Threshold voltage of MOS transistor:

• The threshold voltage of a MOS transistor (Vth is V_{GS} required to strongly invert the surface of the substrate under the gate.) is calculated like that of a MOS structure with one slight modification in Q_{B} .

$$Q_{B} = \sqrt{2 q} N_{sub} \varepsilon_{sub} | 2 \phi_{F} - V_{SB} |$$

Where V_{SB} is the source to bulk voltage.

• For circuit analysis:

$$V_{th} = V_{T0} + \gamma(\sqrt{|2\phi_F - V_{SB}|} - \sqrt{|2\phi_F|})$$

Where
$$\gamma$$
 is called body effect coefficient = $\frac{\sqrt{2q N_{sub} \varepsilon_{sub}}}{C_{ox}}$

 V_{T0} = the threshold voltage with V_{SB} =0 i.e. with out the body effect.

Depletion mode Versus Enhancement mode MOSFET:

- If a MOSFET is on (i.e. in strong inversion) at zero bias then it is a depletion Mode MOSFET (it is normally ON).
 - $\circ~$ We actually have to apply a $V_{GS} < V_{th}$ to turn off the NMOS or a $V_{GS} > V_{th}$ for PMOS .
- If a MOSFET is normally off \rightarrow it is enhancement mode

 $\circ~$ Then for NMOS we have to apply a V_{GS} > V_{th} to turn it ON or a V_{GS} < V_{th} to turn a PMOS ON.

Depletion NMOS \rightarrow Vth ≤ 0 Depletion PMOS \rightarrow Vth ≥ 0 Enhancement NMOS \rightarrow Vth >0 Enhancement PMOS \rightarrow Vth < 0

Poly Gate MOSFET:

The gate of MOS transistors is usually made with polycrystalline Si, that is heavily doped (either P or N type).

- In this case Φ_G depends on the type of poly Si
- For N-type poly \rightarrow the Fermi level is in the conduction band \rightarrow $\Phi_{\rm G} = \mathbf{E}_{\mathbf{O}} - \mathbf{E}_{\mathbf{F}} = \boldsymbol{\chi}_{\rm S}$ $--- E_0$ $\Phi_{\rm G} = \chi_{\rm S}$ E_C

 $\mathbf{E}_{\mathbf{F}}$

The flat-band voltage V_{FB}:

$$V_{FB} = \Phi_G - \Phi_S = \chi_s - [\chi_s + \frac{E_g}{2q} - \phi_F] \rightarrow$$
$$V_{FB} = -\frac{E_g}{2q} + \phi_F$$

• For P-type poly \rightarrow the Fermi level is in the Valence band \rightarrow $\Phi_{\rm G} = \mathbf{E}_{\mathbf{O}} - \mathbf{E}_{\mathbf{F}} = \chi_{\rm S} + \mathrm{E}\mathbf{g}$

Eo χs - E_C Eg $\Phi_{\rm G}$ E_F - $- E_V$

– Ev

Hence:

$$V_{FB} = \chi_s + \frac{E_g}{2q} - [\chi_s - \frac{E_g}{2q} - \phi_F] \rightarrow$$
$$V_{FB} = \frac{E_g}{2q} + \phi_F$$

Ex1) An MOS transistor is made with a P-type substrate (Na = 10^{16} cm⁻³) and a heavily doped P-type poly Si gate. Cox = 2 fF/µm². Calculate Vth and specify the type of the transistor

Sol:

This is an NMOS transistor, since the type of substrate is p-type.

$$V_{th} = V_{FB} + 2\phi_F - \frac{Q_B}{C_{OX}} - \frac{Q_{OX}}{C_{OX}}$$
$$\phi_F = -V_T \ln \frac{Na}{n_i} = -0.025 \ln \frac{10^{16}}{10^{10}} = -0.345$$

$$V_{FB} = \Phi_G - \Phi_S = \chi_s + Eg - [\chi_s + \frac{E_g}{2q} - \phi_F]$$

$$= -0.345 + 0.55 = 0.19 v$$

$$Q_{B} = \sqrt{2q} N_{sub} \varepsilon_{sub} |2\phi_{F}| = \sqrt{1.6 \times 10^{-19} \times 2 \times 10^{6} \times 8.85 \times 10^{-14} \times 12}$$
$$= -4.8 \times 10^{-8} \text{ c/cm}^{2}$$

Vth = $0.19 + 0.69 + 4.8 \times 10^{-8} = 1.12$ V

 \rightarrow the type is enhancement NMOS

Ex2) For the same transistor in [Ex1], if the Gate poly is N-type & $Q_{ox} = 5x \ 10^{-8} \text{ c/cm}^2$ Calculate Vth and specify the type of the transistor Sol:

$$\phi_F = -.345 \mathrm{v},$$

$$V_{FB} = \chi_s - [\chi_s + \frac{E_g}{2q} - \phi_F]$$

$$V_{FB} = -0.89 \text{ V}, \qquad Q_B \text{ is the same.}$$

Vth =
$$-0.89 + 0.69 + \frac{4.8 \times 10^{-8}}{2 \times 10^{-7}} - \frac{5 \times 10^{-8}}{2 \times 10^{-7}} \approx -0.21v$$

 \rightarrow the type is Depletion NMOS

Ex3)

 \rightarrow

For example 2, what is the type of the doping and its concentration required to make Vth = +0.8v?

Sol.:

We want to increase Vth by about 1v (i.e. make it harder to invert we need to make it more P-type => i.e. increase Na

• By how much should we increase Na?

Na affects ϕ_F : $|\phi_F| \propto \ln Na$ Na also affects $V_{FB} : V_{FB} \propto \ln Na$ Na affects $Q_B \propto \sqrt{Na}$. This is a bigger dependency Ignore effects of Na on ϕ_F and $V_{FB} \Longrightarrow$ we need to increase $\frac{Q_B}{C_{OX}}$ by 1 volt $\frac{Q_B}{C_{OX}} was \approx 0.23v$ we need it to be = 1.23 v \rightarrow

$$Q_{B} = 1.23 \text{ Cox} = 2.46 \text{ x } 10^{-7} \text{ c/cm}^{2}$$
$$= \sqrt{2 \text{ q } N_{\text{sub}}} \varepsilon_{\text{sub}} | 2 \phi_{F} | = Na = 2.58 \times 10^{17} \text{ c/cm}^{2}$$

we already have $10^{16} =>$ we need to add 2.58x $10^{17} - 10^{16} = 2.48 \times 10^{16} \text{ cm}^{-3}$ more acceptors.