MOS Mode of operation

Equivalent circuit of an NMOS transistor with all terminals biased to ground

NMOS transistor with a 0<*VGS*<*VTH*.

- current cannot flows between Source and
- Drain, and the device is still in cut-off region.

Linear or triode region

- When VGS>VTH, the NMOS transistor is on, i.e. the conducting
 - channel is formed, then a current flow
- between Source and Drain can exist.

$$I_{DS} = \frac{N \cdot q}{t_d} = \frac{Q_{ch}}{t_d}$$

$$Q_{ch} = C_{ox} \cdot L \cdot W \cdot (V_{GS} - V_{TH}) = C_{ox} \cdot L \cdot W \cdot V_{ov}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

 $t_{ox} = \frac{L_{min}}{50}$ In standard CMOS technologies of the last twenty years t_{ox} is about fifty times lower than the minimum channel length L_{min}

$$t_d = \frac{L}{v_d}$$

Drift time, t_d , is directly proportional to the channel length L, and inversely proportional to the drift velocity of electrons, v_d ,

Linear or triode region

 $v_d = \mu_n \cdot \varepsilon_y$ • Drift velocity, vd, is proportional to the horizontal electric field, ε_y ,

• where μn is the electron mobility in the channel. The value of the horizontal electric field sy

$$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{I} \cdot (V_{GS} - V_{TH}) \cdot V_{DS} = 2 \cdot k_n \cdot V_{ov} \cdot V_{DS}$$

$$k_n = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L}$$

the NMOS transistor acts

like a variable resistance, R_{on} , whose value depends on V_{ov}

$$R_{on} = \frac{1}{2 \cdot k_n \cdot (V_{GS} - V_{TH})} = \frac{1}{2 \cdot k_n \cdot V_{ov}}$$

Linear or triode region

• a more accurate calculation of the channel charge is get by adding $V_{\rm DS}/2$

$$Q_{ch} = C_{ox} \cdot L \cdot W \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right)$$

$$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) \cdot V_{DS} = 2 \cdot k_n \cdot \left(V_{ov} - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

Saturation region

$$V_{GD} = V_{GS} - V_{DS} = V_{GS} - (V_{GS} - V_{TH}) = V_{TH}$$

$$I_{DS} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH})^2 = k_n \cdot (V_{GS} - V_{TH})^2 = k_n \cdot V_{ov}^2$$

As *VD*3 approaches *VG*3-VTH, the channel charge approaches zero at the Drain end.

In facts, the channel charge is sustained by a Gate-Drain voltage, *VGD*, at the drain side, which is less than *VGS* at the Source side. When *VDS* compensates for the overdrive voltage *VGS-VTH*, *VGD* results to be equal to the threshold voltage *VTH*

 I_{GS} - V_{GS} input characteristic of the NMOS transistor in saturation region

Saturation region

$$L_{eff} = L - \Delta L$$

$$I_{DS} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L_{eff}} \cdot (V_{GS} - V_{TH})^2$$

Weak inversion-leakage

$$I_{DS} = I_S \cdot e^{\frac{Vsur}{Vt}}$$

$$I_{DS} = I_0 \cdot e^{\frac{V_{GS}}{n \cdot Vt}}$$

Summary for NMOS

Region of operation	Characteristic equation	V_{GS}	V_{DS}
Cut-off	$I_{DS}=0$	<v<sub>TH</v<sub>	-
Linear or triode	$I_{DS} = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right)$	>V _{TH}	<v<sub>GS− V_{TH}</v<sub>
Saturation	$I_{DS} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH})^2 \cdot (1 + \lambda \cdot V_{DS})$	>V _{TH}	>V _{GS} - V _{TH}
Weak inversion	$I_{DS} = I_0 \cdot e^{\frac{V_{GS}}{n \cdot Vt}}$	≅V _{TH}	>0 V

Region of operation	Characteristic equation	V_{SG}	V_{SD}
Cut-off	I_{SD} =0	>V _{TH}	-
Linear or triode	$I_{SD} = \mu_p \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{SG} + V_{TH} - \frac{V_{SD}}{2} \right) \cdot V_{SD}$	<v<sub>TH</v<sub>	>V _{SG} + V _{TH}
Saturation	$I_{SD} = \frac{1}{2} \cdot \mu_p \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{SG} + V_{TH})^2 \cdot (1 + \lambda \cdot V_{SD})$	<v<sub>TH</v<sub>	<v<sub>SG+ V_{TH}</v<sub>
Weak inversion	$I_{SD} = I_0 \cdot e^{\frac{V_{SG}}{n \cdot Vt}}$	$\cong V_{TH}$	<0 V

linear or triode;

saturation;

weak inversion.

NMOS	PMOS
I _{DS} -	→ I _{SD}
V _{GS} -	→ V _{SG}
V _{DS} -	→ V _{SD}
V _{TH} -	→ -V _{TH}
<u>μ</u> , -	————————————————————————————————————

Region of operation	Characteristic equation	$ V_{GS} $	$ V_{DS} $
Cut-off	$ I_{DS} =0$	< <i>V</i> _{TH}	-
Linear or triode	$ I_{DS} = \mu_p \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{TH} - \frac{ V_{DS} }{2} \right) \cdot V_{DS} $	> <i>V</i> _{TH}	< V _{GS} - V _{TH}
Saturation	$ I_{DS} = \frac{1}{2} \cdot \mu_p \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{GS} - V_{TH})^2 \cdot (1 + \lambda \cdot V_{DS})$	> <i>V</i> _{TH}	> V _{GS} - V _{TH}
Weak inversion	$ I_{DS} = I_0 \cdot e^{\frac{ V_{GS} }{n \cdot Vt}}$	$\cong V_{TH} $	>0 V

$$\frac{\mu_n}{\mu_p} \cong 2.5$$

As in the PMOS transistor, I_{SD} is due to the drift of holes, the hole mobility, μ_P , has to be considered. The mobility of holes is quite less than electrons,

Therefore, a PMOS transistor has to be larger than a NMOS transistor in the same bias conditions in order to provide the same current.

NMOS transistor

Algorithm for solving a circuit including a MOS transistor by hand.

