4
42.	Scan Pos edge D Flip-Flop w/ Async low active Set	2x C _{sl}	SDFFASBX2
43.	Scan Pos edge D Flip-Flop w/ Async low active Set	4x C _{sl}	SDFFASBX4
44	Scan Neg edge D Flip-Flop	2x C _{sl}	SDFFNX2
45.	Scan Neg edge D Flip-Flop	4x C _{sl}	SDFFNX4
46.	Scan Neg edge D Flip-Flop w/ Async low active Set	2x C _{sl}	SDFFNASBX2
47.	Scan Neg edge D Flip-Flop w/ Async low active Set	4x C _{sl}	SDFFNASBX4

Standard Cell List Example (6)

No	Cell Description	Drive Strength	Cell Name
	Latches		
48.	RS NAND Latch	2x C _{si}	LNANDX2
49.	RS NAND Latch	4x C _{si}	LNANDX4
	Delay Lines		
50.	Non-inverting Delay Line, 0.5 ns	2x C _{si}	DELLN1D1
51.	Non-inverting Delay Line, 0.75 ns	2x C _{si}	DELLN1D2
	Pass Gates		
52.	Pass Gate	2x C _{si}	PGX2
53.	Pass Gate	Зх С _{si}	PGX3
Bi-direction	nal Switches		
54.	Bi-directional Switch w/ High-active Enable	2x C _{si}	BSHEX2
55.	Bi-directional Switch w/ High-active Enable	Зх С _{si}	BSHEX3
	Isolation Cells		
56.	Hold 1 Isolation Cell(Logic AND)	2x C _{si}	ISOLANDX2
57.	Hold 1 Isolation Cell(Logic AND)	4x C _{si}	ISOLANDX4
	Level Shifters		
58.	Low to High Level Shifter	2x C _{si}	LSUPX2
59.	High to High Level Shifter	4x C _{si}	LSDNX4
60.	High to High Level Shifter	16x C _{si}	LSDNX16

Standard Cell List Example (7)

No	Cell Description	Drive Strength	Cell Name
	Retention Flip-Flops		
61.	Pos edge Retention D Flip-Flop	2x C _{sl}	DRFFX2
62.	Pos edge Retention D Flip-Flop	4x C _{si}	DRFFX4
63.	Pos edge Retention D Flip-Flop, w/ Async low active Reset	2x C _{sl}	DRFFARBX2
64.	Pos edge Retention D Flip-Flop, w/ Async low active Reset	4x C _{sl}	DRFFARBX4
	Power Gating Cells		
65.	Header Cell	4x C _{si}	HEADX4
66.	Footer Cell	4x C _{si}	FOOTX4
	Always on Cells		
67.	Always on Non-inverting Buffer	2x C _{sl}	AOBUFX2
68.	Always on Non-inverting Buffer	4x C _{si}	AOBUFX4
69.	Always on Pos edge D Flip-Flop, w/ Async low active Reset	2x C _{sl}	AODFFASBX2
70.	Always on Pos edge D Flip-Flop, w/ Async low active Reset	4x C _{sl}	AODFFASBX2
	Additional Cells		
71.	Tie High		TIEH
72.	Tie Low		TIEL
73.	Antenna Diode		ANTENNA
74.	Decoupling Capacitance		DCAP
	Fillers		
75.	Filler Cell 1grid width		FILL1
76.	Filler Cell 2grid width		FILL2
77.	Double height filler Cell 1grid width		DHFILL1
78.	Double height filler Cell 4grid width		DHFILL4

Standard Cell Example: Inverter

IN	OUTN
0	1
1	0

Standard Cell Example: AND-OR

IN ₁	IN_2	IN_3	OUT
1	1	Х	1
Х	Х	1	1
0	Х	0	0
Х	0	0	0

Standard Cell Example: OR-AND-INVERT

IN ₁	IN_2	IN_3	OUTN
0	0	Х	1
Х	Х	0	1
1	Х	1	0
Х	1	1	0

Standard Cell Example: Inverter

