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Preface

This Instructors SolutionManualprovidessolutions(or at leastsolutionsketches)or
almostall of the 400 exercisesin Artificial Intelligence: A Modern Approacd (Secondedi-
tion). We only give actualcodefor afew of the programmingexerciseswriting alot of code
would notbethathelpful,if only becauseve don't know whatlanguageyou prefer

In mary caseswe give ideasfor discussionand follow-up questionsandwe try to
explainwhywe designedeachexercise.

Thereis more supplementarynaterialthat we wantto offer to the instructor but we
have decidedto do it throughthe mediumof the World Wide Webratherthanthrougha CD
or printedinstructors Manual. Theideais thatthis solutionmanualcontainghe materialthat
mustbekeptsecreffrom studentsbut the Web site containamaterialthatcanbe updatedand
addedo in amoretimely fashion.Theaddresgor thewebsiteis:

http://aima.cs.b er kele y. edu
andtheaddresdor the onlinelnstructors Guideis:

http://aima.cs.b er kele y. edu/i nstr uctor s. ht ml
Thereyouwill find:

e Instructionson how to join the aima-instructors discussionist. We stronglyrecom-
mendthat you join so that you canreceve updates,corrections,notification of new
versionsof this SolutionsManual, additionalexercisesand exam questionsgtc.,in a
timely manner

e Sourcecodefor programsrom thetext. We offer codein Lisp, Python,andJava, and
pointto codedevelopedby othersin C++ andProlog.

e Programmingesourcegndsupplementatexts.

e Figuresfrom thetext; for overheadransparencies.

e Terminologyfrom theindex of thebook.

e Othercourseausingthe bookthathave homepageson the Weh You canseeexample
syllabi and assignmentéere. Pleasedo not put solutionsetsfor AIMA exerciseson
publicwebpages!

e Al Educationinformationon teachingntroductoryAl courses.

¢ OthersitesontheWebwith informationon Al. Organizedoy chaptelin thebook;check
this for supplementammaterial.

We welcomesuggestiongor new exercises,nen ervironmentsand agents,etc. The
bookbelongsto you, theinstructor asmuchasus. We hopethatyou enjoy teachingfrom it,
thatthesesupplementamaterialshelp,andthatyouwill shareyour supplementandexperi-
enceawith otherinstructors.






Solutiongfor Chapterl
Introduction

1.1

a. Dictionary definitions of intelligence talk about“the capacityto acquireand apply
knowledge” or “the faculty of thoughtandreason”or “the ability to comprehendnd
profit from experiencé. Theseareall reasonabl@answersput if we wantsomething
gquantifiablewe would usesomethingdik e “the ability to apply knowledgein orderto
performbetterin anernvironment.

b. We defineartificial intelligence asthe studyandconstructionof agentprogramsthat
performwell in agivenervironment,for agivenagentarchitecture.

c. We defineanagentasanentity thattakesactionin responsdo perceptfrom anervi-
ronment.

1.2 Seethesolutionfor exercise26.1for somediscussiorof potentialobjections.

The probability of fooling aninterrogatordepend®n just how unskilledtheinterroga-
tor is. Oneentrantin the 2002 Loebnerprize competition(which is not quite a real Turing
Test) did fool onejudge, althoughif you look at the transcript,it is hardto imaginewhat
that judge wasthinking. Therecertainly have beenexamplesof a chatbotor otheronline
agentfooling humans. For example, seeSeelLenry Foners accountof the Julia chatbot
at fonerwww.media.mit.edu/people/foridulia/. We’d say the chancetoday is something
like 10%, with the variationdependingnore on the skill of the interrogatorratherthanthe
program.Iln 50 years,we expectthatthe entertainmenindustry(movies, videogamesgcom-
mercials)will have madesuficient investmentsn artificial actorsto createvery credible
impersonators.

1.3 The2002Loebnerprize (www.loebnemet)wentto Kevin Copples programELLA. It
consistsof a prioritized setof pattern/actiomrules: if it seesatext string matchinga certain
pattern,it outputsthe correspondingesponsewhich may include piecesof the currentor
pastinput. It alsohasa large databasef text and hasthe Wordnetonline dictionary It is
thereforeusingratherrudimentarytools, andis not advancingthe theoryof Al. It is provid-
ing evidenceon the numberandtype of rulesthat are suficient for producingone type of
conversation.

1.4 No. It meanghatAl systemshouldavoid trying to solve intractablgproblems.Usually,
this meanghey canonly approximateoptimalbehaior. Noticethathumansdon't solve NP-
completeproblemseither Sometimeshey aregoodat solvingspecificinstancesith alot of
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Chapter 1. Introduction

structure perhapswith the aid of backgroundknowledge. Al systemsshouldattemptto do
thesame.

1.5 No. IQ testscoresorrelatewell with certainothermeasuresuchassucces college,
but only if they’re measuringairly normalhumans.ThelQ testdoesnt measureverything.
A programthatis specializenly for 1Q tests(andspecializedurtheronly for the analogy
part)would very likely performpoorly on othermeasure®f intelligence. SeeThe Mismea-
sure of Man by Stephenlay Gould, Norton, 1981 or Multiple intelligences: the theoryin
practice by Howard Gardner BasicBooks, 1993for moreon I1Q tests,whatthey measure,
andwhatotheraspectshereareto “intelligence’

1.6 Justasyou areunawvare of all the stepsthat go into makingyour heartbeat,you are
alsounawvareof mostof whathappensn your thoughts.You do have aconsciouswareness
of someof your thoughtprocesseshut the majority remainsopaqueto your consciousness.
Thefield of psychoanalysiss basedon the ideathat one needstrainedprofessionahelp to
analyzeones own thoughts.

1.7

a. (ping-pong)A reasonabléevel of proficieny wasachiered by Anderssors robot(An-
dersson1988).

b. (driving in Cairo)No. Althoughtherehasbeenalot of progressn automatediriving,
all suchsystemscurrentlyrely on certainrelatively constantclues: that the road has
shouldersaanda centerline, thatthe caraheadwill travel a predictablecoursethatcars
will keepto their sideof theroad,andsoon. To our knowledge,noneareableto avoid
obstacle®r othercarsor to changdanesasappropriatetheir skills aremostly confined
to stayingin onelaneatconstanspeedDriving in downtown Cairois toounpredictable
for ary of theseto work.

c. (shoppingatthemarket) No. No robotcancurrentlyputtogethethetasksof movingin
acrowdedervironment,usingvision to identify a wide variety of objects,andgrasping
the objects(including squishableregetables)vithout damaginghem. The component
piecesarenearlyableto handletheindividual tasks,but it would take a majorintegra-
tion effort to putit all together

d. (shoppingon the web) Yes. Software robotsare capableof handlingsuchtasks,par
ticularly if the designof the web groceryshoppingsite doesnot changeradically over
time.

e. (bridge)Yes.ProgramsuchasGIB now play atasolid level.

f. (theoremproving) Yes. For example,the proof of Robbinsalgebradescribedn page
3009.

g. (funny story) No. While somecomputergeneratecdoroseand poetry is hysterically
funny, this is invariably unintentional,exceptin the caseof programsthat echoback
prosethatthey have memorized.

h. (legal advice)Yes,in somecases.Al hasalong history of researchnto applications
of automatedegal reasoning.Two outstandingexamplesarethe Prolog-basedxpert



systemausedin theUK to guidemember®f thepublicin dealingwith theintricaciesof
thesocialsecurityandnationalitylaws. Thesocialsecuritysystems saidto have saved
the UK governmentapproximatehy$150million in its first yearof operation.However,
extensioninto morecomple areassuchascontractlaw awaits a satishctoryencoding
of thevastwebof common-sensknowledgepertainingto commerciatransactionsand
agreemenandbusinesgractices.

i. (translation)Yes. In alimited way, this is alreadybeingdone. SeeKay, Gavron and
Norvig (1994) and Wahlster(2000) for an overvien of thefield of speecttranslation,
andsomelimitationson the currentstateof the art.

j. (sugery) Yes. Robotsareincreasinglybeingusedfor suigery, althoughalwaysunder
thecommandof adoctor

1.8 Certainlyperceptiorandmotorskills areimportant,andit is agoodthingthatthefields
of vision androboticsexist (whetheror not you wantto considerthempart of “core” Al).

But given a percept,an agentstill hasthe task of “deciding” (either by deliberationor by
reaction)which actionto take. This is just astruein the real world asin artificial micro-
worldssuchaschess-playingSo computingthe appropriateactionwill remainacrucial part
of Al, regardles®f theperceptuaindmotorsystento whichtheagentrogramis “attached.
Ontheotherhand,it is true thata concentratioron micro-worlds hasled Al away from the
really interestingernvironments(seepage46).

1.9 Evwolution tendsto perpetuateorganisms(and combinationsand mutationsof organ-
isms)that are succesfulenoughto reproduce.Thatis, evolution favors organismsthat can
optimizetheir performanceneasurdo atleastsurvive to the ageof sexual maturity andthen
be ableto win a mate. Rationalityjust meansoptimizing performanceneasuresothisis in
line with evolution.

1.10 Yes,they arerational, becauseslower, deliberatve actionswould tendto resultin
more damageto the hand. If “intelligent” means‘applying knowledge” or “using thought
andreasoning'thenit doesnotrequireintelligenceto make areflex action.

1.11 Thisdepend®nyourdefinitionof “intelligent” and“tell.” In onesense&omputeronly
dowhatthe programmergommandhemto do, but in anothersensewvhatthe programmers
consciouslytellsthecomputetto do oftenhasverylittle to dowith whatthecomputelactually
does. Anyonewho haswritten a programwith an ornery bug knows this, asdoesaryone
who haswritten a successfuiachinelearningprogram.Soin onesenseSamuel‘told” the
computer‘learn to play checlers betterthan| do, andthen play thatway,” but in another
sensehetold the computer‘follow this learningalgorithm” andit learnecdto play. Sowe're
left in the situationwhereyou may or may not considefearningto play checlersto be s sign
of intelligence(or you maythink thatlearningto play in theright way requiresintelligence,
but notin this way), andyou may think the intelligenceresidesn the programmeior in the
computer

1.12 Thepointof this exerciseis to noticethe parallelwith the previousone. Whatever you
decidedaboutwhethercomputersouldbeintelligentin 1.9,youarecommittecto makingthe



Chapter 1. Introduction

sameconclusiomboutanimals(includinghumans)unlessyourreasongor decidingwhether
somethingis intelligent take into accountthe mechanism(programmingvia genesversus

programmingvia a humanprogrammer).Note that Searlemakesthis appealto mechanism
in his ChineseRoomargument(seeChapter26).

1.13 Again,thechoiceyoumalein 1.11drivesyour answetto this question.



Solutiongfor Chapter2
IntelligentAgents

MOBILE AGENT

2.1

Thefollowing arejust someof themary possibledefinitionsthatcanbewritten:

Agent anentity thatpercevesandacts;or, onethatcan be viewedasperceving and
acting. Essentiallyary objectqualifies;thekey pointis the way the objectimplements
an agentfunction. (Note: someauthorsrestrictthe termto programsthat operateon
behalfof a human,or to programsthat cancausesomeor all of their codeto run on
othermachineson a network, asin mobile agents)

Agentfunction afunctionthatspecifiegsheagents actionin responseo every possible
percepsequence.

Agent progrant that programwhich, combinedwith a machinearchitecture,imple-
mentsan agentfunction. In our simple designsthe programtakes a newv percepton
eachinvocationandreturnsanaction.

Rationality a propertyof agentshatchooseactionsthatmaximizetheir expectedutil-
ity, giventhe perceptdo date.

Autonomy a propertyof agentsvhosebehaior is determinedy their own experience
ratherthansolely by theirinitial programming.

Reflex agent anagentwhoseactiondepend®nly onthecurrentpercept.
Model-basedagent anagentwhoseactionis derived directly from aninternalmodel
of thecurrentworld statethatis updatedover time.

Goal-basedagent anagentthat selectsactionsthatit believeswill achiare explicitly
representedoals.

Utility-basedagent an agentthat selectsactionsthat it believes will maximizethe
expectedutility of theoutcopmestate.

Learningagent anagentwhosebehaior improvesovertime basednits experience.

2.2 A performancemeasuras usedby an outsideobserer to evaluatehowv successfulin
agentis. It is afunctionfrom historiesto arealnumber A utility functionis usedby anagent
itself to evaluatehow desirablestatesor historiesare. In our framework, the utility function
may notbethesameasthe performanceneasurefurthermore anagentmayhave no explicit

utility functionatall, whereaghereis alwaysa performanceneasure.

2.3 Althoughthesequestionsarevery simple,they hint at somevery fundamentalssues.
Ouranswerarefor thesimpleagentdesigndor staticervironmentswherenothinghappens
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Chapter 2. IntelligentAgents

EXTERNAL MEMORY

while the agentis deliberating;the issuesget even more interestingfor dynamicerviron-
ments.

a. Yes;take ary agentprogramandinsertnull statementshatdo not affect the output.
b. Yes;the agentfunction might specify that the agentprint true whenthe perceptis a

Turing machineprogramthat halts,and false otherwise. (Note: in dynamicerviron-
ments,for machinesof lessthaninfinite speedthe rationalagentfunction may not be
implementableg.g.,the agentfunction that alwaysplaysawinning move, if ary, in a
gameof chess.)

. Yes;theagents behaior is fixed by the architectureandprogram.
. Thereare2™ agentprogramsalthoughmary of thesewill notrunatall. (Note: Any

givenprogramcandevote at mostn bits to storagesoits internalstatecandistinguish
amongonly 2™ pasthistories.Becausd¢heagentfunctionspecifiesactionsbasednper
cepthistories,therewill be mary agentfunctionsthatcannotbe implementececause
of lack of memoryin themachine.)

2.4 Noticethatfor our simpleervironmentalassumptionsve neednot worry aboutquanti-
tative uncertainty

a. It sufiicesto shaw thatfor all possibleactualernvironmentg(i.e., all dirt distributionsand

initial locations) this agentcleanshe squarestleastasfastasary otheragent.Thisis
trivially truewhenthereis no dirt. Whenthereis dirt in theinitial locationandnonein
the otherlocation,theworld is cleanafteronestep;no agentcando better Whenthere
is nodirt in theinitial locationbut dirt in the other theworld is cleanaftertwo stepsno
agentcando better Whenthereis dirt in bothlocations,the world is cleanafterthree
stepsnoagentcando better (Note: in generalthe conditionstatedn thefirst sentence
of thisansweris muchstricterthannecessarfor anagentto berational.)

. Theagentin (a) keepsmoving backwardsandforwardseven afterthe world is clean.

It is betterto do NoOp oncethe world is clean(the chaptersaysthis). Now, since
the agents perceptdoesnt saywhetherthe othersquareis clean,it would seemthat
the agentmusthave somememoryto saywhetherthe othersquarehasalreadybeen
cleaned. To malke this agumentrigorousis more difficult—for example, could the

agentarrangehingssothatit would only bein acleanleft squaravhentheright square
wasalreadyclean? As a generalstratgy, an agentcan usethe ervironmentitself as
a form of extemal memory—a commontechniguefor humanswho usethingslike

appointmentalendarandknotsin handlerchiefs.In this particularcase however, that
is not possible.Considerthe reflex actionsfor [A, Clean| and[B, Clean]. If eitherof

theseis NoOp, thenthe agentwill fail in the casewherethatis theinitial perceptbut

the othersquareis dirty; hence,neithercanbe NoOp andthereforethe simplereflex

agentis doomedo keepmoving. In generalthe problemwith reflex agentss thatthey

have to do the samething in situationsthat look the same,even whenthe situations
are actually quite different. In the vacuumworld this is a big liability, becausevery

interior square(excepthome)looks eitherlike a squarewith dirt or a squarewithout

dirt.



AgentType Performance | Environment Actuators Sensors
Measure
Robotsoccer Winning game, Field, ball, own Devices(e.g., Cameratouch
player goalsfor/against team,otherteam, | legs)for Sensors,
own body locomotionand accelerometers,
kicking orientation
Sensors,
wheel/joint
encoders
Internet Obtainre- Internet Follow link, Webpagesuser
book-shopping quested/interesting enter/submitlata | requests
agent books,minimize in fields,display
expenditure to user
Autonomous Terrainexplored Launchvehicle, Wheels/lgs, Camerafouch
Marsrover andreported, lander Mars samplecollection | sensors,
samplegathered device, analysis accelerometers,
andanalyzed devices,radio orientation
transmitter Sensors,
wheel/joint
encoderstadio
recever
Mathematiciars
theorem-preing
assistant
FigureS2.1 Agenttypesandtheir PEASdescriptionsfor Ex. 2.5.

2.5
2.6

If we considerasymptoticallylong lifetimes, thenit is clearthat learninga map (in

someform) confersan advantagebecausdt meansthatthe agentcanavoid bumping
into walls. It canalsolearnwheredirt is mostlikely to accumulateand can devise
an optimal inspectionstratgy. The precisedetailsof the exploration methodneeded
to constructa completemap appearin Chapter4; methodsfor deriving an optimal

inspection/cleanuptratgy arein Chapter21.

Somerepresentate, but notexhaustve, answersaregivenin FigureS2.1.

Environmentpropertiesaregivenin FigureS2.2.Suitableagenttypes:

. A model-basedeflex agentwould sufiice for mostaspectsfor tacticalplay, a utility-

basedagentwith lookaheadvould be useful.

. A goal-basedgentwould be appropriatgfor specificbook requests.For more open-

endedasks—e.g.,Find mesomethingnterestingo read’—tradedt areinvolvedand
theagentmustcompareutilities for variouspossiblepurchases.



Chapter 2. IntelligentAgents

TaskEnvironment Obsenable Deterministic Episodic Static  Discrete Agents

Robotsoccer Partially Stochastic Sequential Dynamic Continuous Multi

Internetbook-shopping | Partially Deterministi¢ Sequential Static Discrete Single

AutonomousMarsrover | Partially Stochastic Sequential Dynamic Continuous Single

Mathematiciars assistant  Fully Deterministic Sequential Semi Discrete  Multi

FigureS2.2  Environmentpropertiedor Ex. 2.6.

¢. A model-basedeflex agentwould sufice for low-level navigation andobstacleavoid-
ancejfor routeplanning,explorationplanning,experimentationetc.,somecombination
of goal-base@ndutility-basedagentsvould beneeded.

d. For specificproof tasks,a goal-basedgentis needed.For “exploratory” tasks—e.g.,
“Prove someusefullemmataconcerningoperationon strings”—autility-basedarchi-
tecturemight be needed.

2.7 Thefile "agents/environm ents /v acuuml is p" inthecoderepositoryimple-
mentsthe vacuum-cleaneervironment. Studentscan easily extendit to generateifferent
shapedooms,obstaclesandsoon.

2.8 A reflex agentprogramimplementingtherationalagentfunctiondescribedn thechap-
teris asfollows:

(defun  reflex-rational -v acuum-agent (percept)
(destructuring- bi nd (location status) percept
(cond ((eq status ’'Dirty) 'Suck)
((eq location 'A) 'Right)
(t ’Left))

For statesl, 3, 5, 7 in Figure 3.20, the performanceneasuresre 1996,1999, 1998, 2000
respectrely.

2.9 Exercise2.4,2.9,and2.10maybemegedin future printings.

a. No; seeanswerto 2.4(b).

b. Seeanswelto 2.4(b).

c. In this case,a simplereflex agentcanbe perfectlyrational. The agentcanconsistof
atablewith eightentries,indexed by percept.that specifiesan actionto take for each
possiblestate. After the agentacts,the world is updatedandthe next perceptwill tell
the agentwhatto do next. For larger ervironments,constructinga tableis infeasible.
Instead the agentcould run oneof the optimal searchalgorithmsin Chapters3 and4
andexecutethe first stepof the solutionsequenceAgain, no internalstateis required,
but it would helpto be ableto storethe solutionsequencansteadof recomputingt for
eachnew percept.

2.10



Figure S2.3  An ervironmentin which randommotionwill take alongtime to cover all
thesquares.

a. Becausdhe agentdoesnot know the geographyandpercevesonly locationandlocal
dirt, and canotremembemvhat just happenedit will getstuckforever againsta wall
whenit triesto move in adirectionthatis blocked—thatis, unlessit randomizes.

b. Onepossibledesigncleansup dirt andotherwisemovesrandomly:

(defun  randomized-refle X- vacuum-agent (percept)
(destructuring -b ind (location status) percept
(cond ((eq status ’'Dirty) 'Suck)
(t (random-elemen t ’'(Left Right Up Down))))))

Thisis fairly closeto whatthe Roombd™ vacuumcleanerdoes(althoughthe Roomba
hasa bump sensoandrandomize®nly whenit hits anobstacle).lt worksreasonably
well in nice,compactervironments.In maze-like ervironmentsor ervironmentswith
smallconnectingpassagest cantake averylongtimeto cover all thesquares.

c. An exampleis shavn in FigureS2.3.Studentgnayalsowish to measurelean-ugtime
for linear or squareenvironmentsof differentsizes,andcomparehoseto the efficient
onlinesearchalgorithmsdescribedn Chapter4.

d. A reflex agentwith statecanbuild a map(seeChapter4 for details). An online depth-
first explorationwill reachevery statein time linear in the size of the ervironment;
thereforetheagentcando muchbetterthanthe simplereflex agent.

Thequestiorof rationalbehaior in unknavn ervironmentss acomplex onebutit is
worth encouragingtudentdo think aboutit. We needto have somenotion of the prior
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Chapter 2. IntelligentAgents

probaility distribution over the classof ervironments;call this the initial belief state

Any actionyields a new perceptthat canbe usedto updatethis distribution, moving

theagentto anew belief state.Oncethe ervironmentis completelyexplored,the belief
statecollapsesto a single possibleervironment. Therefore,the problemof optimal
explorationcanbe viewed asa searchfor an optimal stratgy in the spaceof possible
belief states.This is a well-defined,if horrendouslyintractable problem. Chapter21

discussesomecasesvhereoptimal explorationis possible Anotherconcreteexample
of explorationis the Minesweepecomputergame(seeExercise7.11). For very small
Minesweepemrvironments,optimal exploration is feasiblealthoughthe belief state
updateis nontrivial to explain.

2.11 The problemappearst first to be very similar; the main differenceis thatinsteadof
usingthelocationpercepto build themap,theagenthasto “invent” its own locations(which,
afterall, arejustnodesin a datastructurerepresentinghe statespacegraph). Whenabump
is detectedtheagentassume# remainsin the samelocationandcanaddawall to its map.
For grid environments the agentcankeeptrack of its (x, y) locationandso cantell whenit
hasreturnedto anold state.In the generalcase however, thereis no simpleway to tell if a
stateis new or old.

a. Forareflex agentthispresentsioadditionalchallengepecaus¢heagentwill continue

to Suck aslong asthe currentlocationremainsdirty. For an agentthat constructsa
sequentiaplan, every Suck actionwould needto be replacedby “ Suck until clean’
If the dirt sensorcanbe wrongon eachstep,thenthe agentmight wantto wait for a
few stepgo getamorereliablemeasuremerieforedecidingwhetherto Suck or move
on to a new square. Obviously, thereis a trade-of becausewaiting too long means
thatdirt remainson thefloor (incurring a penalty),but actingimmediatelyrisks either
dirtying a cleansquareor ignoring a dirty square(if the sensoris wrong). A rational
agentmustalsocontinuetouring and checkingthe squaresn caseit missedoneon a
previoustour (becausef badsensorreadings).it is notimmediatelyobvious how the
waiting time at eachsquareshouldchangewith eachnewn tour. Theseissuescanbe
clarified by experimentationwhich may suggest generaltrend that can be verified
mathematically This problemis a partially obserable Markov decisionprocess—see
Chapterl?7. Suchproblemsare hardin general,but somespecialcasesmay yield to
carefulanalysis.

. In this case the agentmustkeeptouring the squaresndefinitely The probability that

asquards dirty increasesnonotonicallywith thetime sinceit waslastcleanedsothe
rationalstratgy is, roughlyspeakingto repeatedlyexecutetheshortespossibletour of
all squares(We say“roughly speakingbecaus¢herearecomplicationscausedy the
factthatthe shortestour may visit somesquareswice, dependingon the geography
This problemis alsoa partially obserable Markov decisionprocess.



Solutiondfor Chapter3
Solving Problemdoy Searching

3.1 A stateis asituationthatanagentcanfind itself in. We distinguishtwo typesof states:
world stateqthe actualconcretesituationsin therealworld) andrepresentationadtategthe
abstractlescriptionf therealworld thatareusedby theagentin deliberatingaboutwhatto
do).

A state spaceis a graphwhosenodesare the set of all states,andwhoselinks are
actionsthattransformonestateinto another

A search treeis atree(a graphwith no undirectedoops)in which therootnodeis the
startstateandthe setof childrenfor eachnodeconsistof the stateseachabléy takingary
action.

A search nodeis anodein the searchree.

A goalis a statethatthe agentis trying to reach.

An action is somethinghatthe agentcanchooseo do.

A successoifunction describedhe agents options: given a state,it returnsa setof
(action,state)pairs,whereeachstateis the statereachabldoy takingthe action.

Thebranching factor in a searchtreeis the numberof actionsavailableto the agent.

3.2 In goal formulation, we decidewhich aspectwof the world we are interestedn, and
which canbe ignoredor abstractedway. Thenin problemformulationwe decidehow to
manipulatetheimportantaspectgandignorethe others).If we did problemformulationfirst
we would not know whatto includeandwhatto leave out. Thatsaid,it canhapperthatthere
is a cycle of iterationsbetweergoal formulation,problemformulation,andproblemsolving
until onearrivesata suficiently usefulandefficient solution.

3.3 In Pythonwe have:

#### successor_fn defined in terms of result and legal_actions
def successor_fn(s)

return [(a, result(a, s)) for a in legal_actions(s )
####  legal_actions and result defined in terms of successor_fn
def legal_actions(s ):

return [a for (a, s) in successor_fn(s) ]

def result(a, S):

11
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Chapter 3. Solving Problemsby Searching

for (al, sl1l) in successor_fn(s)
if a == al:
return sl

3.4 From http://www cut-the-knot.comighagoragfifteen.skiml, this proof appliesto the
fifteen puzzle,but the sameagumentworksfor the eightpuzzle:

Definition: Thegoalstatehasthenumbersn acertainorder whichwe will measures
startingattheupperleft corner thenproceedindeft to right, andwhenwe reachtheendof a
row, goingdown to theleftmostsquaren therow below. For ary otherconfiguratiorbesides
the goal, wheneer a tile with a greatemumberon it precedes tile with a smallernumbey
thetwo tiles aresaidto beinverted.

Proposition: Foragivenpuzzleconfiguration]et V denotehesumof thetotalnumber
of inversionsandtherow numberof theemptysquare Then(Nmod2) is invariantunderary
legal move. In otherwords, after alegal move anodd N remainsodd whereasan even N
remainseven. Thereforethe goal statein Figure3.4, with no inversionsandemptysquaren
thefirst row, hasN = 1, andcanonly bereachedrom startingstateswith odd IV, not from
startingstateswith even V.

Proof. First of all, sliding a tile horizontally changeseitherthe total numberof in-
versionsnor the row numberof the empty square. Thereforelet us considersliding a tile
vertically.

Let's assumefor example,thatthe tile A is locateddirectly over the empty square.
Sliding it down changeghe parity of the row numberof theemptysquare Now considerthe
total numberof inversions.The move only affectsrelative positionsof tiles A, B, C', andD.
If noneofthe B, C, D causedninversionrelatveto A (i.e., all threearelargerthanA) then
after sliding one getsthree(an odd number)of additionalinversions. If oneof the threeis
smallerthan A, thenbeforethe move B, C', and D contriktuteda singleinversion(relatie to
A) whereasafterthemove they'll be contrituting two inversions- achangeof 1, alsoanodd
number Two additionalcasesbviously leadto the sameresult. Thusthe changean the sum
N is alwayseven. Thisis preciselywhatwe have setoutto shaw.

Sobeforewe solve a puzzle,we shouldcomputethe N valueof the startandgoalstate
andmalke surethey have the sameparity, otherwiseno solutionis possible.

3.5 Theformulationputsonequeenpercolumn,with a newv queenplacedonly in a square
thatis not attacled by any otherqueen.To simplify matterswe’ll first considerthe n—rooks
problem.Thefirst rook canbe placedin ary squarein columnl, thesecondn ary squardn
column2 exceptthe samerow thatasthe rook in column1, andin generalttherewill ben!
elementof the searctspace.

3.6 No, afinite statespacedoesnot alwaysleadto a finite searchtree. Considera state
spacewith two statespothof which have actionsthatleadto theother Thisyieldsaninfinite
searchtree,becauseave cango backandforth ary numberof times. However, if the state
spacds afinite tree,or in generalafinite DAG (directedacyclic graph).thentherecanbeno
loops,andthe searcttreeis finite.

3.7
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Initial state:No regionscolored.

Goaltest: All regionscolored,andno two adjacentegionshave the samecolor.
Successofunction:; Assignacolorto aregion.

Costfunction: Numberof assignments.

Initial state:As describedn thetext.

Goaltest: Monkey hasbananas.

Successofunction: Hop on crate;Hop off crate;Pushcratefrom onespotto another;
Walk from onespotto anothergrabbananagif standingon crate).

Costfunction: Numberof actions.

Initial state:consideringall input records.

Goaltest: consideringa singlerecord,andit gives‘ille galinput” message.
Successofunction: run againon thefirst half of the records;run againon the second
half of therecords.

Costfunction: Numberof runs.

Note: This is a contingency problem; you needto seewhethera run givesan error
messag®er notto decidewhatto do next.

. Initial state:jugshave values|0, 0, 0].

Successofunction: givenvalues|z, y, z|, generaté12, y, 2|, [z, 8, 2], [z, y, 3] (by fill-
ing); [0,y, 2], [z,0, z], [x,y, 0] (by emptying);or for ary two jugswith currentvalues
x andy, poury into z; this changeghe jug with x to the minimum of x + y andthe
capacityof thejug, anddecrementghejug with y by by the amountgainedby thefirst
jug.

Costfunction: Numberof actions.

FigureS3.1 Thestatespacefor the problemdefinedin Ex. 3.8.

3.8

a. SeeFigureS3.1.
b. Breadth-first:1234567891011

Depth-limited:1248951011
Iteratve deepeningl;123;1245367;1248951011
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c. Bidirectionalsearchs very useful,becausg¢heonly successoof n in thereversedirec-
tionis | (n/2)]. Thishelpsfocusthesearch.

d. 2in theforwarddirection;1 in thereversedirection.
e. Yes;startatthegoal,andapplythesinglereversesuccessoactionuntil youreachl.

3.9

a. Hereis onepossiblerepresentationA stateis a six-tupleof integerslisting thenumber
of missionariescannibals,andboatson the first side,and thenthe seondside of the
river. The goalis a statewith 3 missionariesand3 cannibalson the secondside. The
costfunctionis oneperaction,andthe successoref a stateareall the stateshatmove
1 or 2 peopleandl boatfrom onesideto another

b. The searchspaceis small, so ary optimal algorithmworks. For an example,seethe
file "search/domains/ cannib al s.I is p". It suficesto eliminatemovesthat
circle backto the statejust visited. Fromall but the first andlast statesthereis only
oneotherchoice.

c. It is not obviousthatalmostall movesareeitherillegal or revert to the previous state.
Thereis afeelingof alarge branchingfactor andno clearway to proceed.

3.10 Forthe8 puzzle,thereshouldnt be muchdifferencein performancelndeed,thefile
"search/domains  /p uzzl e8. li sp" shavsthatyoucanrepresenan8 puzzlestateas
a single 32-bit integer, so the questionof modifying or copying datais moot. But for the
n x n puzzle,asn increasesthe adwantageof modifying ratherthan copying grows. The
disadwantageof a modifying successofunctionis thatit only workswith depth-firstsearch
(or with avariantsuchasiterative deepening).

3.11 a. Thealgorithmexpandsnodesin orderof increasingpath cost; thereforethe first
goalit encountersvill bethe goalwith thecheapestost.

b. It will be the sameasiterative deepeningd iterations,in which O(b?) nodesare
generated.

C.d/e

d. Implementatiomot shavn.

3.12 If therearetwo pathsfrom the startnodeto a given node,discardingthe more ex-
pensve one cannoteliminateary optimal solution. Uniform-costsearchand breadth-first
searchwith constanstepcostsbothexpandpathsin orderof g-cost. Thereforejf thecurrent
nodehasbeenexpandedpreviously, the currentpathto it mustbe more expensve thanthe
previously found pathandit is correctto discardit.

ForIDS, it is easyto find anexamplewith varyingstepcostswherethealgorithmreturns
asuboptimakolution: simply have two pathsto the goal,onewith onestepcosting3 andthe
otherwith two stepscostingl each.

3.13 Considemdomainin whichevery statehasasinglesuccesseoandthereis asinglegoal
atdepthn. Thendepth-firstsearchwill find thegoalin n stepswhereasteratve deepening
searchwill take 1 + 2+ 3 + --- +n = O(n?) steps.
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3.14 As anordinary person(or agent)browvsing the web, we canonly generartehe suc-
cessorf a pageby visiting it. We canthendo breadth-firstsearchor perhapsest-search
searchwherethe heuristicis somefunction of the numberof wordsin commonbetweerthe
startandgoalpagesthis mayhelpkeepthelinks ontamget. Searclenginekeepthecomplete
graphof theweb,andmay provide the useraccesgo all (or atleastsome)of the pageshat
link to a pagethis would allow usto do bidirectionalsearch.

3.15

a. If weconsiderall (z,y) points,thenthereareaninfinite numberof statesandof paths.

b. (For this problem,we considerthe startand goal pointsto be vertices.) The shortest
distancebetweentwo pointsis a straightline, andif it is not possibleto travel in a
straightline becausesomeobstacleis in the way, thenthe next shortestdistanceis a
sequencef line sggments,end-to-endthat deviate from the straightline by aslittle
aspossible. So the first sgmentof this sequencanustgo from the start point to a
tangentpoint on an obstacle- ary paththat gave the obstaclea wider girth would be
longer Becausedhe obstaclesare polygonal,the tangentpointsmustbe at verticesof
the obstaclesandhencetheentirepathmustgo from vertex to vertex<. Sonow the state
spacds thesetof vertices,of whichthereare35in Figure3.22.

c. Codenotshawn.

d. Implementationsndanalysisnot shavn.

3.16 Codenotshawn.
3.17

a. Any path,no matterhow badit appearsmightleadto anarbitraily large reward (nega-
tive cost). Therefore pnewould needto exhaustall possiblepathsto be sureof finding
thebestone.

b. Supposehegreatespossiblerewardis c. Thenif we alsoknow the maximumdepthof
thestatespacge.g.whenthestatespacds atree),thenary pathwith d levelsremaining
canbeimprovedby atmosted, soary pathsworsethancd lessthanthebestpathcanbe
pruned.For statespacesith loops,this guaranteeloesnt help, becausét is possible
to goaroundaloop ary numberof times,picking up ¢ rewward eachtime.

c. The agentshouldplanto go aroundthis loop forever (unlessit canfind anotherloop
with evenbetterreward).

d. The value of a scenicloop is lesseneceachtime onerevisits it; a novel scenicsight
is a greatreward, but seeingthe sameonefor thetenthtime in anhouris tedious,not
rewarding. To accomodatehis, we would have to expandthe statespaceto includea
memory—astateis now representeaot just by the currentlocation, but by a current
locationanda bagof already-visitedocations. The rewardfor visiting a new location
is now a (diminishing)functionof the numberof timesit hasbeenseerbefore.

e. Realdomainswith loopingbehaior includeeatingjunk food andgoingto class.

3.18 Thebeliefstatespacds shavn in FigureS3.2.No solutionis possiblebecaus@o path
leadsto abeliefstateall of whoseelementsatisfythegoal. If theproblemis fully obserable,
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FigureS3.2 Thebeliefstatespacefor thesensorlessacuumworld underMurphy’s law.

theagentreaches goalstateby executinga sequencsuchthat Suck is performedonly in a
dirty square.This ensuresieterministidoehaior andevery stateis obviously solvable.

3.19 Codenot shawvn, but a good startis in the coderepository Clearly graphsearch
mustbe used—thigs a classicgrid world with mary alternatepathsto eachstate. Students
will quickly find thatcomputingthe optimal solutionsequencés prohibitively expensve for
moderatelylarge worlds, becauséhe statespacefor ann x n world hasn? - 2" states.The
completiortime of therandomagentgrows lessthanexponentiallyin n, sofor ary reasonable
exchangeratebetweersearchcostad pathcosttherandomagentwill eventuallywin.



Solutiondor Chapter4
InformedSearchandExploration

4.1 Thesequencef queuess asfollows:

L[0+244=244]

M[70+241=311],T[111+329=440]

L[140+244=384]D[145+242=387]T[111+329=440]
D[145+242=387];T[111+329=440]M[210+241=451],T[251+329=580]
C[265+160=425]T[111+329=440]M[210+241=451]M[220+241=461] T[251+329=580]

T[111+329=440] M[210+241=451] M[220+241=461] P[403+100=503]T[251+329=580] R[411+193=604],
D[385+242=627]

M[210+241=451]M[220+241=461] L [222+244=466] P[403+100=503]T[251+329=580] A[229+366=595],
R[411+193=604]D[385+242=627]
M[220+241=461],L[222+244=466],P[403+100=503]|[280+244=524] D[285+242=527],T[251+329=580],
A[229+366=595]R[411+193=604]D[385+242=627]
L[222+244=466],P[403+100=503]L[280+244=524],D[285+242=527] L[290+244=534],D[295+242=537],
T[251+329=580] A[229+366=595] R[411+193=604]D[385+242=627]

P[403+100=503]L[280+244=524] D[285+242=527] M[292+241=533] L[290+244=534] D[295+242=537],
T[251+329=580] A[229+366=595]R[411+193=604]D[385+242=627]T[333+329=662]

B[504+0=504] L[280+244=524] D[285+242=527]M[292+241=533]L[290+244=534] D[295+242=537]T[251+329=580],
A[229+366=595],R[411+193=604]D[385+242=627],T[333+329=662],R[500+193=693],C[541+160=701]

4.2 w = 0givesf(n) = 2g(n). Thisbehaesexactly like uniform-costsearch—théactor
of two makesno differencein theorderingof thenodes.w = 1 givesA* searchw = 2 gives
f(n) = 2h(n), i.e.,greedybest-firstsearch We alsohave
w
() = 2= wg(n) + 5——h(n)|
which behaes exactly like A" searchwith a heuristics®-h(n). Forw < 1, thisis always
lessthanh(n) andhenceadmissibleprovided 2 (n) is itself admissible.

4.3

a. Whenall stepcostsareequal,g(n) o depth(n), so uniform-costsearchreproduces
breadth-firssearch.

b. Breadth-firstsearchis best-firstsearchwith f(n) = depth(n); depth-firstsearchis
best-firstsearchwith f(n) = —depth(n); uniform-costsearchs best-firstsearchwith

17
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f(n) = g(n).

c. Uniform-costsearchis A* searchwith h(n) = 0.

Figure S4.1 A graphwith aninconsistentheuristicon which GRAPH-SEARCH fails to
returnthe optimal solution. The successorsf S are A with f =5 and B with f=7. A is
expandedirst, sothe pathvia B will be discardedbecaused will alreadybein the closed
list.

4.4 SeeFigureS4.1.

4.5 Going betweenRimnicu Vilcea and Lugoj is one example. The shortestpathis the
southerrone,throughMehadiaDobretaandCraiova. But agreedysearchusingthestraight-
line heuristicstartingin Rimnicu Vilceawill startthewrongway, headingto Sibiu. Starting
at Lugoj, the heuristicwill correctlyleadusto Mehadia,but thena greedysearchwill return
to Lugoj, andoscillateforever betweernthesetwo cities.

4.6 Theheuristich = h1 + ho (addingmisplacediles andManhattardistance sometimes
overestimates.Now, supposei(n) < h*(n) + ¢ (asgiven) andlet G5 be a goal that is
suboptimaby morethanc, i.e., g(G2) > C* + ¢. Now considerary noden on a pathto an
optimalgoal. We have

f(n) = g(n) + h(n)
g(n) +h*(n) +c
C*+c
9(G2)
soGo will never beexpandedbeforeanoptimalgoalis expanded.

INIAINA

4.7 A heuristicis consistentff, for every noden andevery successon’ of n generatedby
ary actiona,
h(n) < c(n,a,n’) + h(n")

Onesimpleproofis by inductionon the numberk of nodeson the shortespathto any goal
from n. For k = 1, let n’ be the goal node;thenh(n) < ¢(n,a,n’). For the inductve
caseassume.’ is ontheshortesipathk stepsfrom the goalandthat(n’) is admissibleby
hypothesisthen

h(n) < c(n,a,n') + h(n') < c(n,a,n’) + h*(n') = h*(n)
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soh(n) atk + 1 stepsfrom the goalis alsoadmissible.

4.8 Thisexercisereiteratesa smallportionof the classicwork of Held andKarp (1970).

a. The TSPproblemis to find a minimal (total length) paththroughthe cities thatforms
a closedloop. MST is a relaxed versionof that becauset asksfor a minimal (total
length)graphthatneednot be a closedloop—it canbe ary fully-connectedyraph. As
aheuristic, MST is admissible—itis alwaysshorterthanor equalto a closedloop.

b. The straight-linedistanceback to the startcity is a ratherweak heuristic—it vastly
underestimatewhentherearemary cities. In thelaterstageof a searchwhenthereare
only afew citiesleft it is notsobad. To saythatMST dominatesstraight-linedistance
is to saythatMST alwaysgivesa highervalue. This is obviously true becausea MST
thatincludesthegoalnodeandthe currentnodemusteitherbethestraightline between
them,or it mustincludetwo or morelinesthataddup to more. (This all assumeshe
triangleinequality)

c. See'search/domain s/t sp.l is p" for astartatthis. Thefile includesaheuristic
basedon connectingeachurvisited city to its nearesheighboy a closerelative to the
MST approach.

d. See(Cormenetal., 1990,p.505)for analgorithmthatrunsin O(F log E) time, where
E is the numberof edges. The coderepositorycurrently containsa somavhat less
efficientalgorithm.

4.9 Themisplaced-tileheuristicis exactfor theproblemwhereatile canmaove from square
A to squareB. As thisis a relaxationof the conditionthata tile canmove from squareA to

squareB if B is blank, Gaschnigs heuristiccanotbe lessthanthe misplaced-tilesheuristic.
As it is also admissible(being exact for a relaxationof the original problem), Gaschnigs

heuristicis thereforemoreaccurate.

If we permutaewo adjacentilesin thegoalstate we have a statewheremisplaced-tiles
andManhattarbothreturn2, but Gaschnigs heuristicreturns3.

To computeGaschnigs heuristic,repeatthe following until the goal stateis reached:
let B bethe currentlocation of the blank; if B is occupiedby tile X (not the blank) in the
goalstate move X to B; otherwise move ary misplacedile to B. Studentsouldbeasledto
prove thatthisis theoptimal solutionto therelaxed problem.

4.11

a. Localbeamsearchwith & = 1 is hill-climbing search.

b. Local beamsearchwith k = oo: strictly speakingthis doesnt malke sense (Exercise
may be modifiedin future printings.) The ideais thatif every successors retained
(becausé: is unbounded)thenthe searclresembledreadth-firssearchn thatit adds
onecompletelayer of nodesbeforeaddingthe next layer Startingfrom onestate,the
algorithmwould be essentiallyidenticalto breadth-firssearchexceptthateachlayeris
generateall atonce.

c. Simulatedannealingwith 1" = 0 atall times:ignoringthefactthattheterminationstep
would betriggeredmmediatelythe searchwould beidenticalto first-choicehill climb-



20

Chapter 4. InformedSearctandExploration

ing becausevery dovnward successowould berejectedwith probability 1. (Exercise
may be modifiedin future printings.)

d. Geneticalgorithmwith populationsize N = 1: if the populationsizeis 1, thenthe
two selectecparentswill bethe sameindividual; crosseer yieldsanexactcopy of the
individual; thenthereis a small chanceof mutation. Thus, the algorithm executesa
randomwalk in the spaceof individuals.

4.12 If weassumdhe comparisorfunctionis transitve, thenwe canalwayssortthe nodes
usingit, and choosethe nodethatis at the top of the sort. Efficient priority queuedata
structuregely only on comparisoroperationssowe losenothingin efficienoy—exceptfor
thefactthatthe comparisoroperatioron statesnaybemuchmoreexpensive thancomparing
two numbersgachof which canbe computedustonce.

A’ reliesonthedivision of thetotal costestimatef (n) into the cost-so-&r andthecost-
to-go. If we have comparisoroperatordor eachof these,thenwe can preferto expanda
nodethatis betterthanothernodeson both comparisons.Unfortunately therewill usually
beno suchnode. Thetradeof betweery(n) andh(n) cannotberealizedwithout numerical
values.

4.13 The spacecompleity of LRTA" is dominatedby the spacerequiredfor result|a, s],

i.e., the productof the numberof statesvisited (n) andthe numberof actionstried per state
(m). Thetime compleity is at leastO(nm?) for a nave implementatiorbecausdor each
actiontaken we computean H value, which requiresminimizing over actions. A simple
optimizationcanreducethisto O(nm). This expressiorassumeshateachstate—actiorpair
is tried at mostonce,whereasn factsuchpairsmay be tried mary times,asthe examplein

Figure4.22shaws.

4.14 Thisquestionis slightly ambiguousasto whatthe percepis—eitherthe percepis just
the location, or it gives exactly the setof unblocled directions(i.e., blocked directionsare
illegal actions). We will assumehe latter (Exercisemay be modifiedin future printings.)
Thereare 12 possiblelocationsfor internalwalls, so thereare 2'2 = 4096 possibleenviron-
mentconfigurations.A belief statedesignates subsetof theseas possibleconfigurations;
for example,beforeseeingary perceptsll 4096configurationsarepossible—thigs asingle
belief state.

a. We canview this asacontingeng problemin belief statespace Theinitial belief state
is the setof all 4096 configurations.The total belief statespacecontains2%?¢ belief
stategonefor eachpossiblesubsebf configurationsput mostof thesearenot reach-
able. After eachactionand percept.the agentlearnswhetheror not an internalwall
exists betweerthe currentsquareandeachneighboringsquare Hence eachreachable
belief statecan be represntedexactly by a list of statusvalues(present,absent,un-
known) for eachwall separately Thatis, the belief stateis completelydecomposable
andthereare exactly 312 reachablebelief states. The maximumnumberof possible
wall-perceptsn eachstateis 16 (2*), soeachbelief statehasfour actions,eachwith up
to 16 nondeterministicuccessors.
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b. Assumingthe externalwalls areknown, therearetwo internalwalls andhence2? = 4
possiblepercepts.

¢. Theinitial null actionleadsto four possiblebelief statesasshavn in FigureS4.2.From
eachbeliefstate theagentchooses singleactionwhich canleadto upto 8 belief states
(on enteringthe middle square).Given the possibility of having to retraceits stepsat
a deadend, the agentcan explore the entire mazein no more than 18 steps,so the
completeplan (expressedas a tree) hasno morethan8'® nodes. On the otherhand,
therearejust 312, sothe plan could be expressednore conciselyasa tableof actions
indexed by belief state(a policy in theterminologyof Chapterl?).

)
NoOp
6] 6] 6] 6]
Right
6] 6] 6] 6]
Figure S4.2 The3 x 3 mazeexplorationproblem:theinitial state first perceptandone
selectedactionwith its perceptuabutcomes.

4.15 Hereis onesimplehill-climbing algorithm:

e Connectall thecitiesinto anarbitrarypath.

Picktwo pointsalongthe pathat random.

Splitthe pathatthosepoints,producingthreepieces.

Try all six possiblewaysto connecthethreepieces.
Keepthebestone,andreconnecthe pathaccordingly

e l|teratethe stepsabove until noimprovements obseredfor awhile.

4.1 4.16Codenotshavn.
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4.17 Hillclimbing is surprisinglyeffective atfinding reasonabl# notoptimalpathsfor very
little computationatost,andseldomfailsin two dimensions.

a.

It is possiblg(seeFigureS4.3(a))but very unlikely—theobstacléhasto have anunusual
shapeandbe positionedcorrectlywith respecto thegoal.

With corvex obstaclesgetting stuckis much morelikely to be a problem (seeFig-
ure S4.3(b)).

. Noticethatthisis justdepth-limitedsearchwhereyou choosea stepalongthe bestpath

evenif it is notasolution.

. Setk to themaximumnumberof sidesof ary polygonandyou canalwaysescape.

Current
positig

Current Goal Goal

positio

(@) (b)

FigureS4.3 (a)Gettingstuckwith a corvex obstacle(b) Gettingstuckwith a noncorvex
obstacle.

4.18 The studentshouldfind that on the 8-puzzle,RBFS expandsmore nodes(because
it doesnot detectrepeatedstates)out haslower costper nodebecausét doesnot needto
maintaina queue. The numberof RBFS nodere-expansionsis not too high becausehe
presencef mary tied valuesmeanghatthe bestpathchangeseldom.Whenthe heuristicis
slightly perturbedthis advantagedisappearandRBFS’s performances muchworse.

For TSR the statespacds atree,sorepeatedtatesarenotanissue.Ontheotherhand,

the heuristicis real-valuedandthereare essentiallyno tied values,so RBFSincursa heary
penaltyfor frequentre-expansions.



Solutionsfor Chapter5
ConstraintSatistictionProblems

5.1 A constraint satisfactionproblemis a problemin which the goalis to choosea value
for eachof a setof variablesjn suchaway thatthe valuesall obey a setof constraints.

A constraint is arestrictionon the possiblevaluesof two or morevariables For exam-
ple,aconstraintmight saythat A = a is notallowedin conjunctionwith B = b.

Backtracking search is aform depth-firstsearchn which thereis a singlerepresenta-
tion of the statethatgetsupdatedor eachsuccesspmandthenmustberestoredvhenadead
endis reached.

A directedarc from variable A to variable B in a CSPis arc consistentif, for every
valuein the currentdomainof A, thereis someconsistenvalueof B.

Backjumping is away of makingbacktrackingsearcimoreefficient, by jumpingback
morethanonelevel whenadeadendissreached.

Min-conflicts is a heuristicfor usewith local searchon CSPproblems.The heuristic
saysthat, whengiven a variableto modify, choosethe value that conflicts with the fewest
numberof othervariables.

5.2 Thereare 18 solutionsfor coloring Australiawith threecolors. Startwith SA which
canhave ary of threecolors. Thenmoving clockwise, WA canhave eitherof the othertwo
colors,andeverythingelseis strictly determinedthatmakes6 possibilitiesfor the mainland,
times3 for Tasmanigields18.

5.3 The mostconstrainedvariable makes sensebecausdt choosesa variablethatis (all
otherthings being equal)likely to causea failure, andit is more efficient to fail asearly
as possible(therebypruning large partsof the searchspace). The leastconstrainingvalue
heuristicmakes sensebecausat allows the most chancedor future assignments$o avoid
conflict.

5.4 a. Crossword puzzleconstructioncan be solved mary ways. One simple choiceis
depth-firstsearch.Eachsuccessofills in a word in the puzzlewith oneof the wordsin the
dictionary It is betterto go oneword atatime, to minimizethe numberof steps.

b. As a CSR thereareeven morechoices.You could have a variablefor eachbox in
thecrossvord puzzle;in this casethe valueof eachvariableis aletter, andtheconstraintsare
that the lettersmustmake words. This approachis feasiblewith a most-constrainingalue
heuristic. Alternately we could have eachstring of consecutie horizontalor vertical boxes
be a singlevariable,andthe domainof the variablesbe wordsin the dictionary of the right

23
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length. Theconstraintsvould saythattwo intersectingvordsmusthave the samdetterin the
intersectingoox. Solvinga problemin this formulationrequiresfewer stepsbut thedomains
arelarger (assuminga big dictionary)andtherearefewer constraintsBoth formulationsare
feasible.

5.5 a. For rectilinearfloor-planning,one possibility is to have a variablefor eachof the
small rectangleswith the value of eachvariablebeinga 4-tuple consistingof the x andy
coordinatesof the upperleft andlower right cornersof the placewherethe rectanglewill
be located. The domainof eachvariableis the setof 4-tuplesthatarethe right sizefor the
correspondingmall rectangleandthatfit within thelargerectangle.Constraintsaythatno
two rectanglesanoverlap;for exampleif thevalueof variableR; is [0, 0, 5, 8], thenno other
variablecantake on avaluethatoverlapswith the0, 0 to 5, 8 rectangle.

b. For classschedulingpnepossibilityis to have threevariablesdor eachclass onewith
timesfor values(e.g. MWF8:00, TuTh8:00,MWF9:00, ...), onewith classroomgor values
(e.g. Wheelerl10Evans330,..) andonewith instructorsfor values(e.g. Abelson,Bibel,
Canry, ...). Constraintsaythatonly oneclasscanbein the sameclassroomatthesametime,
andaninstructorcanonly teachoneclassat a time. Theremay be otherconstraintaswell
(e.g.aninstructorshouldnot have two consecutie classes).

5.6 The exact stepsdependon certainchoicesyou are free to make; hereare the onesl
made:
a. Choosehe X3 variable.lts domainis {0, 1}.

b. Choosehevaluel for X3. (We cant chooseD; it wouldn't survive forward checking,
becausdt would force F' to be 0, andtheleadingdigit of the summustbenon-zero.)

c. ChoosefF', becausét hasonly oneremainingvalue.

d. Choosehevaluel for £'.

e. Now X, andX; aretied for minimumremainingvaluesat 2; let's chooseXs.
f. Eithervaluesurvivesforwardcheckinget's choosel for X5.

g. Now X; hasthe minimumremainingvalues.

h. Again, arbitrarily choose0 for thevalueof Xj;.

i. ThevariableO mustbe an even number(becauset is the sumof T' + T lessthan5
(becaus® + O = R + 10 x 0). Thatmakesit mostconstrained.

j. Arbitrarily chooset asthevalueof O.

k. R now hasonly 1 remainingvalue.

Choosehevalue8 for R.

T now hasonly 1 remianingvalue.

Choosehevalue? for T.

U mustbeanevennumberessthan9; choosel.
Theonly valuefor U thatsurvivesforward checkingis 6.
Theonly variableleft is W.

Theonly valueleft for W is 3.

-~ 9 Do > 3
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s. Thisis asolution.

This is a rathereasy(underconstrainell puzzle,so it is not surprisingthat we arrive at a
solutionwith no backtracking(giventhatwe areallowedto useforward checking).

5.7 Thereareimplementation®of CSPalgorithmsin the Java, Lisp, and Pythonsections
of the online coderepository;theseshouldhelp studentgyet started.However, studentswill
have to addcodeto keepstatisticson the experimentsandperhapswill wantto have some
mechanisnfor making an experimentreturn failure if it exceedsa certaintime limit (or
numberof-stepslimit). Theamountof codethatneedgo be written is small; the exerciseis
moreaboutrunningandanalyzinganexperiment.

5.8 We'll tracethrougheachiterationof thewhile loopin AC-3 (for onepossibleordering
of thearcs):
a. Remwe SA — W A, deleteR from S A.
Remaoe SA — V, deleteB from S A, leaving only G.
Remore NT — W A, deleteR from NT'.
Remwe NT — S A, deleteG from NT', leaving only B.
Remwe NSW — S A, deleteG from NSW.
Remare NSW — V, deleteB from NSW, leaving only R.
Remwoe @ — NT', deleteB from Q.
Remwe @ — S A, deleteG from Q.
i. remore @ — NSW, deleteR from @, leaving no domainfor Q.

TQ ~ o 2 0 T

5.9 On a tree-structuredyraph, no arc will be consideredmore than once, so the AC-3
algorithmis O(E D), where E is the numberof edgesand D is the size of the largestdo-
main.

5.10 Thebasicideais to preprocesshe constraintsso that, for eachvalueof X;, we keep
trackof thosevariablesX,, for whichanarcfrom X}, to X is satisfiedoy thatparticularvalue
of X;. This datastructurecanbe computedn time proportionalto the size of the problem
representationThen,whena valueof X; is deletedwe reduceby 1 the countof allowable
valuesfor each(X, X;) arcrecordedunderthatvalue. This is very similar to the forward
chainingalgorithmin Chapter7. See? (?) for detailedproofs.

5.11 The problemstatemensetsout the solutionfairly completely To expresstheternary
constrainton A, B andC that A + B = C, we first introducea new variable, AB. If the
domainof A and B is the setof numbersN, thenthe domainof AB is the setof pairsof
numbersfrom N, i.e. N x N. Now therearethreebinary constraintspnebetweenA4 and
AB sayingthatthevalueof A mustbe equalto thefirst elementof thepairvalueof AB; one
betweenB and AB sayingthatthe valueof B mustequalthe secondelementof the value
of AB; andfinally onethatsaysthatthe sumof the pair of numberghatis thevalueof AB
mustequalthevalueof C. All otherternaryconstraintcanbe handledsimilarly.

Now thatwe canreducea ternaryconstraintinto binary constraintswe canreducea
4-ary constrainton variablesA, B, C, D by first reducingA, B, C to binary constraintsas
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shavn abore, thenaddingback D in aternaryconstrainwith AB andC, andthenreducing
thisternaryconstrainto binary by introducingC D.

By induction,we canreduceary n-ary constrainto an(n — 1)-ary constraint.We can
stopatbinary becauseary unaryconstrainicanbe droppedsimply by moving the effectsof
the constraintnto thedomainof thevariable.

5.12 A simplealgorithmfor finding a cutsetof no morethank nodesis to enumeratall
subsetof nodesof sizel, 2,..., k, andfor eachsubsettheckwhetherthe remainingnodes

form atree. This algorithmtakestime (Zg:kl ™), whichis O(n*).

Becler andGeiger(1994;http://citeseenj.nec.om/bekerAgpproximation.html) give
analgorithmcalledMGA (modifiedgreedyalgorithm)thatfindsa cutsetthatis no morethan
twice thesizeof theminimal cutsetusingtime O(E + V' log(V')), whereFE is thenumberof
edgesandV is thenumberof variables.

Whetherthis males the cycle cutsetapproachpracticaldependsmore on the graph
involved thanon the agorithmfor finding a cutset. Thatis becausefor a cutsetof sizec, we
still have anexponential(d¢) factorbeforewe cansolve the CSP Soary graphwith alarge
cutsetwill beintractibleto solvwe, evenif we couldfind the cutsetwith no effort atall.

5.13 The“ZebraPuzzle’canberepresentedsa CSPby introducinga variablefor each
color, pet,drink, countryandcigaretbrand(atotal of 25variables).Thevalueof eachvariable
is anumberfrom 1 to 5 indicatingthe housenumber Thisis agoodrepresentatiobecausé
easyto representll the constraintggivenin the problemdefinitionthis way. (We have done
soin the Pythonimplementatiorof the code,and at somepoint we may reimplementthis
in the otherlanguages.Besidessaseof expressinga problem,the otherreasono choosea
representatioiis the efficiengy of finding a solution. herewe have mixed results—onsome
runs, min-conflictslocal searchfinds a solutionfor this problemin secondsyhile on other
runsit fails to find a solutionafter minutes.

Anotherrepresentatiors to have five variablesfor eachhouse pnewith the domainof
colrs,onewith pets,andsoon.



Solutionsfor Chapter6
AdversarialSearch

6.1 FigureS6.1shavsthegametree,with theevaluationfunctionvaluesbelow theterminal
nodesandthebacled-upvaluesto theright of the non-terminahodes.Thevaluesimply that
the beststartingmove for X is to take the center Theterminalnodeswith abold outline are
the onesthatdo not needto beevaluated assuminghe optimal ordering.

1 2

FigureS6.1  Partof thegametreefor tic-tac-toe for Exercise6.1.

6.2 Considera MIN nodewhosechildrenareterminalnodes. If MIN playssuboptimally
thenthe value of the nodeis greaterthanor equalto the valueit would have if MIN played
optimally. Hence,the value of the MAX nodethatis the MIN nodes parentcanonly be
increased.This agumentcanbe extendedby a simpleinductionall the way to the root. If
the suboptimalplay by MIN is predictable thenone cando betterthana minimax strateyy.
For example,if MIN alwaysfalls for a certainkind of trap andloses,thensettingthe trap
guaranteea win evenif thereis actuallya devastatingresponsdor MIN. Thisis shavn in
FigureS6.2.

6.3
a. (5) Thegametree,completewith annotationof all minimaxvalues,is shavn in Fig-
ureS6.3.
b. (5) The"?” valuesarehandledby assuminghatanagentwith a choicebetweenwin-
ning thegameandenteringa “?” statewill alwayschoosehewin. Thatis, min(-1,?)
is—1andmax(+1,?)is +1. If all successorare"“?”, thebacled-upvalueis “?".

27
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MAX

MIN

1000 1000 -10 -5 -5 -5

FigureS6.2 A simplegametreeshowing thatsettingatrapfor MmiN by playinga; is awin
if MIN fallsfor it, but mayalsobedisastrousThe minimaxmoveis of courseus, with value
—5.

Figure S6.3 Thegametreefor the four-squaregamein Exercise6.3. Terminalstatesare
in singleboxes,loop statesn doubleboxes. Eachstateis annotatedvith its minimaxvalue
in acircle.

. (5) Standardninimaxis depth-firstandwould go into aninfinite loop. It canbefixed

by comparinghe currentstateagainsthe stack;andif the stateis repeatedthenreturn
a“?” value. Propagatiorof “?” valuesis handledasabore. Althoughit worksin this
casejt doesnot alwayswork becausdt is not clearhow to compareg?” with adravn
position;noris it clearhow to handlethe comparisorwhentherearewins of different
dggrees(asin backgammon)Finally, in gameswith chancenodesit is unclearhow to
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computethe averageof anumberanda“?”. Notethatit is not correctto treatrepeated
statesautomaticallyasdravn positions;in this example,both (1,4) and(2,4) repeatn
thetreebut they arewon positions.

Whatis really happenings thateachstatehasa well-definedbut initially unknavn
value.Theseunknawvn valuesarerelatedby the minimaxequatioratthebottomof page
163. If thegametreeis agyclic, thenthe minimaxalgorithmsolvestheseequationdy
propagatingrom theleaves. If the gametreehascycles,thena dynamicprogramming
methodmustbeused asexplainedin Chapterl7. (Exercisel7.8studieghis problemin
particular) Thesealgorithmscandeterminewhethereachnodehasa well-determined
value(asin this example)or is really aninfinite loop in thatboth playerspreferto stay
in theloop (or have no choice).In sucha casetherulesof thegamewill needto define
thevalue(otherwisehegamewill neverend).In chessfor eaxmple a statethatoccurs
3times(andhences assumedo be desirablefor both players)is adraw.

d. This questionis alittle tricky. Oneapproactis a proof by inductionon the size of the
game.Clearly the basecasen =3 is alossfor A andthe basecasen =4 is awin for
A. Forary n > 4, theinitial movesarethe same:A andB bothmove onesteptowards
eachother Now, we canseethatthey areengagedn a subgameof sizen — 2 onthe
squares2,...,n — 1], exceptthatthereis an extra choiceof moveson square2 and
n — 1. Ignoringthis for a moment,it is clearthatif the“n — 2” is wonfor A, thenA
getsto the squaren — 1 beforeB getsto square2 (by the definition of winning) and
thereforegetsto n beforeB getsto 1, hencethe“n” gameis wonfor A. By the same
line of reasoningif “n — 2" is won for B then“n” is won for B. Now, the presencef
the extramovescomplicategheissue but nottoo much. First, the playerwhois slated
to win thesubgameé2, ..., n — 1] never movesbackto his homesquare.If the player
slatedto losethe subgamealoesso, thenit is easyto shaw thatheis boundto losethe
gameitself—the other playersimply movesforward anda subgameof sizen — 2k is
playedonestepcloserto thelosers homesquare.

6.4 Seé€'search/algorit hrms/ games.| is p" for definitionsof gamesgame-playing
agentsandgame-playingervironments."search/algorit hms/ minimax.l is p" con-
tainsthe minimax andalpha-betalgorithms. Notice that the game-playingervironmentis
essentiallya genericernvironmentwith the updatefunctiondefinedby the rulesof the game.
Turn-takingis achiezed by having agentsdo nothinguntil it is their turnto move.

Seé€'search/domains  /co gnac.l is p" forthebasicdefinitionsof asimplegame
(slightly morechallengingthanTic-Tac-Toe). The codefor this containsonly atrivial eval-
uationfunction. Studentscanuse minimax and alpha-betao solve small versionsof the
gameto termination(probablyup to 4 x 3); they shouldnoticethat alpha-betas far faster
thanminimax, but still cannotscaleup without anevaluationfunctionandtruncatechorizon.
Providing an evaluationfunction is an interestingexercise. From the point of view of data
structuredesign,it is alsointerestingto look at how to speedup thelegal move generatoby
precomputinghedescription®f rows, columns,anddiagonals.

Very few studentswill have heardof kalah, soit is a fair assignmentput the game
is boring—depth6 lookaheadand a purely material-basedvaluationfunction are enough
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to beatmosthumans. Othellois interestingand aboutthe right level of difficulty for most
students. Chessand checlers are sometimesunfair becauseusually a small subsetof the
classwill beexpertswhile therestarebegginners.

6.5 Thisquestionis notashardasit looks. The derivation belov leadsdirectly to a defini-
tion of « andg3 values.Thenotationn; refersto (thevalueof) thenodeat depthi onthepath

from therootto theleafnoden;. Nodesn;; ... My, arethesiblingsof nodei.

a. We canwrite ng = max(ns, nai, ... , n3p, ), giving
1y = min(max(nz, nay, ..., N3pg ), N21, - - - s N2y )
Thennz canbesimilarly replaceduntil we have anexpressiorcontainingn;; itself.
b. In termsof thel andr valueswe have

ny = min(lg, HlaX(lg, ns, ?"3), ’1”2)

Again, n3 canbe expandedout down to n;. The most deeply nestedterm will be
min(lj, nj,r;).

c. If n; isamaxnode,thenthe lower boundon its valueonly increasessits successors
areevaluated Clearly, if it exceedd; it will have nofurthereffectonn,. By extension,
if it exceedsmin(ls,ly,...,1;) it will have no effect. Thus, by keepingtrack of this
valuewe candecidewhento prunen;. Thisis exactly whata-3 does.

d. Thecorrespondindpoundfor min nodesny, is max(ls, s, ..., k).

6.7 Thegeneralstratgy is to reducea generalgametreeto a one-plytreeby inductionon
the depthof thetree. Theinductve stepmustbe donefor min, max,andchancenodesand
simply involvesshawing thatthetransformatioris carriedthoughthe node.Supposédhatthe
valuesof thedescendantsf anodearez; ... x,,, andthatthetransformations ax + b, where
a is positve. We have

min(azy + b,axs + b, ...,ax, +b) = amin(zy,z2,...,2,) + b
max(azxy + b,axe +b,...,ax, +b) = amin(zy,x9,...,2,) +b
pi(ax1 +0) + pa(axa +b) + -+ + pylaz, +b) = a(prr1 + pawa + -+ ppay) +0

Hencetheproblemreducedo aone-plytreewheretheleaveshave thevaluesfrom theoriginal
treemultiplied by the lineartransformationSincex > y = ax +b > ay + b if a > 0, the
bestchoiceattherootwill bethe sameasthebestchoicein theoriginaltree.

6.8 This procedurewill give incorrectresults. Mathematically the procedureamountsto

assumingthat averagingcommuteswith min and max, which it doesnot. Intuitively, the

choicesmadeby eachplayerin the deterministidreesarebasedon full knowledgeof future

dicerolls, andbearno necessaryelationshipto the moves madewithout suchknowledge.
(Noticethe connectiorto the discussiorof cardgameson pagel79andto the generalprob-

lem of fully andpartially obserable Markov decisionproblemsin Chapterl?7.) In practice,
the methodworksreasonablyvell, andit might bea goodexerciseto have studentsompare
it to the alternatve of usingexpectiminimaxwith sampling(ratherthansummingover) dice

rolls.
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6.9 Codenotshawvn.

6.10 Thebasicphysicalstateof thesegamess fairly easyto describe Oneimportantthing
to remembefor Scrabbleandbridgeis thatthe physicalstateis not accessibldo all players
andso cannotbe provided directly to eachplayerby the ernvironmentsimulator Particularly
in bridge, eachplayerneedsto maintainsomebestguesyor multiple hypothesesasto the
actualstateof theworld. We expectto be putting someof the gameimplementation®nline
asthey becomeavailable.

6.11 Onecanthink of chanceeventsduring a game,suchasdice rolls, in the sameway

ashiddenbut preordainednformation (suchasthe order of the cardsin a deck). The key

distinctionsarewhetherthe playerscaninfluencewhatinformationis revealedandwhether
thereis ary asymmetnyjin theinformationavailableto eachplayer

a. Expectiminimaxis appropriateonly for backgammorand Monopoly In bridge and
Scrabblegachplayerknows the cards/tileshe or shepossesselsut notthe opponents’.
In Scrabblethe benefitsof afully rational,randomizedtrategy thatincludesreasoning
abouttheopponentsstateof knowledgeareprobablysmall,but in bridgethequestions
of knowledgeandinformationdisclosurearecentralto goodplay.

b. None,for thereasonglescribedearlier

c. Key issuedncludereasoningaboutthe opponens beliefs,the effect of variousactions
on thosebeliefs, and methodsfor representinghem. Sincebelief statesfor rational
agentsareprobabilitydistributionsover all possiblestateqincludingthe belief statesof
others)thisis nontrvial.

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) thenreturn UTILITY (state)
V<— —OO
for a, s in SUCCESSORS(state) do
if WINNER(s) = MAX
then v < MAX(v, MAX-VALUE(s))
elsev «— MAX(V, MIN-VALUE(S))
return v

FigureS6.4  Partof themodifiedminimaxalgorithmfor gamesn whichthewinnerof the
previoustrick playsfirst onthe next trick.

6.12 (In thefirst printing, this exericserefersto WINNER(trick); subsequentrintingsrefer
to WINNER(s), denotingthewinnerof thetrick justcompletedif ary), ornull.) Thisquestion
is interpretedasapplyingonly to theobserablecase.

a. Themodificationto MAX-VALUE is shavnin FigureS6.4.1f MAX hasjustwonatrick,
MAX getsto play again,otherwiseplay alternatesThus,thesuccessoref aMAx node
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FigureS6.5 Ex. 6.12;Part of thegametreefor thecardgameshovn onp.179.

canbe a mixture of MAX and MIN nodes,dependingon the variouscardsMAX can
play. A similar modificationis neededor MIN-VALUE.

b. Thegametreeis shawvn in FigureS6.5.

6.13 The naive approachwould be to generateesachsuchposition, solve it, andstorethe
outcome.Thiswould beenormouslyexpensve—roughlyontheorderof 444billion seconds,
or 10,000years,assumingit takes a secondon averageto solve eachposition (which is
probablyvery optimistic). Of course,we cantake adwantageof already-soled positions
when solving new positions, provided those solved positionsare descendantsf the new
positions.To ensurehatthis alwayshappenswe generatahefinal positionsfirst, thentheir
predecessa andsoon. In this way, the exactvaluesof all successorareknowvn wheneach
stateis generatedT his methodis calledretrograde analysis
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6.14 Themostobviouschangds thatthespaceof actionsis now continuous For example,
in pool, the cueingdirection,angleof elevation,speedandpoint of contactwith the cueball
areall continuougquantities.

Thesimplestsolutionis justto discretizetheactionspaceandthenapplystandardaneth-
ods. This might work for tennis(modelledcrudelyasalternatingshotswith speedanddirec-
tion), but for gamessuchas pool and croquetit is likely to fail miserablybecausesmall
changesn direction have large effects on action outcome. Instead,one must analyzethe
gameto identify a discretesetof meaningfullocal goals,suchas“potting the4-ball” in pool
or “laying upfor thenext hoop”in croquet.Then,in the currentcontet, alocal optimization
routinecanwork outthebestwayto achieve eachlocal goal,resultingin adiscretesetof pos-
siblechoices.Typically, thesegamesarestochasticsothebackgammomodelis appropriate
providedthatwe usesampledutcomesnsteadof summingover all outcomes.

Whereagpool and croquetare modelledcorrectly asturn-takinggamestennisis not.
While oneplayeris maoving to theball, theotherplayeris moving to anticipatehe opponens
return. This makestennismorelik e the simultaneous-actiogamesstudiedin Chapterl7. In
particular it may be reasonabléo derive randomizedstratgiesso thatthe opponentcannot
anticipatewheretheball will go.

6.15 The minimax algorithm for non-zero-sungamesworks exactly as for multiplayer
gamesdescribedon p.165-6;thatis, the evaluationfunctionis a vector of values,onefor
eachplayer andthe backupstepselectsvhichever vectorhasthe highestvaluefor the player
whoseturnit is to move. Theexampleattheendof Section6.2(p.167)shavs thatalpha-beta
pruningis not possiblein generalnon-zero-sungames becausean unexaminedleaf node
might be optimalfor bothplayers.

6.16 With 32 pieces,eachneeding6 bits to specifyits positionon oneof 64 squareswe
need24 bytes(6 32-bitwords)to storeaposition,sowe canstoreroughly20million positions
in thetable(ignoring pointersfor hashtablebucket lists). This is aboutone-ninthof the 180
million positionsgeneratediuringathree-minutesearch.

Generatingthe hashkey directly from an array-basedepresentatiorof the position
might be quite expensve. Modernprograms(see,e.g.,Heinz, 2000) carry alongthe hash
key andmodify it aseachnew positionis generated Supposehis takes on the orderof 20
operationsthenon a 2GHz machinewherean evaluationtakes 2000 operationsve cando
roughly 100lookupsperevaluation.Usingaroughfigure of onemillisecondfor a disk seek,
we coulddo 1000evaluationsper lookup. Clearly, usinga disk-residentableis of dubious
value,evenif we cangetsomelocality of referenceo reducethe numberof disk reads.
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7.1 Thewumpusworld is partially obserable, deterministic,sequentialyou needto re-
memberthe stateof onelocationwhenyou returnto it on a laterturn), static,discrete,and
singleagent(the wumpuss soletrick—devouring an errantexplorer—is not enoughto treat
it asanagent).Thus,it is afairly simpleenvironment. The maincomplicationis the partial
obsenrability.

7.2 To save spacewe’ll shav thelist of modelsasa tableratherthana collectionof dia-
grams.Thereareeightpossiblecombination®f pits in thethreesquaresandfour possibili-
tiesfor thewumpuslocation(includingnowhere).

We canseethat KB = ay becausevery line where K B is true alsohas s true.
Similarly for a.

7.3

a. Thereis apl _true in the Pythoncode,anda versionof ask in the Lisp codethat
senesthesamepurpose.The Java codedid not have this functionasof May 2003,but
it shouldbeaddedsoon.)

b. Thesentence§'rue, PV =P, andP A =P canall bedeterminedo betrueor falsein
apartialmodelthatdoesnot specifythetruth valuefor P.

c. It is possibleto createtwo sentencesgachwith & variablesthatare not instantiatedn
thepartialmodel,suchthatoneof themis truefor all 2% possiblevaluesof thevariables,
while the othersentencés falsefor oneof the2* values.This shavs thatin generabne
mustconsiderall 2¢ possibilities.Enumeratinghemtakesexponentialtime.

d. The pythonimplementatiorof pl _true returnstrueif ary disjunctof a disjunction
is true, andfalseif ary conjunctof a conjunctionis false. It will do this evenif other
disjuncts/conjunctsontainsuninstantiatedvariables.Thus,in the partialmodelwhere
Pistrue, PV Q returnstrue,and—P A QQ returnsfalse.But thetruth valuesof QQ vV —Q),
Q V True, and@ A =@ arenotdetected.

e. Ourversionoftt _entails alreadyusesthis modifiedpl _true . It would beslower
if it did not.

7.4 Remembera = (3 iff in very modelin which « is true, 3 is alsotrue. Therefore,

a. A valid sentencés onethatis truein all models.Thesentencé rue is alsovalid in all
models.Soif alpha is valid thenthe entailmentholds (becausdoth True anda hold

34
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Model KB Qo a3
true

Py true

Py

P3,1 true

P13, Py

Py, P31

P371, P173 true

Pi3, P31, Poy

W13 true true

Wiz, P13 true true

Wiz, Pap true

Wia, P31 true true true

Wia, P13, P2 true

Wi, Pap, P31 true

Wis, P31, P13 true true

Wi, P13, P31, P22 true

W3 1, true

W31, P13 true

W31, Pap

Wa.1, P31 true

W31, P13, P22

W31, Papo, P31

W31, P31, P13 true

W31, P13, P31, Pa2

W22 true

Waz2, P13 true

Wa2, Pa o

Wa2, P31 true

Wao, P13, Pap

Wa2, Pao, P31

Was2, P31, P13 true

Wa2, P13, P31, P2

Figure7.1 A truthtableconstructedor Ex. 7.2. Propositionsotlistedastrue onagiven

line areassumedalse,andonly true entriesareshown in thetable.

in every model),andif the entailmentholdsthena mustbe valid, becauset mustbe

truein all models becausét mustbetruein all modelsin which T'rue holds.

b. False doesnt holdin ary model,so« trivially holdsin every modelthat F'alse holds

n.

c. a = [ holdsin thosemodelswhere holdsor where—« holds. Thatis preciselythe

casef a = Fisvalid.
d. Thisfollows from applyingc in bothdirections.
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e. Thisreducego c, becausex A —( is unsatisfiablgustwhena = (isvalid.

7.5 Thesecanbe computedby countingthe rows in a truth tablethat comeout true. Re-
memberto countthe propositionghatarenot mentionedjf a sentencenentionsonly A and
B, thenwe multiply the numberof modelsfor {4, B} by 22 to accountfor C' and D.

a6
b. 12
c. 4

7.6 A binarylogical connectie is definedby a truth tablewith 4 rows. Eachof the four
rows may be true or false,sothereare2* = 16 possibletruth tables,andthus 16 possible
connecties. Six of thesearetrivial onesthatignoreoneor bothinputs;they correspondo
True, False, P, Q, —P and—=(Q. Fourof themwe have alreadystudied:A, Vv, = , < .
The remainingsix are potentially useful. One of themis reverseimplication (< insteadof
=), andthe otherfive arethe nggationsof A,V, = , < and<«. (Thefirsttwo of these
aresometime<allednandandnor.)

7.7 Weusethetruthtablecodein Lisp in thedirectorylogic/prop.lisp to shaw each

sentences valid. We substituteP, Q, Rfor «, 3,y becaus®f thelack of Greeklettersin
ASCII. To save spacdn this manualwe only shaw thefirst four truth tables:

> (truth-table "P T Q<=> Q" P

P QP Q QP (P"Q<=>@Q"P

F F F F \(true\)
T F F F T
F T F F T
T T T T T
NIL
> (truth-table "P | Q<=> Q]| P

P QPIQQIP (P|] Q<=>(@Q] P
FF F F T

T F T T T

F T T T T

T T T T T

NIL

> (truth-table " Q" R <= (P "~ Q"R

PQRQ"RP"Q"R P Q"R (P"(Q"R) <= (P " Q" R)

FFF F F F T
T FF F F F T
FTF F F F T
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— =

e I e

T T F F F F
F F T F F F

T F T F F F

FTT T F F

T T T T T T

NIL

> (truth-table "P] Q] Ry <= P | Q| RY

P QRQIRP| QIR PIQIR(P]|]@Q]
F F F F F F

T F F F T T

F T F T T T

T T F T T T

F F T T T T

T F T T T T

FTT T T T

T T T T T T

NIL

For the remainingsentencesye just shav thatthey arevalid accordingto the validity
function:

> (validity P <=> PY)

VALID

> (validity "P => Q<= "Q => "P")

VALID

> (validity "P =>Q<=>"P | Q"

VALID

> (validity "P <=> Q) <=> (P => Q) ~ (Q => P)")
VALID

> (validity (P "~ Q) <=>"P | "Q

VALID

> (validity P | Q) <=>"P "~ "Q"

VALID

> (validity "P Q| R <=>®"Q | P " R"
VALID

> (validity Pl QTR <=>®P | Q" (P | R)Y
VALID

7.8 We usethevalidity

functionfrom logic/prop.lis

of eachsentence:

> (validity "Smoke => Smoke")

VALID

> (validity "Smoke => Fire")

SATISFIABLE

> (validity "(Smoke => Fire) => ("Smoke => "Fire)")
SATISFIABLE

> (validity "Smoke | Fire | “Fire")

VALID

p to determinethe validity
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> (validity "((Smoke ~ Heat) => Fire) <=> ((Smoke => Fire) | (Heat => Fire))")
VALID

> (validity "(Smoke => Fire) => ((Smoke ~ Heat) => Fire)")

VALID

> (validity "Big | Dumb| (Big => Dumb)")

VALID

> (validity "(Big =~ Dumb) | “Dumb")

SATISFIABLE

Many peoplearefooled by (e) and(g) becausehey think of implicationasbeingcau-
sation,or somethingcloseto it. Thus,in (e), they feel thatit is the combinationof Smole
and Heatthat leadsto Fire, andthusthereis no reasorwhy one or the otheraloneshould
leadto fire. Similarly, in (g), they feelthatthereis no necessargausalelationbetweerBig
and Dumb, so the sentenceshouldbe satisfiable but not valid. However, this reasonings
incorrect,becauseémplicationis not causation—implicatioris just a kind of disjunction(in
thesenseghat P = (@ isthesameas—P Vv Q). SoBig V Dumb V (Big = Dumb) is
equvalentto Big V Dumb Vv —Big V Dumb, whichis equvalentto Big V =Big V Dumb,
whichis truewhetherBig is true or false,andis thereforevalid.

7.9 Fromthefirsttwo statementsye seethatif it is mythical,thenit is immortal; otherwise
it isamammal.Soit mustbe eitherimmortal or amammal,andthushorned.Thatmeanst
is alsomagical.However, we cant deducearything aboutwhetherit is mythical. Usingthe
propositionakreasoningode:

> (setf kb (make-prop-kb))
#S(PROP-KB SENTENCE(AND))

> (tell kb "Mythical => Immortal")

T

> (tell kb ""Mythical => “Immortal =~ Mammal")
T

> (tell kb "Immortal | Mammal => Horned")
T

> (tell kb "Horned => Magical")

T

> (ask kb "Mythical)

NIL

> (ask kb ""Mythical")

NIL

> (ask kb "Magical)

T

> (ask kb "Horned")

T

7.10 Eachpossibleworld canbe written asa conjunctionof symbols,e.g. (A A C' A E).
Assertingthatapossibleworld is notthe casecanbewritten by negatingthat,e.g.—-(AA C A
E), which canberewrittenas(—A vV -C Vv = F). Thisis theform of aclause;a conjunction
of theseclausess a CNF sentenceandcanlist all the possibleworldsfor thesentence.

7.11
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7.12

a.

b.

This is a disjunctionwith 28 disjuncts,eachone sayingthattwo of the neighborsare
trueandthe othersarefalse.Thefirst disjunctis

Xop N X1 N =Xo2 A =X A X1 A= Xoo A= X10 A =X
Theother27 disjunctseachselecttwo differentX; ; to betrue.

. Therewill be (}) disjunctseachsayingthatk of then symbolsaretrue andthe others

false.

For eachof the cellsthathave beenprobed take theresultingnumbem revealedby the
gameand constructa sentencevith (g) disjuncts. Conjoin all the sentencesogether
ThenuseDPLL to answerthe questionof whetherthis sentenceentails X ; for the
particulari, j pairyou areinterestedn.

. To encodethe global constraintthat thereare A/ minesaltogetherwe canconstruct

a disjunctwith () disjuncts,eachof size N. Remember (y_,,7(y_yy). SO for
a Minesweepeigamewith 100 cells and 20 mines, this will be morrethan103?, and
thus cannotbe representedn any computer However, we canrepresenthe global
constraintwithin the DPLL algorithmitself. We add the parametemin and maxto
the DPLL function; theseindicatethe minimum and maximumnumberof unassigned
symbolsthatmustbetruein themodel.For anunconstrainegroblemthevaluesO and
N will beusedfor theseparametersFor a mineseepeproblemthe value M will be
usedfor both minandmax Within DPLL, we fail (returnfalse)immediatelyif minis
lessthanthe numberof remainingsymbols,or if maxis lessthan0. For eachrecursve
call to DPLL, we updatemin andmaxby subtractingpnewhenwe assigna true value
to asymbol.

No conclusionsare invalidatedby addingthis capabilityto DPLL and encodingthe
globalconstraintusingit.

. Considetthis stringof alternatingl’s andunprobeccells (indicatedby adash):

|- 1|-[1]-11]- 11 ]- 201 - 1f-|
There are two possiblemodels: either there are mines under every even-numbered

dash,or underevery odd-numberedlash.Making a probeat eitherendwill determine
whethercellsatthe far endareemptyor containmines.

P = @ isequivalentto —P Vv @Q by implicationelimination(Figure7.11),and—(P; A

-+ A P,,) is equvalentto (=P, V --- V = P,,) by deMorgans rule,so (=P, VV --- V

-P, VvV Q)isequvalentto (P, A--- A Pp) = Q.

A clausecanhave positive andnegative literals; arrangehemin theform (=P, v - - - v

P, VQi1V---VQp). ThensettingQ = Q1 V ---V Q,, we have
(=PLV---VP,VQ1V---VQy)

is equivalentto

(PLA--APp) = Q1V---VQy
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c. Foratomsp;, ¢;, i, s; WhereUNIFY (p;, q) = 6:

PLA .. Pj oo APny = T1V ... Ty,
SIN..NSpy = @1 V.o Qi -+ V(ny
SUBST(O,(pl/\...pj,1/\pj+1/\pn1/\slA...sn3 = P1Velng V@ Ve @_1Vag41VaVany))

7.13

a. Arrowt < Arrow!=' A =Shoot!
b. FacingRight! < (FacingRight'=!' A =TurnRight! N =TurnLeft')
V(FacingUp'~1 A TurnRight!
V(FacingDown!=! A TurnLeft!
¢. Theseformulaearethe sameas(7.7)and(7.8), exceptthatthe P for pit is replacedoy
W for wumpus,and B for breezyis replaceddy .S for smelly
K(—|W4’4)t = K(ﬂSgA)t V K(—|S4, 4)t
K(W474)t = K(5374)t VAN K(—'W274)t A K(ﬁW&g)t
V(K (S13)t A K (=Wt A K (=W 3)!

7.14 Optimal behaior meansachiezing an expectedutility that is asgood asary other
agentprogram.The PL-WUMPUS-AGENT is clearlynon-optimalwhenit choosesa random
move (andmay be non-optimalin otherbragnchef its logic). Oneexample:in somecases
whenthereare mary dangergbreezesand smells)but no safemove, the agentchoosesat
random. A morethoroughanalysisshouldshav whenit is betterto do that,andwhenit is
betterto go homeandexit the wumpusworld, giving up on ary chanceof finding the gold.
Evenwhenit is bestto gambleon anunsafelocation,our agentdoesnot distinguishdegrees
of safety— it shouldchoosethe unsafesquarewvhich containsa dangerin the fewestnumber
of possiblemodels.Theserefinementarehardto stateusingalogical agent,but we will see
in subsequenthapterghata probabilisticagentcanhandlethem.does

7.15 PL-WuMPUS-AGENT keepdrackof 6 staticstatevariablesbesideB. Thedifficulty
is thatthesevariableschange—welon't justaddnew informationaboutthem(aswe do with
pits andbreezylocations) we modify exisitng information. This doesnot sit well with logic,
which is designedor eternaltruths. Sotherearetwo alternatves. Thefirst is to superscript
eachpropositionwith the time (aswe did with the circuit agents),and thenwe could, for
exampledoTELL (K B, Ai{’;) to saythattheagents atlocationl, 1 attime 3. Thenattime4,
wewould have to copy over mary of theexisting propositionsandaddnew ones.Thesecond
possibilityis to treatevery propositionasa timelessone,but to remove outdatedpropositions
from the KB. Thatis, we could do RETRACT(K B, A1) andthenprogTell( K B, A; 2) to
indicatethatthe agenthasmovedfrom 1,1 to 1, 2. Chapterl0 describeghe semanticsand
implementatiorof RETRACT.

NOTE: Avoid assigningthis problemif you don't feel comfortablerequiring students
to think aheadaboutthe possibility of retraction.

7.16 It will take time proportionalto the numberof pure symbolsplusthe numberof unit
clauses.We assuméhat K B = « is false,andprove a contradiction.—-(KB = «) is
equvalentto K B A —«. Fromthis sentencehe algorithmwill first eliminateall the pure
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symbols,thenit will work on unit clauseauntil it choosesy (which is a unit clause);at that
point it will immediatelyrecognizethat eitherchoice (true or false)for « leadsto failure,
which meanghatthe original non-ngjatedassertioris true.

7.17 Codenotshavn.



Solutiondfor Chapter8
First-OrderLogic

8.1 This questionwill generatea wide variety of possiblesolutions. The key distinction
betweenanalogicaland sententialrepresentationss that the analogicalrepresentatiorau-
tomatically generatesonsequencethat can be “read off” wheneer suitablepremisesare
encoded. Whenyou get into the details, this distinction turns out to be quite hardto pin
down—for example,whatdoes‘read off” mean?—ht it canbe justified by examiningthe
time compleity of variousinferenceson the “virtual inferencemachine”provided by the
representatiosystem.

a. Dependingon the scaleandtype of the map, symbolsin the map languagetypically

includecity andtown markers,roadsymbols(varioustypes) lighthouseshistoricmon-
umentsriver coursesfreenay intersectionsetc.

. Explicit andimplicit sentenceghis distinctionis alittle tricky, but the basicideais that
whenthe map-draver plunksa symboldown in a particularplace,he saysoneexplicit
thing (e.g. thatCoit Tower is here),but the analogicalstructureof the maprepresenta-
tion meanghatmary implicit sentencesannow bederived. Explicit sentencesthere
isamonumentalledCoit Tower atthislocation;LombardStreetruns(approximately)
east-westSanFranciscoBay exists and hasthis shape.Implicit sentencesVan Ness
is longerthanNorth Willard; Fishermars Wharf is north of the Mission District; the
shortestdrivableroutefrom Coit Towerto Twin Peakss thefollowing .. ..

. Sentencesinrepresentabli the maplanguageTelegraphHill is approximatelyconi-
calandabout430feethigh (assuminghe maphasno topographicahotation);in 1890
therewas no bridge connectingSanFranciscoto Marin County (map doesnot repre-
sentchangingnformation);Interstate680runseithereastor westof WalnutCreek(no
disjunctive information).

. Sentenceshat are easierto expressin the map language:ary sentencehat can be
written easilyin Englishis not going to be a good candidatefor this question. Any
linguistic abstractiorfrom the physicalstructureof SanFrancisco(e.g. SanFrancisco
is onthe endof a peninsulaat the mouthof a bay) canprobablybe expressedequally
easilyin the predicatecalculus,sincethat’s whatit was designedfor. Factssuchas
the shapeof the coastline,or the pathtaken by a road, are bestexpressedn the map
language Eventhen,onecanarguethatthecoastlinedravn onthemapactuallyconsists
of lots of individual sentencespnefor eachdot of ink, especiallyif the mapis dravn

42
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usinga digital plotter In this case,the advantageof the mapis really in the easeof
inferencecombinedwith suitability for human“visual computing”apparatus.
e. Examplesof otheranalogicakepresentations:

¢ Analogaudiotaperecording. Advantages:simple circuits canrecordandrepro-
ducesounds.Disadantages:ssubjectto errors,noise;hardto processn orderto
separatesoundsor remove noiseetc.

e Traditionalclock face. Advantageseasierto readquickly, determinatiorof how
muchtimeis availablerequiresno additionalcomputation Disadantageshardto
readprecisely cannotrepresensmallunitsof time (ms) easily

¢ All kindsof graphsbarcharts,pie charts. Advantagesenormousdatacompres-
sion, easytrend analysis,communicatdanformationin a way which we canin-
terpreteasily Disadantagesimprecise,cannotrepresentlisjunctive or negated
information.

8.2 The knowledgebasedoesnot entail V= P(x). To shav this, we mustgive a model
whereP(a) andP(b) butV x P(z) is false.Considerary modelwith threedomainelements,
wherea andb referto thefirst two elementsandtherelationreferredto by P holdsonly for

thosetwo elements.

8.3 Thesentencelz,y x =y isvalid. A sentenceés valid if it is truein every model. An
existentiallyquantifiedsentencés truein amodelif it holdsunderary extendednterpretation
in which its variablesareassignedo domainelements Accordingto the standardsemantics
of FOL asgivenin the chapter every model containsat leastone domainelement,hence,
for ary model,thereis an extendedinterpretationin which z andy areassignedo thefirst
domainelement.In suchaninterpretationg =y is true.

8.4 Vzx,y x=y stipulateshatthereis exactly oneobject. If therearetwo objects,then
thereis an extendedinterpretationn which x andy areassignedo differentobjects,sothe
sentencavould befalse. Somestudentanay alsonoticethatary unsatisfiablesentencelso
meetsthecriterion, sincetherearenoworldsin which thesentences true.

8.5 We will usethe simplestcountingmethod,ignoring redundantombinations.For the
constansymbols thereare D¢ assignmentsEachpredicateof arity k£ is mappedntoa k-ary
relation,i.e.,asubsebf the D* possible%—elementuples;thereareQDk suchmappingsEach
functionsymbolof arity & is mappedontoa k-ary function, which specifiesa valuefor each
of the D¥ possiblek-elementuples.Includingtheinvisible elementthereare D + 1 choices
for eachvalue,sothereare(D + 1)°" functions. Thetotal numberof possiblecombinations
is therefore
A A
De- <Z 2D’“> : (Z(D+ 1)D’°> .

k=1 k=1
Two thingsto note: first, the numberis finite; second,the maximumarity A is the most
crucialcompleity parameter

8.6 In this exercise,it is bestnot to worry aboutdetailsof tenseandlarger concernswith
consistenbntologiesand so on. The main point is to make surestudentsunderstanacton-
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nectvesandquantifiersandthe useof predicatesfunctions,constantsandequality Let the
basicvocalulary beasfollows:

Takes(zx, ¢, s): studentr takescoursec in semestes;

Passes(z, ¢, s): student: passegoursec in semestes;

Score(z, c, s): thescoreobtainedby studentz in coursec in semestes;

x >y z is greaterthany;

F andG: specificFrenchandGreekcourseqgonecould alsointerpretthesesentenceasre-
ferring to any suchcourse,in which caseone could usea predicateSubject(c, f) meaning
thatthe subjectof coursec is field f;

Buys(z,y, z): x buysy from z (usinga binary predicatewith unspecifiedselleris OK but

lessfelicitous);

Sells(x,y, z): x sellsy to z;

Shaves(z,y): personz sha/espersony

Born(z,c): personz is bornin countryc;

Parent(z,y): x is aparentof y;

Citizen(x, c,r): x is acitizenof countryc for reasorr;

Resident(z, ¢): x is aresidentof countryc;

Fools(z,y,t): personz fools persony attime;

Student(x), Person(x), Man(z), Barber(x), Expensive(x), Agent(x), Insured(x),

Smart(x), Politician(z): predicatesatisfiedoy memberof the correspondingateyories.

a. Somestudentgook Frenchin spring2001.
dx Student(x) A Takes(z, F, Spring2001).
b. Everystudentwho takesFrenchpassed.
Vz,s Student(x) A Takes(x, F,s) = Passes(z,F,s).
c. Only onestudenttook Greekin spring2001.
Jz Student(x)N\Takes(x,G, Spring2001)A\Vy y # x = —Takes(y, G, Spring2001).
d. Thebestscorein Greekis alwayshigherthanthebestscorein French.
Vs do Yy Score(z,G,s) > Score(y, I, s).
e. Every personwho buysapolicy is smart.
Vz Person(x) A (3y,z Policy(y) N Buys(x,y,z)) = Smart(z).
f. No persorbuysanexpensve policy.
Vz,y,z Person(z) A Policy(y) N Expensive(y) = —Buys(z,y,z).
g. Thereis anagentwho sellspoliciesonly to peoplewho arenotinsured.
dx Agent(z) AVy,z Policy(y) A Sells(z,y,z) = (Person(z) A =Insured(z)).
h. Thereis abarberwho sharesall menin town who do not shave themseles.
Jz Barber(z) AVy Man(y) A ~Shaves(y,y) = Shaves(z,y).
i. A personbornin the UK, eachof whoseparentss a UK citizenor aUK residentjs a
UK citizenby birth.
Vz Person(x)A\Born(z,UK)\(NVy Parent(y,z) = ((Ir Citizen(y,UK,r))V
Resident(y,UK))) = Citizen(x, UK, Birth).
j. A personbornoutsidethe UK, oneof whoseparentss a UK citizenby birth, is a UK
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citizenby descent.

Va Person(x) AN —Born(z,UK) A (3y Parent(y,z) A Citizen(y, UK, Birth))
= Citizen(x,UK, Descent).

k. Politicianscanfool someof thepeopleall of thetime, andthey canfool all of thepeople
someof thetime, but they cant fool all of the peopleall of thetime.

Vx Politician(z) =
(Jy YVt Person(y) A Fools(x,y,t)) A
(3t Yy Person(y) = Fools(z,y,t)) A
—(Vt Yy Person(y) = Fools(x,y,t))

8.7 Thekey ideais to seethattheword “same”is referringto every pair of GermansThere
areseverallogically equivalentformsfor this sentenceThe simplestis the Horn clause:

Vz,y,l German(z) A German(y) A Speaks(z,l) = Speaks(y.l) .

8.8 Vuz,y Spouse(xz,y) N Male(x) = Female(y). This axiomis nolongertruein
certainstatesandcountries.

8.9 This is a very educationalexercisebut also highly nontrivial. Once studentshave
learnedaboutresolution,askthemto do the proof too. In mostcasesthey will discorer
missingaxioms. Our basicpredicatesare Heard(zx, e, t) (x heardaboutevente attime t);
Occurred(e,t) (evente occurredattimet); Alive(z,t) (z is alive attimet).

3t Heard(W, DeathO f(N),t)

Vz,e,t Heard(z,e,t) = Alive(z,t)

Vx,e ty Heard(z,e,ta) = Ity Occurred(e,t1) ANt < tg

Vt1 Occurred(DeathOf(x),t1) = Yig t1 < ta = —Alive(x,ts)
Vi1, to —|(t2 < tl) = ((tl < tg) V (tl = tg))

Vi, tq,t3 (tl < tg) A ((tz < tg) V (tg = t'g)) = (tl < tg)

Vi1, to,t3 ((tl < tg) V (tl = tg)) AN (tg < tg) = (tl < tg)

8.10 It is notentirelyclearwhich sentenceseedto bewritten, but thisis oneof them:

Vs1 Breezy(s1) < dso Adjacent(si,sa) A Pit(s2) .

Thatis, a squareis breezyif andonly if thereis a pit in a neighboringsquare. Generally
speaking the size of the axiom setis independentf the size of the wumpusworld being
described.

8.11 Make sureyou write definitionswith <. If you use=-, you areonly imposingcon-
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straints,notwriting arealdefinition.
GrandChild(c,a) < 3b Child(c,b) A Child(b,a)
GreatGrandParent(a,d) < 3b,c Child(d,c) A Child(c,b) A Child(b, a)
Brother(z,y) < Male(z) A Sibling(x,y)
Sister(z,y) < Female(z) A Sibling(z,y)
Daughter(d,p) < Female(d) A Child(d, p)
Son(s,p) < Male(s) A Child(s,p)
AuntOrUncle(a,c) < Ip Child(c,p) A Sibling(a,p)
Aunt(a,c) < Female(a) N AuntOrUncle(a, c)
Uncle(u,c) < Male(u) N AuntOrUncle(a, c)
BrotherInLaw(b,z) < 3Im Spouse(x,m) A Brother(b,m)
SisterInLaw(s,x) < 3Im Spouse(x,m) A Sister(s,m)
FirstCousin(c,k) < 3( p)AuntOrUncle(p, c) A Parent(p, k)
A secondcousinis aachild of ones parents first cousin,andin generalannth cousin
is definedas:

NthCousin(n,c,k) < Ip, f Parent(p,c) N NthCousin(n — 1, f,p) A Child(k, f)

Thefactsin the family tree aresimple: eacharron representswo instancef C'hild
(e.g., Child(William, Diana) and Child(William,Charles)), eachnamerepresentsa
sex proposition(e.g., Male(William) or Female(Diana)), eachdoubleline indicatesa
Spouse proposition(e.g. Spouse(Charles, Diana)). Making the queriesof the logical
reasoningsystemis justaway of deluggingthe definitions.

8.12 Vz,y (xz+y) = (y+ z). Thisdoesfollow from the Peanocaxioms(althoughwe
shouldwrite the first axiom for + asVm NatNum(m) = + (0,m) = m). Roughly
speakingthedefinitionof + saysthatz + y = S*(y) = S**¥(0), whereS* is shorthandor
the S function appliedz times. Similarly, y + z = S¥(z) = S¥**(0). Hence,theaxioms
imply thatz + y andy + x areequalto syntacticallyidenticalexpressions.This agument
canbeturnedinto aformal proof by induction.

8.13 Although theseaxiomsare sufficient to prove setmembershipivhen z is in fact a
memberof a given set,they have nothingto sayaboutcasesvherezx is nota member For
example,it is notpossibleto provethatx is notamembeiof theemptyset. Theseaxiomsmay
thereforebe suitablefor alogical systemsuchasProlog,thatusesnegation-as-ilure.

8.14 Herewetranslatelist? to mearn‘properlist” in Lisp terminologyi.e.,aconsstructure
with Nil asthe*“rightmost” atom.

List?(Nil)

Va,l List?(l) < List?(Cons(x,l))

Va,y First(Cons(z,y))==z

Vx,y Rest(Cons(x,y))=vy

Vz Append(Nil,x)=x

Vv, z,y,z List?(x) = (Append(z,y)=2z < Append(Cons(v,z),y)=Cons(v,z))

Vo —Find(x, Nil)

Va List?(z) = (Find(z,Cons(y,z)) & (x=yV Find(zx, z))
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8.15 Thereareseveral problemswith the proposediefinition. It allows oneto prove, say
Adjacent([1,1],[1,2]) but not Adjacent([1,2],[1,1]); sowe needan additionalsymmetry
axiom. It doesnot allow oneto prove that Adjacent([1,1],[1, 3]) is false,soit needsto be
writtenas

v51752 ~ ...

Finally, it doesnot work asthe boundarief the world, so someextra conditionsmustbe
added.

8.16 We needthefollowing sentences:

Vs Smelly(s1) < Isa Adjacent(si,s2) A In(Wumpus, s2)
ds1 In(Wumpus, s1) AV sy (s1 # s2) = —In(Wumpus, s2) .

8.17 Therearethreestagedo gothrough.In thefirst stage we definethe conceptf one-
bit andn-bit addition. Then,we specifyone-bitandn-bit addercircuits. Finally, we verify
thatthen-bit addercircuit doesn-bit addition.

e One-bitadditionis easy Let Add; beafunctionof threeone-bitagumentgthe third
is the carry bit). Theresultof the additionis a list of bits representing 2-bit binary
number leastsignificantdigit first:

Addy(0,0,0) = [0,0]
Addy(0,0,1)=[0,1]
Addy(0,1,0) = [0,1]
Addy(0,1,1)=]1,0]
Addy(1,0,0) = [0,1]
Addy(1,0,1)=]1,0]
Addy(1,1,0)=[1,0]
Addy(1,1,1)=1,1]

¢ n-bit additionbuilds on one-bitaddition. Let Add,,(z1, z2,b) beafunctionthattakes
two lists of binarydigits of lengthn (leastsignificantdigit first) andacarrybit (initially
0), and constructsa list of lengthn + 1 thatrepresentsheir sum. (It will alwaysbe
exactlyn + 1 bitslong, evenwhentheleadingbit is 0—theleadingbit is the overflon
bit.)

Add, ([}, 11,6) = [0]
Addl(bl,bg,b) == [bg,b4] = Addn([b1|l‘1], [b2|1'2]b) = [bg‘Addn(Il,EQ,bzl)]

e Thenext stepis to definethe structureof a one-bitaddercircuit, asgivenin Section??.
Let Add,Circuit(c) be true of ary circuit that hasthe appropriatecomponentsand
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connections:
Ve AddiCircuit(c) <
dx1,x9,a1,a2,01 Type(x1)=Type(xs)=XOR

A Type(ay) =Type(as) = AND A Type(o1) =OR

A Connected(Out(1,x1), In(1,z2)) A Connected(In(1,c),

A Connected(Out(1,x1),In(2,a2)) A Connected(In(1,c), )
A Connected(Out(1,a2),In(1,01)) A Connected(In(2,c), In(2,x1)
A Connected(Out(1,a1), In(2,01)) A Connected(In(2,c), In(2,a1))
A Connected(Out(1, x2), Out(1, c)) A Connected(In(3,c), In(2,z2))
A Connected(Out(1,01), Out(Z, ¢)) A Connected(In(3,¢c), In(1,as))

Notice that this allows the circuit to have additionalgatesand connectionsput they
won't stopit from doingaddition.

Now we definewhatwe meanby ann-bit addercircuit, following the designof Figure
8.6. We will needto be careful,becausen n-bit adderis notjustann — 1-bit adder
plusaone-bitadder;we have to connectthe overflow bit of then — 1-bit adderto the
carry-bitinput of the one-bitadder We begin with thebasecasewheren =0:

Ve Add,Circuit(c,0) <

Signal(Out(1,¢))=0
Now, for the recursve casewe specifythat the first connectthe “overflon” outputof
then — 1-bit circuit asthe carrybit for thelastbit:

Ve,n n>0 = [Add,Circuit(e,n) <
Jdeg,d Add,Circuit(ca,n — 1) A AddyCircuit(d)

AYm (m>0)A(m<2n—1) = In(m,c)=1In(m,cs)

AYm (m>0)A(m<n) = AOut(m,c)=0Out(m,cs)

A Connected(Out(n, cz), In(3,d))

A Connected(In(2n — 1, ¢), In(1,d)) A Connected(In(2n,c), In(2,d))

A Connected(Out(1,d), Out(n,c)) A Connected(Out(2,d), Out(n + 1,c))
Now, to verify thata one-bitaddercircuit actuallyaddscorrectly we askwhether given
ary settingof theinputs,the outputsequalthe sumof theinputs:

Ve AddyCircuit(c) =
Viy,ia,i3 Signal(In(1,c)) =11 A Signal(In(2,c)) =1i2 A Signal(In(3,c)) =is
= Add; (il , 192, ig) = [Out(l, C), Out(2, C)}
If this sentencas entailedby the KB, thenevery circuit with the Add; C'ircuit design
is in factanadder The queryfor the n-bit canbewritten as

Ve,n Add,Circuit(e,n) =
Va1,x9,y InterleavedInputBits(z1,x2,c) A OutputBits(y, c)
= Addy(21,72,9)

where InterleavedInput Bits and Qutput Bits are definedappropriatelyto map bit
sequenceto the actualterminalsof the circuit. [Note this logical formulationhasnot
beentestedn atheoremprover andwe hesitateo vouchfor its correctness.]
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8.18 Strictly speakingthe primitive gatesmust be definedusing logical equivalencesto
excludethosecombinationshotlistedascorrect.If weareusingalogic programmingsystem,
we cansimply list the casesFor example,

AND(0,0,0) AND(0,1,0) AND(1,0,0) AND(1,1,1) .
For theone-bitadderwe have
\V/’il, ig, ’i3, 01,09 Add1 C’ircuit(il, ig, i3, o1, 02) ~
041,041,002 XOR(i1,12,051) A XOR(041,13,01)
A\ AND(Zl, ig, Oal) A AND(Zg, Ox1, Oag)
A OR(042, 041, 02)
Theverificationqueryis
\V/il, i27 i37 01,02 Addl (ila i27 23) = [7 o1, 02] = Addl C’L'TC’U/I;t(Z.l, i?v i37 01, 02)

It is not possibleto askwhetherparticularterminalsare connectedn a given circuit, since
theterminalsis notreified (noris thecircuit itself).

8.19 Theanswerserewill vary by country Thetwo key rulesfor UK passportaregiven
in theanswetto Exercsie8.6.



Solutiongfor Chapter9
Inferencean First-OrderLogic

9.1 Wewantto shav thatary sentencef theformVv « entailsary universalinstantiation
of thesentenceThesentenc& v «istrueif « istruein all possibleextendednterpretations.
But replacingv with ary groundterm g mustcountasone of the interpretationssoif the

original sentencds true,thentheinstantiatedsentencenustalsobetrue.

9.2 For ary sentencex containinga groundterm g andfor ary variablev not occuringin

o, we have
«

Jv SuBsTi({g/v}, a)
whereSuBST; is afunctionthatsubstitutegor a singleoccurrencef g with v.

9.3 Both b andc arevalid; ais invalid becausét introducesthe previously-usedsymbol
Everest Note that c doesnot imply that thereare two mountainsas high as Everest,be-
causenowhereis it statedthat BenNeis is differentfrom Kilimanjaro (or Eveest for that
matter).

9.4 Thisis aneasyexerciseto checkthatthe studentunderstandanification.

a. {z/A,y/B, z/B} (or somepermutatiorof this).

b. No unifier (x cannotbindto both A and B).

c. {y/John,z/John}.

d. No unifier (because¢he occurs-checlpreventsunificationof y with Father(y)).

9.5 Employs(Mother(John)fFather(Richard)Yhis pageisn’t wide enoughto draw the dia-
gramasin Figure9.2,sowe will draw it with indentationdenotingchildrennodes:

[1] Employs(x, V)
[2] Employs(x, Father(z))
[3] Employs(x, Father(Richard))
[4] Employs(Mother(w ), Father(Richard )
[5] Employs(Mother (J ohn), Father(Richard )
[6] Employs(Mother(w ), Father(z))
[4] ..
[71 Employs(Mother(J  ohn), Father(z))
[5] .

50
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[8] Employs(Mother( w), V)
[9] Employs(Mother(J  ohn), )
[10] Employs(Mother( John), Father(z)
[5]
6] ..
9.6 We will give the average-caséime compleity for eachquery/schemeombinationin
thefollowing table.(An entryof theform“1; n” meanghatit is O(1) to find thefirst solution
to thequery but O(n) to find themall.) We male thefollowing assumptionshashtablesgive
O(1) accesstherearen peoplein thedatabasethereareO(n) peopleof ary specifiedage;
every personhasonemother;thereare H peoplein Houstonand7 peoplein Tiny Town; T’
is muchlessthann; in Q4,the secondconjunctis evaluatedfirst.

Ql Q2 | Q3| Q4
S 1|1, Hil;n|T;T
S2[1 |n;nil;n| n;n
S3| n |n:; n|l; n|n? n?
S4 1 |n;n|l;n| n;n
SS5|1 |1, HiL;n|T;T

Anything thatis O(1) canbe considered‘efficient; asperhapscanarything O(T"). Note

thatS1andS5dominatethe otherschemedor this setof queries.Also notethatindexing on

predicateplaysnorolein thistable(exceptin combinatiorwith anargument) becaus¢here
areonly 3 predicategwhichis O(1)). It would make a differencein termsof the constant
factor

9.7 Thiswouldwork if therewereno recursve rulesin the knovledgebase.But suppose
theknowledgebasecontainshe sentences:

Member(z, [z|r])
Member(x,r) = Member(z,[y|r])

Now take the query M ember(3,[1,2, 3]), with a backward chainingsystem. We unify the
querywith the consequentf theimplicationto getthe substitutiord = {x/3,y/1,7/[2, 3]}.
We then substitutethis in to the left-hand side to get Member(3,[2,3]) andtry to back
chainon thatwith the substitutiond. Whenwe thentry to apply the implication again,we
get a failure because) cannotbe both 1 and2. In otherwords,the failure to standardize
apartcausedailure in somecasesvhererecursve ruleswould resultin a solutionif we did
standardizepart.

9.8 Considera3-SAT problemof theform
(1,1 Va1 Vasi) A(z12 Ve Vargs) V...

We wantto rewrite this asa singledefineclauseof the form
ANBANCNA... = Z,

alongwith afew groundclausesWe cando thatwith the definiteclause
OneOf(x1,1,221,231) NOneOf(x12,x22,232) A... = Solved



Chapter 9. Inferencein First-OrderLogic

alongwith thegroundclauses
OneOf(True,z,y)

OneO f(x, True,y)
OneOf(z,y, True)

9.9 Weuseaverysimpleontologyto make the exampleseasier:

a. Horse(r) = Mammal(z)

Cow(z) = Mammal(z)

Pig(x) = Mammal(zx)

Offspring(z,y) A Horse(y) = Horse(z)

Horse(Bluebeard)

Parent(Bluebeard, Charlie)

Offspring(z,y) = Parent(y,x)

Parent(xz,y) = Offspring(y, x)

(Notewe couldnt do Offspring(x,y) < Parent(y,z) becaus¢hatis notin theform
expectedby GeneralizedModusPonens.)

f. Mammal(x) = Parent(G(x),z) (hereG is a Skolemfunction).

Lo T

9.10 This questionglealswith the subjectof loopingin backward-chainingoroofs. A loop
is boundto occurwheneer asubgoalriseshatis a substitutioninstanceof oneof thegoals
onthestack.Not all loopscanbe caughtthis way, of course ptherwisewe would have away
to solve the halting problem.

a. Theprooftreeis shavnin FigureS9.1.Thebranchwith Offspring(Bluebeard,y) and
Parent(y, Bluebeard) repeatsndefinitely sotherestof the proofis neverreached.

b. We getaninfinite loop becausef rule b, Offspring(z,y) A Horse(y) = Horse(x).
Thespecificloop appearingn thefigureariseshecaus®f theorderingof theclauses—
it would bebetterto order H or se( Bluebeard) beforetherule from b. However, aloop
will occurno matterwhich way therulesareorderedf thetheorem-preer is asledfor
all solutions.

c. Oneshouldbeableto prove thatboth BluebearcandCharliearehorses.

d. Smith et al. (1986) recommendahe following method. Wheneer a “looping” goal
occurs(one that is a substitutioninstanceof a supegoal higher up the stack), sus-
pendthe attemptto prove that subgoal.Continuewith all otherbrancheof the proof
for the supegoal, gatheringup the solutions. Then usethosesolutions(suitably in-
stantiatedf necessaryassolutionsfor the suspendedubgoal,continuingthatbranch
of the proof to find additionalsolutionsif ary. In the proof shawvn in the figure, the
Offspring(Bluebeard, y) is arepeatedyoal andwould be suspendedSinceno other
way to prove it exists, that branchwill terminatewith failure. In this case,Smith’s
methodis sufiicient to allow thetheorem-praer to find bothsolutions.

9.11 Surprisingly the hard partto represents “who is thatman? We wantto ask “what
relationshipdoesthat manhave to someknown persor, but if we representelationswith
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Offspring(h,y) | Horse(BIuebeard}

Parent(y,h) | Offspring(BIuebeard,y)|

Yes, {y/Bluebeard,
h/Charlie}

| Parent(y,Bluebeard)|

| Offspring(BIuebeard,y)|

FigureS9.1 Partial prooftreefor finding horses.

predicateqe.qg., Parent(x,y)) thenwe cannotmake the relationshipbe a variablein first-

orderlogic. Soinsteadwe needto reify relationshipsWe will useRel(r, z,y) to saythatthe

family relationshipr holdsbetweenpeoplex andy. Let Me denoteme and MrX denote
“that man? We will alsoneedthe Skolem constants#’M for thefatherof Me and F' X for

thefatherof MrX. Thefactsof the case(putinto implicative normalform) are:

(1) Rel(Sibling, Me,x) = False
(2) Male(MrX)

(3) Rel(Father, FX, MrX)

(4) Rel(Father, FM, Me)

(5) Rel(Son, FX,FM)

We wantto be ableto shav that Me is the only sonof my father andthereforethat Me is
fatherof Mr X, whois male,andthereforghat“that man”is my son. Therelevantdefinitions
from thefamily domainare:

(6) Rel(Parent,z,y) N Male(z) < Rel(Father,z,y)

(7) Rel(Son,x,y) < Rel(Parent,y,x) N Male(x)

(8) Rel(Sibling,z,y) < = #yAdp Rel(Parent,p,z) A Rel(Parent,p,y)
(9) Rel(Father,z1,y) A Rel(Father,z2,y) = x1 = 2

andthe querywe wantis:
(Q) Rel(r, MrX,y)
We wantto beableto getbacktheanswer{r/Son,y/Me}. Translatingl-9 and@ into INF
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(andneggating@ andincludingthe definitionof #) we get:

(6a) Rel(Parent,z,y) N Male(x) = Rel(Father,z,y)

(6b) Rel(Father,z,y) = Male(x)

(6¢) Rel(Father,x,y) = Rel(Parent,z,y)

(7a) Rel(Son,z,y) = Rel(Parent,y,x)

(7b) Rel(Son,z,y) = Male(x))

(7¢) Rel(Parent,y,x) N Male(x) = Rel(Son,z,y)

(8a) Rel(Sibling,z,y) = x#y

(8b) Rel(Sibling,xz,y) = Rel(Parent, P(z,y),x

(8¢) Rel(Sibling,z,y) = Rel(Parent, P(x,y),y)

(8d) Rel(Parent, P(z,y),z) A Rel(Parent, P(x,y),y) ANz #vy = Rel(Sibling, z,y)

(9) Rel(Father,x1,y) N Rel(Father,z2,y) = x1 = X2

(N)True = z=yVa#y

(NYz=yANz#y = False
(Q) Rel(r,MrX,y) = False

Notethat (1) is non-Horn,sowe will needresolutionto be be sureof gettinga solution. It

turnsoutwe alsoneeddemodulatior{page284)to dealwith equality Thefollowing liststhe

stepsof the proof, with theresolentsof eachstepin parentheses:

(10) Rel(Parent, FM, Me) (
(11) Rel(Parent, FM, FX) (
(12) Rel(Parent, FM,y) N Me #y = Rel(Sibling, Me,y) (
(13) Rel(Parent, FM,y) AN Me #vy = False (
(14) Me # FX = False (
(15) Me = FX (14,N)
(16) Rel(Father,Me, MrX) (
(17) Rel(Parent, Me, MrX) (
(18) Rel(Son, MrX, Me) (
(19) False {r/Son,y/Me} (

9.12 Hereis agoaltree:
goals = [Criminal(West)]

goals = [American(West), Weapon(y), Sells(West, Yy, Z), Hostile(z)]
goals = [Weapon(y), Sells(West, Yy, 2Z), Hostile(z)]

goals = [Missle(y), Sells(West, Yy, z), Hostile(z)]

goals = [Sells(West, M1, z), Hostile(z)]

goals = [Missle(M1), Owns(Nono, M1), Hostile(Nono)]
goals = [Owns(Nono, M1), Hostile(Nono)]
goals = [Hostile(Nono) ]
goals =[]

9.13

a. In thefollowing, anindentedline is a stepdeepelin the proof tree,while two lines at
thesamendentationrepresentwo alternatve waysto prove thegoalthatis unindented
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aboreit. TheP1 andP2 annotatiornon a line meanthatthefirst or secondclauseof P
wasusedto derive theline.

P(A, [1,2,3]) goal
P@, [1]2,3]) P1 => solution, with A =1
P(1, [1]2,3]) P2
P2, [23]) P1 => solution, with A =2
P2, [2,3]) P2
P@3, [3]) P1 => solution, with A =3
PG, [3]) P2
P2, [1, A 3) goal
P2, [12, 3] P1
P@, [12, 3] P2
P2, [2]3]) P1 => solution, with A = 2
P2, [2]3]) P2
P2, [3]) P1
P2, [3]) P2

b. P couldbetterbe calledMember; it succeedsvhenthefirst agumentis anelementof
thelist thatis the secondargument.

9.14 Thedifferentversionsof sort illustratethedistinctionbetweenogicalandprocedu-
ral semanticsn Prolog.

a. sorted([]).
sorted([X]).
sorted([X,Y|L]) - X<Y, sorted([Y|L]).
b. perm((l,0).
perm([X]|L],M)
delete(X,M,M1),

perm(L,M1).
delete(X,[X|L],L). %%deleting an X from [X|L] vyields L
delete(X,[Y|LL,[Y|M]) - delete(X,L,M).
member(X,[X|L]).
member(X,[_|L]) - member(X,L).
C. sort(L,M) - perm(L,M), sorted(M).

This is aboutas closeto an executableformal specificationof sortingasyou can
get—it saysthe absoluteminimumaboutwhatsortmeansin orderfor Mto beasortof
L, it musthave thesameelementsasL, andthey mustbein order

d. Unfortunately this doesnt fare aswell asa programasit doesasa specification. It
is a generate-and-tesbrt: perm generategsandidatgpermutationneat atime, and
sorted teststhem.In theworstcase(whenthereis only onesortedpermutationand
it is thelastonegenerated}hiswill take O(n!) generationsSinceeachperm is O(n?)
andeachsorted is O(n), thewholesort is O(n!n?) in theworstcase.

e. Heresasimpleinsertionsort,whichis O(n?):

isort([],[D).
isort([X|L],M) - isort(L,M1), insert(X,M1,M).
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insert(X,[1,[X])-
insert(X,[Y|LLIX,YIL]) - X=<Y.
insert(X,[Y|LL[Y|M]) - Y<X, insert(X,L,M).

9.15 Thisexerciseillustratesthe power of pattern-matchingyhich s built into Prolog.

a. Thecodefor simplificationlooksstraightforvard, but studentsnayhave troublefinding
the middle way betweerundersimplifyingandloopinginfinitely.

simplify(X,X) - primitive(X).

simplify(X,Y) - evaluable(X), Y is X

simplify(Op(X)) - simplify(X,X1), simplify_exp(Op(X1)).

simplify(Op(X,Y)) - simplify(X,X1), simplify(Y,Y1), simplify_exp(Op(X1,Y1)).
simplify_exp(X,Y) - rewrite(X,X1), simplify(X1,Y).

simplify_exp(X,X).

primitive(X) - atom(X).
b. Hereareafew representati rewrite rulesdravn from theextensve list in Norvig (1992).

Rewrite(X+0,X).

Rewrite(0+X,X).

Rewrite(X+X,2*X).

Rewrite(X*X,X"2).

Rewrite(X"0,1).

Rewrite(0"X,0).

Rewrite(X*N,N*X) - number(N).
Rewrite(In(e"X),X).
Rewrite(X"Y*X"Z,X*(Y+Z)).
Rewrite(sin(X)2+cos(X)"2,1).

c. Herearethe rulesfor differentiation,usingd(Y,X) to representhe derwvative of ex-
pressionY with respecto variableX.

Rewrite(d(X,X),1).

Rewrite(d(U,X),0) - atom(U), U /= X
Rewrite(d(U+V,X),d(U,X)+d(V,X)).
Rewrite(d(U-V,X),d(U,X)-d(V,X)).
Rewrite(d(U*V,X),V*d(U,X)+U*d(V,X)).
Rewrite(d(U/V,X),(V*d(U,X)-U*d(V,X))/ V°2) ).
Rewrite(d(U"N,X),N*U"(N-1)*d(U, X)) - number(N).
Rewrite(d(log(U),X),d(U,X)/U).
Rewrite(d(sin(U),X),cos(U)*d(U,X)).
Rewrite(d(cos(U),X),-sin(U)*d(U,X)).
Rewrite(d(e"U,X),d(U,X)*e"U).

9.16 Onceyouunderstandhon Prologworks,theanswers easy:

solve(X,[X]) - goal(X).

solve(X,[X|P]) - successor(X,Y), solve(Y,P).

We could renderthis in Englishas “Given a start state,if it is a goal state,thenthe path
consistingof just the startstateis a solution. Otherwise find somesuccessostatesuchthat

thereis apathfrom the successaio thegoal;thenasolutionis the startstatefollowed by that
path’
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Noticethatsolve cannotonly beusedto find apathP thatis a solution,it canalsobe
usedto verify thata givenpathis a solution.

If youwantto addheuristics(or evenbreadth-firssearch)you needanexplicit queue.
The algorithmsbecomequite similar to the versionswritten in Lisp or Pythonor Java or in
pseudo-cod@n thebook.

9.17 This questiontestsboth the students understandingf resolutionandtheir ability to
think atahigh level aboutrelationsamongsetsof sentencesRecallthatresolutionallows one
to shav that K B = « by proving that K B A -« is inconsistentSupposehatin generathe
resolutionsystemis calledusingA sk (K B, «). Now we wantto shav thata givensentence,
say3 is valid or unsatisfiable.

A sentence’ is valid if it canbe shavn to betrue without additionalinformation. We
checkthis by calling Ask (K By, 3) whereK By is theemptyknowledgebase.

A sentenced thatis unsatisfiablas inconsistenby itself. Soif we the emptyknowl-
edgebaseagainandcall Ask (K By, —(3) theresolutionsystemwill attemptto derive a con-
tradiction startingfrom —— 3. If it cando so, thenit mustbe that ——3, and henceg, is
inconsistent.

9.18 Thisis aform of inferenceusedto shav thatAristotle’s syllogismscould not capture
all soundinferences.

a. Vo Horse(x) = Animal(x)
Va,h Horse(z) N HeadOf(h,x) = Jy Animal(y) N HeadO f(h,y)
b. A. =Horse(z) V Animal(z)
B. Horse(G)
C. HeadOf(H,Q)
D. = Animal(y) V ~HeadO f(H,y)
(Here A. comesfrom thefirst sentencén a. while the otherscomefrom the second.H
andG areSkolemconstants.)
c. Resolhe D andC to yield -~ Animal(G). Resole this with A to give —Horse(G).
Resole thiswith B to obtaina contradiction.

9.19 This exerciseteststhe studentsinderstandingf modelsandimplication.

a. (A) translatego “For every naturalnumberthereis someothernaturalnumberthatis
smallerthanor equalto it.” (B) translatedo “Thereis a particularnaturalnumberthat
is smallerthanor equalto ary naturalnumber

b. Yes,(A) is trueunderthis interpretation.You canalwayspick the numberitself for the
“someother’number

c. Yes, (B) is true underthis interpretation. You can pick O for the “particular natural
number

d. No, (A) doesnotlogically entail (B).

e. Yes,(B) logically entails(A).

f. Wewantto try to prove viaresolutionthat(A) entails(B). To dothis, we setour knowl-
edgebaseto consistof (A) andthe negationof (B), whichwe will call (-B), andtry to
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derive acontradiction Firstwe haveto convert (A) and(-B) to canonicaform. For (-B),
this involves moving the — in pastthe two quantifiers.For both sentencest involves
introducinga Skolemfunction:

(A) x> Fy(z)

(-B) ~Fa(y) = y
Now we cantry to resole thesewo togetherbut theoccurscheckrulesouttheunifica-
tion. It lookslike thesubstitutiorshouldbe {x/ F>(y), y/Fi(z)}, butthatis equivalent
to {z/Fs(y), y/Fi(F2(y))}, whichfails because is boundto anexpressioncontain-
ing y. Sotheresolutionfails, thereareno otherresolutionstepgo try, andtherefore(B)
doesnotfollow from (A).

g. To prove that (B) entails(A), we startwith a knowledgebasecontaining(B) andthe

negationof (A), whichwe will call (-A):

(-A) 1>y

(B) z > Fy(x)
Thistimetheresolutiongoesthrough with thesubstitution{x/ Fy, y/F»(F1)}, thereby
yielding F'alse, andproving that(B) entails(A).

9.20 Oneway of seeingthis s thatresolutionallows reasonindyy casesby which we can
prove C' by proving that either A or B is true, without knowing which one. With definite
clauseswe alwayshave a singlechainof inference for which we canfollow the chainand
instantiatevariables.

9.21 No. Part of the definition of algorithmis thatit mustterminate. Sincetherecanbe
an infinite numberof consequencesf a setof sentencesno algorithm cangeneratehem
all. Anotherway to seethattheansweris no is to rememberthat entailmentfor FOL is
semidecidablelf therewerean algorithmthatgenerateshe setof consequencesf a setof
sentence$, thenwhengiventhetaskof decidingif B is entailedby S, onecouldjust check
if B isinthegeneratedet.Butwe know thatthisis not possiblethereforegeneratinghe set
of sentencess impossible.
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KnowledgeRepresentation

10.1 Shootingthe wumpusmakesit dead,but thereare no actionsthat causeit to come
alive. Hencethe successestateaxiomfor Alive justhasthe secondclause:
Va,s Alive(Wumpus, Result(a,s)) < [Alive(x,y,s)
A=(a= Shoot A Has(Agent, Arrow, s)
AFacing(Agent, Wumpus, s))]
where Facing(a, b, s) is definedappropriatelyin termsof the locationsof a andb andthe
orientationof a. Possessionf the arraw is lost by shooting,and againthereis no way to
male it true:
Va,s Has(Agent, Arrow, Result(a,s)) <
[Has(Agent, Arrow, s) A (a # Shoot)]

10.2
Time(Sp,0)
Time(Result(seq, s),t) = Time(Result(]a|seq],s),t + 1)
Noticethattherecursiomeedsmo basecasebecauseave alreadyhave theaxiom
Result([],s) = s .

10.3 This questiontakesthe studentthroughthe initial stagesof developinga logical rep-
resentatioror actionsthatincorporatesnoreandmorerealism.Implementingthereasoning
tasksin atheorem-preer is alsoa goodidea. Althoughthe useof logical reasoningor the
initial task—findinga route on a graph—mayseemlike overkill, the studentshouldbe im-
pressedhatwe cankeepmakingthe situationmorecomplicatedsimply by describingthose
addedcomplicationswith no additionsto thereasoningystem.
a. At(Robot, Arad, Sy).
b. 3s At(Robot, Bucharest,s).
c. Thesuccessestateaxiomshouldbe mechanicaby now. Va, z,y, s :
At(Robot,y, Result(a,s)) < [(a=Go(x,y)
ADirect Route(x,y) A At(Robot, z, s))
vV  (At(Robot, y, s)
A=(3z a=Goly,z) Az #y))]

59
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d. To representhe amountof fuel the robot hasin a given situation, use the function
Fuel(Robot, s). Let Distance(x,y) denotethe distancebetweercitiesz andy, mea-
suredin unitsof fuel consumptionLet Full beaconstantlenotingthe fuel capacityof
thetank.

e. The initial situationis describedby At(Robot, Arad, Sy) N Fuel(Robot, s) = Full.

The above axiom for locationis extendedas follows (note that we do not say what
happensf therobotrunsoutof gas).Va,z,y,s :

At(Robot,y, Result(a,s)) < [(a=Go(z,y)
ADirect Route(x,y) N At(Robot, x, s)
ADistance(z,y) < Fuel(Robot, s))
vV (At(Robot,y, s)
A3z a=Go(y,z) Nz #y))]
Fuel(Robot, Result(a,s))=f < [(a=Go(z,y)
ADirect Route(x,y) A At(Robot, x, s)
ADistance(z,y) < Fuel(Robot, s)
Af = Fuel(Robot,s) — Distance(x,y))
vV (f = Fuel(Robot, s)
A=(Fv,w a=Go(v,w) ANv # w))]

f. Thesimplestway to extendthe representatiois to addthe predicateGasStation(x),
which is true of cities with gasstations. The Fillup actionis describedby adding
anotherclauseto the abose axiomfor Fuel, sayingthat f = F'ull whena = FillUp.

10.4 This questionwasinadwertentlyleft in the exercisesafter the correspondingnaterial
wasexcisedfrom the chapter Futureprintingsmay omit or replacethis exercise.

10.5 Remembethatwe definedsubstanceso that Water is a catgory whoseelements
areall thosethingsof which onemight say“it' s water” Onetricky partis thatthe English
languagds ambiguous.Onesenseof theword “water” includesice (“that’s frozenwater”),
while anothersenseexcludesit: (“that’'s not water—it's ice”). The sentencefiereseemto
usethefirst sensesowe will stick with that. It is thesensedhatis roughly synorymouswith
H>0.

Theothertricky partis thatwe aredealingwith objectsthatchange(freezeandmelt)
over time. Thus,it won't do to sayw € Liquid, becausav (a massof water) might be a
liquid at onetime anda solid at another For simplicity, we will usea situationcalculus
representationwith sentencesuchasT'(w € Liquid, s). Therearemary possiblecorrect
answergo eachof these. The key thing is to be consistenin the way that informationis
representedr-or example,do not use Liquid asa predicateon objectsif Water is usedasa
substanceateyory.

a. “Wateris a liquid between0O and 100 degrees. We will translatethis as “For ary
waterandary situationthe wateris liquid iff andonly if thewaters temperaturén the
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situationis betweerD and100centigradé.

Yw,s weWater =
(Centigrade(0) < Temperature(w, s) < Centigrade(100)) <
T'(w € Liquid, s)
b. “Waterboils at 100 degrees. It is a good ideahereto do sometool-tuilding. On
page243 we used Melting Point asa predicateapplyingto individual instancesof
a substance Here,we will defineSBoilingPoint to denotethe boiling point of all
instance®f asubstanceThebasicmeaningof boiling is thatinstance®f thesubstance
becomegaseousbore theboiling point:

S Boiling Point(c,bp) <
Vr,s x€c =
(Vt T(Temperature(x,t),s) Nt >bp = T(x € Gas,s))

Thenwe needonly say S Boiling Point(W ater, Centigrade(100)).

¢. “The waterin Johns waterbottleis frozen’

Wewill usetheconstantVow to representhesituationin whichthissentencéolds.
Notethatit is easyto make mistalesin which oneassertghatonly someof the water
in thebottleis frozen.

3b Yw we Water ANbe WaterBottles N Has(John,b, Now)
A Inside(w,b, Now) = (w € Solid, Now)

d. “Perrieris akind of water”
Perrier C Water

e. “JohnhasPerrierin his waterbottle”

3b Yw we Water Abe Water Bottles A Has(John, b, Now)
A Inside(w,b, Now) = w € Perrier

f. “All liquids have afreezingpoint”
Presumablywhat this meansis that all substancethatareliquid at room temper
aturehave a freezingpoint. If we use R1 LiquidSubstance to denotethis classof
substanceghenwe have

Ve RT LiquidSubstance(c) = 3t SFreezingPoint(c,t)

whereS FreezingPoint is definedsimilarly to S Boiling Point. Notethatthis state-
mentis falsein therealworld: we caninventcateyoriessuchas“blue liquid” whichdo
not have a uniquefreezingpoint. An interestingexercisewould be to definea “pure”

substancasoneall of whoseinstance$iave the samechemicalcomposition.

g. “A liter of waterweighsmorethanalliter of alcohol’
Vw,a weWater A a€ Alcohol N Volume(w) = Liters(1)
AVolume(a) = Liters(1) = Mass(w) > Mass(a)

10.6 Thisis afairly straightforvard exercisethatcanbe donein directanalogyto the cor
respondinglefinitionsfor sets.
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a. ExhaustivePartDecomposition holds betweena setof partsand a whole, saying
thatanything thatis a partof thewhole mustbea partof oneof the setof parts.

Vs,w ExhaustivePartDecomposition(s,w) <
(Vp PartOf(p,w) = 3pz pa€s A PartOf(p,p2))

b. PartPartition holdsbetweera setof partsandawholewhenthe setis disjointandis
anexhaustve decomposition.

Vs,w PartPartition(s,w) <
PartwiseDisjoint(s) A\ Exhaustive Part Decomposition(s,w)

c. A setof partsis PartwiseDisjoint if whenyoutake ary two partsfrom the set,there
is nothingthatis a partof bothparts.

Vs PartwiseDisjoint(s) <
Vp1,p2 p1ESAp2EsApr #p2 = —3ps PartO f(ps. p1) A PartO f(ps, p2)

It is not the casethat PartPartition(s, BunchOf(s)) for ary s. A sets may consistof
physically overlappingobjects,suchas a handand the fingersof the hand. In that case,
BunchOf (s) is equalto the hand,but s is not a partition of it. We needto ensurethatthe
elementf s arepartwisedisjoint:

Vs PartwiseDisjoint(s) = PartPartition(s, BunchOf(s)) .

10.7 For aninstancei of a substance with price per poundc andweightn pounds,the
priceof ¢ will ben x ¢, orin otherwords:

Vi,s,n,c i €s A PricePer(s, Pounds(1)) = $(c) A Weight(i) = Pounds(n)
= Price(i) =$(n x c)
If bis the setof tomatoesn a bag,then BunchO f(b) is the compositeobjectconsistingof
all thetomatoesn thebag. Thenwe have

Vi,s,n,c b C s A PricePer(s, Pounds(1)) = $(c)
N Weight(BunchO f (b)) = Pounds(n)
= Price(BunchOf(b))=$(n x c)
10.8 Inthescheman thechapteracornversionaxiomlookslike this:
Va Centimeters(2.54 x x) = Inches(x) .

“50 dollars”is just $(50), the nameof anabstracimonetaryquantity For ary measurdunc-
tion suchas$, we canextendthe useof > asfollows:

Vz,y >y = 3(z) > $(y) .
Sincethe conversionaxiomfor dollarsandcentshas
Vz Cents(100 x z)=$(x)

it followsimmediatelythat$(50) > Cents(50).
In the new schemewe mustintroduceobjectswhoselengthsarecorverted:

YV Centimeters(Length(x)) = 2.54 x Inches(Length(z)) .
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Thereis no obviousway to referdirectly to “50 dollars” or its relationto “50 cents”. Again,
we mustintroduceobjectswhosemonetaryalueis 50 dollarsor 50 cents:

Vz,y $(Value(z)) =50 A Cents(Value(y)) =50 = $(Value(z)) > $(Value(y))

10.9 Wewill defineafunction ExchangeRate thattakesthreearguments:a sourcecur
reng/, atime intenal, anda target curreng. It returnsa numberrepresentinghe exchange
rate.For example,

ExchangeRate(U S Dollar, 17Feb1995, DanishKrone) = 5.8677

meansthat you canget5.8677Krone for a dollar on Februaryl7th. This wasthe Federal
Resere banks Spotexchangeateasof 10:00AM. It is themid-pointbetweerthebuyingand
sellingrates.A morecompleteanalysismight wantto include buying andselling rates,and
the possibility for mary differentexchangesaswell asthe commissionsaandfeesinvolved.
Note alsothedistinctionbetweera curreny suchaslU S Dollar anda unit of measurement,
suchasis usedin the expression/ S Dollars(1.99).

10.10 Anotherfun problemfor clearthinkers:

a. RemembethatT'(c, 1) meanghatsomeeventof type ¢ occursthroughoutheintenal

i

Ve,i T(e,i) < (e e€cA During(i,e))
Using SubFvent asthequestiorrequestss notsoeasy becausdheinterval subsumes
all eventswithin it.

b. A Both(p,q) eventis onein which both p andgq occurthroughoutthe durationof the
event. Thereis only oneway this canhappenbothp andq have to persistfor thewhole
interval. Anotherway to sayit:

Vi,j During(j,i) = [T(p,j) AT(q,j)]
is logically equialentto

[Vi,j During(j.1) = T(p,j)] A[Vi.j During(j,i) = T(q,])]
whereaghe sameequialencefails to hold for disjunction(seethenext part).

c. T(OneOf(p,q),i) meanghatap eventoccursthroughout or ag eventdoes:

Vp,q,i T(OneOf(p,q),i) <
[(Vj During(j,i) = T(p.j))V (Vj During(j.i) = T(q,]))] -
On the otherhand, T'( Either(p, q), i) holdsif, atevery pointin i, eitherap oragq is
happening:
Vp,q,i T(OneOf(p,q),i) < (Vj During(j,i) = (T(p,j)VT(q,5))) -

d. T(Never(p),i) shouldmeanthatthereis never an event of type p goingon in ary
subinteral of ¢, while T'(Not(p), i) shouldmeanthatthereis no singleeventof typep
thatspansll of 7, eventhoughtheremay be oneor moreeventsof typep for subinter
valsof i:

Vp,i T(Never(p),i) < —3j During(j,i) ANT(p,j)
Vp.i T(Not(p),i) < —T(p,i)
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Onecould alsoaskstudentgo prove two versionsof de Morgan’s laws usingthe two
typesof negation,eachwith its correspondindype of disjunction.

10.11 Any objectz is anevent,and Location(z) is the eventthatfor every subinteral of
time, refersto the placewherex is. For example, Location(Peter) is the complex event
consistingof hishomefrom midnightto about9:00today thenvariouspartsof theroad,then
his office from 10:00to 1:30,andsoon. To saythataneventis fixedis to saythatarny two
momentf theeventhave the samespatialextent:
Ve Fizred(e) <
(Va,b a€ Moments A be Moments A Subevent(a,e) N Subevent(b, e)
= Spatial Extent(a) = Spatial Extent (b))

10.12 Wewill omit universallyquantifiedvariables:

Before(i,j) < 3k Meet(i, k) N Meet(k,j)

After(i,j) < Before(j,1)

During(i,j) < 3Jk,m Meet(Start(j),k) N Meet(k,1)
AMeet(i,m) A Meet(m, End(j))

Overlap(i,j) < Ik During(k,i) A During(k, j)

10.13
Link(urly, urly) <
InTag(“a”, str, GetPage(utly)) A In(*href ="" +urly + """, str)
LinkText(urly, urls, text) <
InTag(“a”, str, GetPage(utly)) A In(*href =" +urly +""" + text, str)

10.14 Hereis aninitial sketchof oneapproach(Othersarepossible.)A givenobjectto be
purchasednayrequir someadditionalparts(e.g.,batteries}o be functional,andtheremay
alsobe optional extras. We canrepresentequirementasa relationbetweenan individual
objectanda classof objects,qualifiedby the numberof objectsrequired:

Va x € Coolpiz995DigitalCamera = Requires(x, AABattery, 4) .

We alsoneedto know thata particularobjectis compatible,.e., fills a givenrole appropri-
ately For example,

Vz,y x € Coolpiz995Digital Camera Ny € DuracellA A Battery
= Compatible(y, z, AABattery)

Thenit is relatively easyto testwhetherthe setof orderedobjectscontainscompatiblere-
quiredobjectsfor eachobject.

10.15 Pluralscanbehandledby a Plural relationbetweerstrings,e.g.,

" w

Plural(“ computer”, " computers”)
plusanassertiorthatthe plural (or singular)of anameis alsoa namefor the samecateyory:

Ve, s1,82 Name(sy,c) A (Plural(sy, s2) V Plural(se,s1)) = Name(sa,c)
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Conjunctionanbe handledby sayingthatary conjunctionstringis a namefor a cateyory if
oneof the conjunctsis a namefor the cateory:

Ve, s,s9 Conjunct(se,s) A Name(sa,c¢) = Name(s,c)

where Conjunct is definedappropriatelyin termsof concatenation.Probablyit would be
betterto redefineRelevantCategoryName instead.

10.16 Chapter22 explainshow to uselogic to parsetext stringsandextractsemantidnfor-
mation. The outcomeof this processs a definition of whatobjectsareacceptabldo theuser
for a specificshoppingrequestihis allows the agentto go out andfind offers matchingthe
users requirementsWe omit the full definitionof the agentalthougha skeletonmayappear
onthe AIMA projectwebpages.

10.17 Hereis asimpleversionof theanswerjt canbeelaboratecdinfinitum Lettheterm
Buy(b, x, s, p) denotethe eventcateory of buyerb buying objectx from sellers for pricep.
We wantto sayaboutit thatb transfergshemoney to s, ands transfersownershipof x to b.
T(Buy(b,x,s,p),i) <
T(Owns(s, ), Start(i))A
dm Money(m) A p=Value(m) A T(Owns(b,m), Start(i))\
T(Owns(b,x), End(i)) A T(Owns(s,m), End(i))

10.18 Let T'rade(b,z,a,y) denotethe classof eventswherepersonb tradesobjecty to
persora for objecta:
T(Trade(b,z,a,y),i) <
T(Owns(b,y), Start(i)) A T(Owns(a, x), Start(i))A
T(Owns(b,x), End(i)) AN T(Owns(a,y), End(i))
Now theonly tricky partaboutdefiningbuying in termsof tradingis in distinguishinga price
(ameasuremenfyom anactualcollectionof money.

T(Buy(b,z,a,p),i) < Im Money(m) A Trade(b,z,a,m) A Value(m)=p

10.19 Therearemary possibleapproacheso this exercise. Theideais for the studentdo
think aboutdoing knowledgerepresentatioffor real; to considera hostof complicationsand
find someway to representhefactsaboutthem.Someof the key pointsare:

e Ownershipoccursovertime, sowe needeithera situation-calculusr interval-calculus
approach.

e Therecanbe joint ownershipandcorporateownership. This suggestthe owneris a
groupof somekind, whichin thesimplecaseis a groupof oneperson.

e Ownershipprovidescertainrights: to use,to resell,to give away, etc. Much of thisis
outsidethe definition of ownershipper se but a goodanswerwould at leastconsider
how muchof thisto represent.

e Own canown abstracbbligationsaswell asconcreteobjects. This is theideabehind
the futuresmarket, and also behindbanks: whenyou deposita dollar in a bank,you
aregiving up ownershipof that particulardollar in exchangeor ownershipof theright
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to withdrav anotherdollar later (Or it could coincidentallyturn out to be the exact
samedollar) Leasesandthe like work this way aswell. This is tricky in termsof
representationbecausdt meanswe have to reify transactionsf this kind. That s,
Withdraw(person, money, bank, time) mustbeanobject,nota predicate.

10.20 Mostschooldistinguishbetweerrequiredcoursesandelectedcoursesandbetween
coursesnsidethedepartmenandoutsidethe departmentFor eachof thesetheremaybere-

quirementgor the numberof coursesthe numberof units(sincedifferentcoursesnaycarry

differentnumbersof units),andon gradepoint averagesWe shav our chosernvocalulary by

example:

e Studentlones’completecourseof studyfor thewholecollegecareerconsistof Mathl,
CS1,CS2,CS3,CS21,CS33andCS34,andsomeothercourseutsidethe major.

Take(Jones,
(Mathl, EE1, Bio24, CS1,C52, C'S3, 021, C'S33, C'S34|others))

e Joneaneetgherequirement$or amajorin ComputerScience
Major(Jones, C'S)
e CoursedMathl,CS1,CS2,andCS3arerequiredfor a ComputerSciencemajor

Required({Mathl,CS1,CS2,CS3},CS)
Vs,d Required(s,d) <
(Vp Fothers Major(p,d) = Take(p,Union(s,others)))

o A studentmusttake atleast18 unitsin the CSdepartmento getadegreein CS.

Department(CS1)=CS A Department(Mathl) = Math A ...
Units(CS1) =3 AUnits(CS2)=4AN...
RequiredUnitsIn(18,CS,CS)
Vu,d RequiredUnitsIn(u,d) <
(Vp Is,others Major(p,d) = Take(p,Union(s,others))

N AllInDepartment(s,d) A TotalUnits(s) > u
Vs,d AllInDepartment(s,d) < (Ve c€s = Department(c)=d)
Ve TotalUnits({})=0
Ve, s TotalUnits({c|s})=Units(c) + TotalUnits(s)

Onecaneasilyimagineotherkinds of requirementsthesgust give you aflavor.

In this solutionwe took “over an extendedperiod” to meanthatwe shouldrecommend
a setof coursedo take, without schedulingthem on a semesteby-semestebasis. If you
wantedto do that, you would needadditionalinformation suchaswhencoursesaretaught,
whatis areasonableourseloadin a semesterandwhat coursesare prerequisitegor what
others.For example:

Taught(CS1, Fall)

Prerequisites({CS1,CS2},CS3)

TakeInSemester(Jones, Fall95,{ Mathl,CS1, Englishl, Historyl})

MazCoursesPerSemester(5)
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The problemwith finding the bestprogramof studyis in definingwhat bestmeansto the
student.lt is easyenoughto saythatall otherthingsbeingequal,oneprefersa goodteacher
to abadone,or aninterestingcourseto a boringone. But how do you decidewhich is best
whenonecoursehasa betterteacheiandis expectedo beeasierwhile analternatve is more
interestingand providesone morecredit? Chapterl6 usesutility theoryto addresghis. If
you canprovide away of weighingtheseelementsagainsteachother thenyou canchoosea
bestprogramof study;otherwiseyou canonly eliminatesomeprogramsasbeingworsethan
others,but cant pick anabsoluteébestone. Compleity is a further problem: witha general-
purposetheorem-preer it's hardto do muchmorethanenumeratdegal programsand pick
thebest.

10.21 This exerciseandthe following two are rathercompl«, perhapssuitablefor term
projects. At this point, we wantto strongly urge thatyou do assignsomeof theseexercises
(or oneslike them) to give your studentsa feeling of whatit is really like to do knowl-

edgerepresentationln general studentdind classificatiorhierarchiesasierthanotherrep-
resentatiortasks. A recenttwist is to compareones hierarchywith online onessuchas
yahoo.com .

10.22 Thisis themostinvolvedrepresentatioproblem.lt is suitablefor agroupprojectof
2 or 3 studentover the courseof atleast2 weeks.

10.23 Normally onewould assignl0.22in oneassignmentandthenwhenit is done,add
this exercise(posibly varying the questions).That way, the studentsseewhetherthey have
madesuficientgeneralizations theirinitial answerandgetexperiencewith deluggingand
modifying aknowledgebase.

10.24 In mary Al andPrologtextbooks,you will find it statedplainly thatimplications
sufiice for the implementatiorof inheritance.This is true in the logical but not the practical
sense.

a. Herearethreerules,writtenin Prolog. We actuallywould needmary moreclauseson
theright handsideto distinguishbetweerdifferentmodels differentoptions,etc.
worth(X,575) - year(X,1973), make(X,dodge), style(X,van).
worth(X,27000) - year(X,1994), make(X,lexus), style(X,sedan).
worth(X,5000) - year(X,1987), make(X,toyota), style(X,sedan).

Tofind thevalueof JB, givenadatabasewith year(jb,1973) ,make(jb,dodge)
andstyle(jb,van) wewouldcall thebackwardchainemwith thegoalworth(jb,D)
andreadthevaluefor D.

b. Thetime efficiengy of this queryis O(n), wheren in this caseis the 11,000entriesin
the Blue Book. A semanticnetwork with inheritancewould allow usto follow a link
from JB to 1973-dodge-van , andfrom thereto follow theworth slotto find the
dollarvaluein O(1) time.

¢. With forward chaining,assoonaswe aretold thethreefactsaboutJB, we addthe new
factworth(jb,575) . Thenwhenwe getthe queryworth(jb,D) ,itisO(1) to
find the answey assumingndexing on the predicateandfirst algument. This makes
logical inferenceseemjust like semanticnetworks exceptfor two things: the logical
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inferencedoesa hashtablelookup insteadof pointerfollowing, andlogical inference
explicitly storesworth statement$or eachindividual car, thuswastingspacef there
area lot of individual cars. (For this kind of application,however, we will probably
wantto consideronly afew individual cars,asopposedo the11,000differentmodels.)

d. If eachcatggory hasmary properties—foexample thespecification®f all thereplace-
mentpartsfor the vehicle—thenforward-chainingon the implicationswill alsobe an
impracticalway to figure out the price of avehicle.

e. If we have arule of thefollowing kind:
worth(X,D) - year-make-style(X,Yr,Mk,St),
year-make-style(Y,Yr,Mk,St), worth(Y,D).
togethemwith factsin the databas@boutsomeotherspecificvehicle of the sametype
as JB, thenthe queryworth(jb,D) will be solvedin O(1) time with appropriate
indexing, regardlesof how mary otherfactsareknown aboutthattype of vehicleand
regardlesof the numberof typesof vehicle.

10.25 Whencategyoriesarereified, they canhave propertiesasindividual objects(suchas
Cardinality andSupersets) thatdo notapplyto their elementsWithout thedistinctionbe-
tweenboxed andunbo»ed links, the sentenc&” ardinality(SingletonSets, 1) might mean
thatevery singletonsethasoneelementpor thattheresi only onesingletonset.



Solutionsfor Chapterll
Planning

11.1 Bothproblemsolver andplannerareconcernedvith gettingfrom a startstateto agoal
usinga setof definedoperationsr actions.But in planningwe openup therepresentatioof
statesgoals,andplans,whcihcallows for a wider variety of algorithmsthatdecomposé¢he
searclspace.

11.2 Thisis aneasyexercise,the point of which is to understandhat“applicable” means
satisfyingthe preconditions,and that a concreteaction instanceis one with the variables
replacedby constantsTheapplicableactionsare:

Fly(P,, JFK, SFO)
Fly(P,, JFK, JFK)
Fly(Py, SFO, JFK)
Fly(Py, SFO, SFO)

A minor point of this is that the action of flying nowvhere—fromone airport to itself—is
allowableby thedefinitionof Fly, andis applicable(if notuseful).

11.3 Fortheregularschemave have:

FlyPrecond(p, f,to,s) <
At(p, f,s) A Plane(p) A Airport(f) A Airport(to)
At(p, x, Result(a, s)) <
(At(p,z,s) A (a # Fly(p, f,z) V =~ FlyPrecond(p, f,x,s)))
V At(p, f,s) Na = Fly(p, f,x) N FlyPrecond(p, f,x, s)
Whenwe add Warped we get:
At(p, z, Result(a, s)) <
(At(p,z,s) A (a # Fly(p, f,z) A a # Teleport(p, f,x))
Va= Fly(p, f,z) N —FlyPrecond(p, f,z, s)
V a = Teleport(p, f,z) N =Teleport Precond(p, f,x, s)
V At(p, f,s) Na = Fly(p, f,x) N FlyPrecond(p, f,x, s)
V At(p, f,s) A a = Teleport(p, f,z) A Teleport Precond(p, f,x,s)

In generalwe (1) createdh Precond predicatdor eachaction,andthen,for eachfluent
suchas At, we createa predicatehatsaysthefluentkeepsits old valueif eitheranirrelevant
actionis taken, or anactionwhosepreconditionis not satisfied andit takeson a new value
accordingo theeffectsof arelevantactionif thatactions preconditionsaresatisfied.
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11.4 Thisexerciseis intendedasafairly easyexercisein describinga domain.lt is similar
to the Shaley problem(11.13),soyou shouldprobablyassignonly oneof thesetwo.

a. Theinitial stateis:
At(Monkey, A) A\ At(Bananas, B) A\ At(Box,C) A
Height(Monkey, Low) A Height(Box, Low) A\ Height(Bananas, High) A
Pushable(Box) A Climbable( Box)

b. Theactionsare:
Action(ACTION:Go(z,y), PRECOND: At(Monkey, x),
EFFECT: At(Monkey,y) N —~(At(Monkey,x)))
Action(ACTION: Push(b, z,y), PRECOND: At(Monkey,x) A Pushable(b),
EFFECT: At(b, y) N At(Monkey,y) A —At(b, z) A ~At(Monkey, x))
Action(ACTION:ClimbUp(b),
PRECOND: At(Monkey,x) A At(b, z) A Climbable(b),
EFFECT:On(Monkey, b) A ~Height(Monkey, High))
Action(ACTION:Grasp(b),
PRECOND: Height(Monkey, h) A Height(b, h)
N At(Monkey, z) N\ At(b, x),
EFFeCT: Have(Monkey, b))
Action(ACTION:ClimbDown(b),
PRECOND:On(Monkey,b) N Height(Monkey, High),
EFFECT: ~On(Monkey, b) A —Height(Monkey, High)
A Height(Monkey, Low)
Action(ACTION:UnGrasp(b), PRECOND: Have(Monkey, b),
EFFeCT: ~Have(M onkey, b))

c. In situationcalculus thegoalis a states suchthat:
Have(Monkey, Bananas, s) A (3z At(Box,z,sy) N At(Bozx,x,s))

In sTRIPS, we canonly talk aboutthegoalstate thereis noway of representinghefact
thattheremustbe somerelation(suchasequalityof locationof anobject)betweertwo
stateswithin the plan. Sothereis no way to representhis goal.

d. Actually, we did includethe Pushable precondition.Thisis anexampleof the qualifi-
cationproblem.

11.5 Only positwve literalsarerepresenteth a state.Sonot mentioninga literal is thesame
ashaving it be neggative.

11.6 Goalsand preconditionscanonly be positive literals. So a negative effect canonly
make it harderto achieve agoal(or apreconditiorto anactionthatachiezesthegoal). There-
fore, eliminatingall negative effectsonly makesa problemeasier

11.7

a. It is feasibleto usebidirectionalsearch,becausat is possibleto invert the actions.
However, most of thosewho have tried have concludedthat biderectionalsearchis
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generallynot efficient, becausdhe forward and backward searchesendto misseach
other Thisis dueto thelarge statespace A few plannerssuchasProbpiGy (Fink and
Blythe, 1998)have usedbidirectionalsearch.

b. Again, this is feasiblebut not popular PrRODIGY is in fact (in part) a partial-order
planner:in theforward directionit keepsatotal-orderplan (equvalentto a state-based
planner)andin thebackwarddirectionit maintainsatree-structuregartial-ordemplan.

c. An action A canbe addedif all the preconditionsof A have beenachiered by other
stepsn theplan. When A is addedprderingconstraint@andcausalinks arealsoadded
to malke surethat A appearsfterall the actionsthatenabledt andthata precondition
is notdisestablishethefore A canbe executed.Thealgorithmdoessearchforward, but
it is notthesameasforwardstate-spacsearctbecausé canexploreactionsin parallel
whenthey don't conflict. For example,if A hasthreepreconditionghatcanbesatisfied
by the non-conflictingactionsB, C, and D, thenthe solutionplan canbe represented
asa singlepartial-ordermlan, while a state-spacelannerwould have to considerall 3!
permutation®f B, C', andD.

d. Yes, this is one possibleway of implementinga bidirectionalsearchin the spaceof
partial-ordemplans.

11.8 Thedrawing is actuallyrathercomple, anddoesnt fit well on this page. Somekey

thingsto watchout for: (1) Both Fly and Load actionsarepossibleat level Ay; the planes
canstill fly whenempty (2) Negative effectsappeatin S1, andaremutex with their positive

counterparts.

11.9
a. Literalsarepersistentsoif it doesnotappeaiin thefinal level, it never will andnever

did, andthuscannotbeachieved.

b. In aserialplanninggraph,only oneactioncanoccurpertime step. Thelevel cost(the
level atwhich a literal first appearsjhusrepresentshe minimumnumberof actionsin
aplanthatmight possiblyachieve theliteral.

11.10 A forwardstate-spacplannemaintainsa partialplanthatis a strictlinearsequence
of actions;the plan refinementoperatoris to addan applicableactionto the endof the se-
guenceupdatingliteralsaccordingto theactions effects.

A backwvard state-spacelannermaintainsa partial planthatis a reversedsequencef
actions;the refinementbperatoris to addanactionto the beginning of the sequenceaslong
astheactions effectsarecompatiblewith the stateat the beginning of the sequence.

11.11 Theinitial stateis:

On(B,Table) N On(C, A) A On(A,Table) A Clear(B) A Clear(C')
Thegoalis:

On(A, B) AOn(B,C)

Firstwe’'ll explainwhy it is ananomalyfor anoninterlesed planner Therearetwo subgoals;
supposewe decideto work on On(A, B) first. We canclearC off of A andthenmove A
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onto B. Butthenthereis noway to achiere On(B, C') without undoingthe work we have
done.Similarly, if we work onthe subgoalOn (B, C) first we canimmediatelyachieve it in
onestep,but thenwe have to undoit to get A on B.

Now we’ll shav how thingswork out with aninterleaved plannersuchasPOP. Since
On(A, B) isn't truein theinitial state thereis only onewayto achieve it: Move(A, z, B),
for somez. Similarly, we alsoneeda Move(B, z',C) step,for somez’. Now let’s look
atthe Move(A, z, B) step. We needto achieve its preconditionClear(A). We could do
that eitherwith Move(b, A,y) or with MoveT oT able(b, A). Let's assumene choosethe
latter Now if we bindb to C, thenall of the preconditiondor thestepMoveT 0T able(C, A)
aretruein theinitial state,andwe canaddcausallinks to them. We thennoticethatthere
is a threat: the Move(B,2',C) stepthreatenghe Clear(C') conditionthatis requiredby
the MoveT oTable step. We canresole the threatby ordering Move(B, ', C) after the
MoveT oTable step.Finally, noticethatall the preconditiongor Move(B, z’, C') aretruein
theinitial state. Thus,we have a completeplanwith all the preconditionssatisfied.It turns
outthereis awell-orderingof thethreesteps:

MoveToTable(C, A)
Move(B,Table,C')
Move(A,Table, B)

11.12 Theactionswe needarethefour from page346:

Action(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: Right ShoeOn)
Action(ACTION: RightSock, EFFECT: RightSockOn)

Action(ACTION: Le ftShoe, PRECOND: Le ft SockOn, EFFECT: Le ft ShoeOn)
Action(ACTION: Le ftSock, EFFECT: Le ft SockOn)

Onesolutionfound by GRAPHPLAN is to executeRightSok andLeftSo& in the first time
step,andthenRightShoeandLeftShodn the second.
Now we addthefollowing two actions(neitherof which haspreconditions):

Action(ACTION: Hat, EFFECT: HatOn)
Action(AcTION:Coat, EFFECT: CoatOn)

The partial-ordermlanis shavn in FigureS11.1.We saw on page348thatthereare6 total-
orderplansfor the shoes/sockproblem. Eachof theseplanshasfour steps,andthusfive
arron links. Thenext step,Hat couldgo atarny oneof thesefive locationsgiving us6 x 5 =
30 total-orderplans,eachwith five stepsandsix links. Thenthefinal step,Coat cangoin
ary oneof these6 positions giving us 30 x 6 = 180 total-orderplans.

11.13 Theactionsarequitesimilarto themonkey andbanannagroblem—youwshouldprob-



73

Start
Left Right
Hat Sock Sock Coat

FigureS11.1 Partial-orderplanincludinga hatandcoat,for Exercisel1.1.

ably assignonly oneof thesetwo problems.Theactionsare:

Action(ACTION:Go(z,y), PRECOND: At(Shakey,z) A In(z,r) A In(y,r),
EFFeCT: At(Shakey,y) A ~(At(Shakey,x)))
Action(ACTION: Push(b, x,y), PRECOND: At(Shakey, z) A Pushable(b),
EFFECT: At(b,y) A At(Shakey,y) A —At(b,z) N ~At(Shakey,x))
Action(ACTION:ClimbUp(b), PRECOND: At(Shakey,x) N\ At(b,x) A Climbable(b)
EFFECT: On(Shakey,b) A =On(Shakey, Floor))
Action(ACTION:ClimbDown(b), PRECOND:On(Shakey, b),
EFFECT:On(Shakey, Floor) A =On(Shakey,b))
Action(ACTION:TurnOn(l), PRECOND:On(Shakey, b) A At(Shakey, z) N At(l, x),
EFFECT: T'urnedOn(l))
Action(ACTION:TurnO f f(1), PRECOND:On(Shakey,b) A At(Shakey, z) N At(l, x),
EFFECT: =T'urnedOn(l))

’

Theinitial stateis:

A In(Doory, Room1) A\ In
In(Switchy, Rooms) A In(Doors, Rooms) A In
(

( ) Doory, Corridor

( )
In(Switchy, Rooms) A\ In(Doors, Rooms) A In

( )

(

Doors, Corridor
Doors, Corridor
Doory, Corridor

In(Switchy, Roomq

— — — —
A~ N AN N
— — — —

In(Switchy, Roomy4) A In(Doory, Roomys) A In
In(Shakey, Rooms) A At(Shakey, Xg)
In(Box1, Room1) A In(Boxa, Roomy) A In(Boxs, Room1) A In(Boxy, Room;)
Climbable(Boz1) A Climbable( Boxs) A Climbable( Boxs) A Climbable( Boxy)
Pushable(Bozxy1) A Pushable(Boxs) A Pushable(Boxs) A Pushable(Box,)
At(BO:L‘l, Xl) VAN At(BOIQ, XQ) VAN At(BO.CL‘g, Xg) VAN At(BOI4, X4)
TurnwdOn(Switchy) A TurnedOn(Switchy)
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A planto achiere thegoalis:

Go(Xg, Doors)

Go(Doors, Door)
Go(Doory, Xs)

Push(Boxa, Xo, Door)
Push(Boxg, Doory, Doors)
Push(Boxa, Doory, Switchs)

11.14 GRAPHPLAN is apropositionalalgorithm,so, justaswe couldsolve certainFOL by
translatingheminto propositionalogic, we cansolwe certainsituationcalculusproblemsby
translatingnto propositionaform. Thetrick is how exactly to do that.

TheFinishactionin POPplanninghasasits preconditionghe goalstate.We cancreate
a Finish actionfor GRAPHPLAN, andgive it the effect Done In this casetherewould be a
finite numberof instantiationf the Finish action,andwe would reasorwith them.

11.15 (Figure(11.1)is alittle hardto find—it is on page403.)

a. Thepointof thisexerciseis to considemwhathappensvhenaplannercomesup with an
impossibleaction,suchasflying a planefrom someplacevhereit is not. For example,
supposeP; is at JFK andwe give it the actionof flying from Bangaloreto Brisbane.
By (11.1), P, wasat JFK anddid notfly away, soit is still there.

b. Yes,theplanwill still work, becausehefluentshold from the situationbeforeaninap-
plicableactionto the stateafterward, sothe plancancontinuefrom thatstate.

c. It dependon the detailsof how the axiomsarewritten. Our axiomswereof the form
Actionis possible = Rule Thistells us nothingaboutthe casewherethe actionis
not possible.We would needto reformulatethe axioms,or addadditionalonesto say
whathappensvhentheactionis not possible.

11.16 A preconditionaxiom is of theform
Fly(Py, JFK,SFO)? = At(Py, JFK)°.

ThereareO(T x |P| x |A|?) of theseaxioms,whereT is the numberof time steps,|P| is
the numberof planesand|A| is the numberof airports.More generally if therearen action
schemataf maximumarity k, with |O| objectsthenthereareO(n x T x |O|F) axioms.

With symbol-splitting,we don't have to describesachspecificflight, we needonly say
thatfor aplaneto fly anywhee, it mustbe atthe startairport. Thatis,

Fly;(P)° A Flyo(JFK)? = At(Py, JFK)°
More generallyif therearen actionschemataf maximumarity &, with |O| objectsandeach
preconditionaxiom dependson just two of the agumentsthenthereareO(n x T x |O|?)
axioms,for aspeedupf O(|O|*~2).

An action exclusionaxiom is of theform

~(Fly(Py, JFK, SFO)° A Fly(Py, JFK, LAX)").

With the notationusedabove, thereare O(T" x | P| x | A]?) axiomsfor Fly. More generally
therecanbeupto O(n x T x |O|?*) axioms.
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With symbol-splitting,we wouldnt gain anything for the F'ly axioms,but we would

gainin casesvherethereis anothervariablethatis notrelevantto the exclusion.
11.17

a. Yes,this will find a planwheneer the normal SATPLAN finds a plan no longerthan

b.

Tmaa: .

No.

c. Thereis no simpleandclearway to induceWALKSAT to find shortsolutions because

it hasno notionof thelengthof a plan—thefactthatthe problemis a planningproblem
is partof the encodingnot partof WALKSAT. But if we arewilling to do somerather
brutalsuigery on WALK SAT, we canachie/e shortersolutionsby identifying the vari-

ablesthatrepresentctionsand (1) tendingto randomlyinitialize the actionvariables
(particularlythe laterones)to false,and(1) preferingto randomlyflip anearlieraction
variableratherthanalaterone.
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PlanningandActing in theReal
World

121

a. Duration(d) is eligibleto beaneffectbecaus¢heactiondoeshave theeffectof moving
the clock by d. It is possiblethat the durationdependson the actionoutcome,so if
disjunctive or conditionaleffects are usedtheremustbe a way to associatelurations
with outcomeswhich is most easily doneby putting the durationinto the outcome
expression.

b. The STRIPS modelassumeshatactionsaretime pointscharacterizednly by their pre-
conditionsandeffects. Evenif anactionoccupiesaresourcethathasno effect onthe
outcomestate(asexplainedon page420). Therefore we mustextendthe STRriPs for-
malism.We coulddothis by treatinga RESOURCE: effectdifferentlyfrom othereffects,
but the differenceis sufiiciently large thatit makesmoresensdo treatit separately

12.2 Thebasicideahereis to recordthe initial resourcdevel in the preconditionandthe
changen resourcdevel in the effect of eachaction.

a. Let Screws(s) denotethe factthatthereare s scravs. We needto add Screws(100)
to theinitial state,andadda fourth agumentto the Engine predicateindicatingthe
numberof scravsrequired—i.e. Engine(E1, C1, 30,40) andEngine(Esy, Ca, 60, 50).
WeaddScrews(sg) to thepreconditiomof Add Engine andadds asafourthagument
of the Engine literal. ThenaddScrews(sg — s) to theeffectof Add Engine.

b. A simplesolutionis to saythatary actionthat consumes resources potentiallyin
conflictwith ary causalink protectingthe sameresource.

c. The plannercankeeptrack of the resourcerequirement®f actionsaddedto the plan
andbacktrackwheneer thetotal usageaxceedsheinitial amount.

12.3 Thereis awide rangeof possibleanswergo this question.Theimportantpointis that
studentsunderstandvhatconstitutesa correctimplementatiorof anaction: asmentionecbn
page424,it mustbe a consistenplanwhereall the preconditionsandeffectsareaccounted
for. Sothefirst thing we needis to decideon the preconditionsandeffectsof the high-level
actions. For GetRermit, assumethe preconditionis owning land, andthe effect is having a
permitfor that pieceof land. For HireBuilder, the preconditionis having the ability to pay
andtheeffectis having a signedcontractin hand.

76
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Onepossibledecompositiorfor GetRermit is the three-steequencéetRermitForm,
FillOutForm, and GetFormAppoved Thereis a causallink with the condition Haveform
betweerthefirst two, andonewith the conditionHaveCompletedi¥m betweerthelasttwo.

Finally, the GetFormAppovedstephasthe effect HaveRermit Thisis avalid decomposition.

For HireBuilder, supposave choosdhethree-stepequencintervievBuilders, Choose
Builder, andSignContact ThislaststephasthepreconditionAbleToPayandtheeffectHave-
ContractinHand Therearealsocausallinks betweerthe substepsbut they dont affect the
correctnessf thedecomposition.

12.4 Considerthe problemof building two adjacentwvalls of the house.Mostly thesesub-
plansareindependentyut they mustsharethe stepof puttingup acommonpostatthecorner
of thetwo walls. If thatstepwasnot sharedwe would endup with an extra post,andtwo
unattacheavalls.

Notethattasksareoftendecomposedpecificallysoasto minimizetheamountof step
sharing. For example,one could decomposéhe housebuilding taskinto subtasksuchas
“walls” and“floors” However, realcontractorglont doit thatway. Insteadthey have “rough
walls” and“rough floors” stepsfollowed by a “finishing” step.

12.5 In the HTN view, the spaceof possibledecompositiongnay constrainthe allowable
solutions,eliminating somepossiblesequencesf primitive actions. For example,the de-
compositionof the LATONYRoundfip actioncanstipulatethatthe agentshouldgo to New
York. In asimpleSTRIPSformulationwherethe startandgoalstatesarethe sametheempty
planis a solution. We cangetaroundthis problemby rethinkingthe goal description. The
goalstateis not At(LA), but At(LA) A Visited(NY). We addVisited(y) asan effect of
Fly(z,y). Then,thesolutionmustbeatrip thatincludesNew York. Thereremaingheprob-
lem of preventingthe STRIPSplanfrom including otherstopson its itinerary; fixing this is
muchmoredifficult becaus@egatedgoalsarenot allowed.

12.6 Supposeve have a STRIPS actiondescriptionfor a with preconditionp andeffect q.

The"action” tobedecomposets Achieve(q). Thedecompositiomastwo steps:Achieve(p)

and a. This can be extendedin the obvious way for conjunctve effects and precondi-
tions.

12.7 Weneedoneaction,Assign, whichassignghevaluein thesourceregister(or variable
if you prefer but the term “register” makesit clearerthat we are dealingwith a physical
location)sr to the destinatiorregisterdr:

Action(ACTION: Assign(dr, sr),
PRECOND: Register(dr) A Register(sr) A Value(dr,dv) A Value(sr, sv),
EFFeCT: Value(dr, sv) A =V alue(dr, dv))

Now supposeve startin aninitial statewith Register(R1)ARegister(Ro) AV alue(Ry, Vi)A
Value(Rq, Va) andwe have thegoal Value(R;1, Va) A Value(Rg, V7). Unfortunatelythere
is noway to solwe this asis. We eitherneedto addanexplicit Register(Rs) conditionto the
initial state,or we needa way to createnew registers.Thatcouldbe donewith anactionfor
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allocatinga new register:

Action(ACTION: Allocate(r),
EFFECT: Register(r))

Thenthefollowing sequencef stepsconstituesavalid plan:

Allocate(R3)

Assign(Rs, R1)
Assign(Ry, Rs)
Assign(Rs, Ry)

12.8 Forthefirst casewhereoneinstanceof actionschema is in the plan,thereformula-
tion is correct,in thesensdhata solutionfor theoriginal disjunctive formulationis a solution
for the new formulationandviceversa For the secondcase wheremorethanoneinstance
of theactionschemanay occur thereformulationis incorrect.It assumeshatthe outcomes
of the instancesare governedby a single hiddenvariable,so thatif, for example, P is the
outcomeof oneinstancdt mustalsobetheoutcomeof theother It is possiblethata solution
for thereformulatedcasewill fail in the original formulation.

12.9 With unboundedndeterminay, the setof possibleeffectsfor eachactionis unknavn
or too large to be enumerated Hence,the spaceof possibleactionssequencesequiredto
handleall theseeventualitiesis fartoo largeto consider

12.10 Using the seconddefinition of Clear in the chapter—namely thatthereis a clear
spacdor ablock—theonly changds thatthe destinatiorremainsclearif it is thetable:

Action(Move(b, z,y),
PRECOND:On(b, z) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(xz) A —=On(b,z) A (Wheny # Table: =Clear(y)))

12.11 LetCleanH betrueiff therobot's currentsquards cleanandCleanO betrueiff the
othersquares clean.ThenSuck is characterizedy

Action(Suck, PRECOND:, EFFECT: CleanH )
Unfortunately moving affectsthesenew literals! For Le ft we have

Action(Left, PRECOND: ALR,
EFFeCT: AtL A = AtR Awhen Clean H: CleanO A when CleanO: Clean H
Awhen—=CleanO: =CleanH N when—CleanH: =CleanO)

with thedualfor Right.

12.12 Herewe borrav from thelastdescriptionof the Le ft on page433:

Action(Suck, PRECOND:,
EFFeCT: (When AtL: CleanL vV (whenCleanL: =Cleanl))
A (when AtR: CleanR V (when CleanR: =CleanR)))

12.13 Themainthingto noticehereis thatthevacuumcleanemovesrepeatedlyover dirty
areas—presumablyntil they areclean.Also, eachforwardmoveis typically short,followed
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by animmediatereversingover the samearea. This is explainedin termsof a disjunctive
outcome:theareamaybefully cleanedor not, thereversingenablegshe agentto check,and
therepetitionensurezompletion(unlesshedirt is ingrained).Thus,we have a strongcyclic
planwith sensingactions.

12.14

a. “Lather. Rinse.Repeat.
This is an unconditionalplan, if taken literally, involving an infinite loop. If the pre-
conditionof Lather is =Clean, andthegoalis Clean, thenexecutionmonitoringwill
causeexecutionto terminateonceClean is achieved becausat that point the correct
repairis theemptyplan.

b. “Apply shampodto scalpandlet it remainfor several minutes. Rinseand repeatif
necessary
Thisis aconditionalplanwhere®if necessarypresumablyests—Clean.

c. “Seeadoctorif problemspersist.
Thisis alsoa conditionalstep,althoughit is notspecifiecherewhatproblemsaretested.

12.17 First,we needto decideif the preconditionis satisfied.Therearethreecases:

a. If it is known to be unsatisfiedthe new belief stateis identicalto the old (sincewe
assumanothinghappens).

b. If it is known to be satisfied the unconditionakffects(which areall knowledgepropo-
sitions)areaddedanddeletedfrom the belief statein the usualSTriPs fashion.Each
conditionaleffect whoseconditionis known to betrueis handledn the sameway. For
eachsettingof the unknavn conditions,we createa belief statewith the appropriate
additionsanddeletions.

c. If the statusof the preconditionis unknavn, eachnew belief stateis effectively the
disjunctionof theunchangedbelief statefrom (a) with oneof the belief statesobtained
from (b). To enforcethe"list of knowledgepropositionsrepresentationye keepthose
propositionghatareidenticalin eachof thetwo beliefstatedeingdisjoinedanddiscard
thosethat differ. This resultsin a wealer belief statethan if we were to retain the
disjunction;onthe otherhand,retainingthe disjunctionsover mary stepscouldleadto
exponentiallylarge representations.

12.18 For Right we have theolviousdualversionof Equationl2.2:

Action(Right, PRECOND: AtL,
EFFeCT: K (AtR) A - K (AtL) AwhenCleanL: ~K(CleanL) A
when CleanR: K(CleanR) A when—CleanR: K(—CleanR))

With Suck, dirt is sometimeslepositedvhenthesquards clean.With automatidirt sensing,
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thisis alwaysdetectedsowe have a disjunctive conditionaleffect:

Action(Suck, PRECOND:,
EFFecT:when AtL A =CleanL: K (CleanL)
Awhen AtL A CleanL: K(CleanL) V =K (CleanL) A
when AtR A =CleanR: K (CleanR)
Awhen AtR A CleanR: K(CleanR) V =K (CleanR)

12.19 Thecontinuougplanningagentdescribedn Sectionl2.6hasatleastoneof thelisted
abilities,namelythe ability to accepinew goalsasit goesalong.A new goalis simply added
asanextra openpreconditionin the Finish step,andthe plannerwill find away to satisfy
it, if possible,alongwith the otherremaininggoals. Becausdhe datastructuresouilt by
the continuousplanningagentasit works on the planremainlargely in placeasthe planis
executed the costof replanningis usuallyrelatvely smallunlessthe failure is catastrophic.
Thereis no specifictime boundthatis guaranteedandin generalno suchboundis possible
becausechangingeven a single statevariable might require completelyreconstructinghe
planfrom scratch.

12.20 Let T bethe propositionthatthe patientis dehydratedand S be the side effect. We
have

Action(Drink, PRECOND:, EFFECT: —T)

Action(M edicate, PRECOND:, EFFECT:—~D A whenT": S)

andtheinitial stateis ~S A (T'Vv D) A (=T VvV = D). Thesolutionplanis [Drink, Medicate].
Therearetwo possiblevorlds,onewherel” holdsandonewhereD holds. In thefirst, Drink
causes-T" and M edicate hasno effect; in the second,Drink hasno effectand M edicate
causes-D. In bothcasesthefinal stateis —S A =T A —=D.

12.21 Onesolutionplanis [Test, if Culture Growththen[Drink, M edicate]].



Solutionsfor Chapterl3
Uncertainty

13.1 The"first principles’needederearethedefinitionof conditionalprobability P(X|Y) =
P(X ANY)/P(Y), andthedefinitionsof thelogical connecties. It is notenoughto saythat
if BA Ais*“given”thenA mustbetrue! Fromthe definitionof conditionalprobability and

thefactthatA A A < A andthatconjunctionis commutatve andassociatie, we have
P(AN(BANA)) P(BAA)

P(AIBAA) = PBAA)  P(BAA)

13.2 Themainaxiomis axiom3: P(a VV b) = P(a) + P(b) — P(a A b). For thediscrete
randomvariable X, let « betheeventthat X = z, andb betheeventthat X hasary other
value. Thenwe have

P(X =x1V X = other) = P(X = z1) + P(X = other) + 0
wherewe know that P(X = 21 A X = other) is 0 because variablecannottake on two
distinctvalues.If we now breakdown thecaseof X = others, we eventuallyget
PX=x1V---VX=u2,)=PX=z1)+ - +PX=uz,).
But the left-handsideis equivalentto P(true), which is 1 by axiom 2, so the sumof the
right-handsidemustalsobe 1.

13.3 Probablythe easiesivay to keeptrack of what's going onis to look at the probabil-

ities of the atomic events. A probability assignmento a setof propositionsis consistent
with the axiomsof probability if the probabilitiesare consistenwith an assignmento the

atomiceventsthatsumsto 1 andhasall probabilitiesbetweerD and1 inclusive. We call the

probabilitiesof theatomiceventsa, b, ¢, andd, asfollows:

B|—-B
Ala
-Al|c

We thenhave thefollowing equations:
P(A)=a+b=04
P(B)=a+c=0.3
P(AVB)=a+b+c=05
P(True) =a+b+c+d=1

81
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From these,it is straightforvard to infer thata = 0.2, b = 0.2, ¢ = 0.1, andd = 0.5.
Therefore,P(A A B) = a = 0.2. Thusthe probabilitiesgiven areconsistentvith arational
assignmentandthe probability P(A A B) is exactly determined(This latterfactcanbeseen
alsofrom axiom3 on page422.)

If P(AV B) = 0.7, thenP(A A B) = a = 0. Thus,eventhoughthe betoutlinedin
Figurel3.3losesif A and B arebothtrue,theagentbelievesthisto beimpossiblesothebet
is still rational.

13.4 ?(?,?) aguesroughlyasfollows: Supposeave presentanagentwith a choice:either
definitelyreceve monetarypayof p x m, or choosea lottery thatpaysm if event E occurs
andO if £ doesnotoccur The numberp for which the agentis indifferentbetweenthe two
choicegassumindinearutility of money), is definedto betheagents degreeof beliefin E.

A setof degreesof belief specifiedor somecollectionof eventswill eitherbecoheent
which is definedto meanthatthereis no setof betsbasedon thesestatedbeliefsthat will
guaranteg¢hatthe agentwill losemoney, or incoheent whichis definedto meanthatthere
is sucha setof bets.De Finettishavedthatcoherenbeliefssatisfythe axiomsof probability
theory

Axiom 1: 0 < p < 1, for ary £ andm. If anagentspecifiesp > 1, thenthe agent
is offering to pay morethanm to entera lottery in which the biggestprizeis m. If anagent
specifiesp < 0, thenthe agentis offering to pay eitherm or 0 in exchangefor a negative
amount.Eitherway, the agentis guaranteedo losemoney if the opponentcceptgsheright
offer.

Axiom 2: p = 1 whenF is true andp = 0 whenFE is false. Supposeheagentassigns
o’ asthedegreeof beliefin aknown trueevent. Thentheagents indifferentbetweera payof
of p’m andoneof m. Thisis only coherenwwhenp’ = 1. Similarly, a degreeof belief of p’
for aknown falseeventmeangheagents indifferentbetweeny’m and0. Only p’ = 0 makes
this coherent.

Axiom 3: Giventwo mutually exclusve, exhaustve events,; and E», andrespecire
dagreesof belief p; andp, andpayofs m; andms, it mustbe thatthe degreeof belief for
thecombinedevent i1 V E» equalsp; + po. Theideais thatthebeliefsp; andp, constitute
anagreemento pay p1mi + pams in orderto entera lottery in which the prizeis m; when
E; occurs.Sothenetgainis definedasg; = m; — pim1 + pame. To avoid the possibility
of them; amountseingchoserto guaranteg¢hatevery g; is negative, we have to assurahat
thedeterminanbf thematrix relatingm; to g; is zero,sothatthelinearsystemcanbesolved.
This requiresthatp; + po = 1. The resultextendsto the casewith n mutually exclusive,
exhaustve eventsratherthantwo.

13.5 Thisis a classiccombinatoricgjuestionthat could appeaiin a basictext on discrete
mathematics.The point hereis to refer to the relevant axiomsof probability: principally,
axiom 3 on page422. The questionalso helpsstudentsto graspthe conceptof the joint
probability distribution asthe distribution over all possiblestatesof theworld.

a Thereare () = (52 x 51 x 50 x 49 x 48)/(1 x 2 x 3 x 4 x 5) = 2,598,96(possible
five-cardhands.
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b. By thefair-dealingassumptioneachof theseis equallylikely. By axioms2 and3, each
handthereforeoccurswith probability 1/2,598,960.

c. Therearefour handghatareroyal straightflushegonein eachsuit). By axiom3, since
theeventsaremutuallyexclusive, the probabilityof aroyal straightflushis justthesum
of theprobabilitiesof theatomicevents,i.e.,4/2,598,960= 1/649,740.

d. Again, we examinethe atomic eventsthat are “four of a kind” events. Thereare 13
possible'kinds” andfor each thefifth cardcanbe oneof 48 possibleothercards.The
total probabilityis therefore(13 x 48) /2,598,960 = 1/4, 165.

Thesequestionaneasilybe augmentedby morecomplicatedones,e.g.,whatis the proba-
bility of gettingafull housegiventhatyou alreadyhave two pairs?Whatis the probability of
gettingaflushgiventhatyou have threecardsof the samesuit? Or you couldassigra project
of producinga poker-playing agentandhave atournamenamongthem.

13.6 The main point of this exerciseis to understandhe variousnotationsof bold versus
non-bold P, and uppercaserersuslowercasevariablenames. The restis easy involving a
smallmatterof addition.

a. Thisasksfor the probabilitythat Toothadeis true.
P(toothache) = 0.108 4+ 0.012 + 0.016 + 0.064 = 0.2

b. Thisasksfor thevectorof probabilityvaluesfor therandomvariableCavity. It hastwo
valueswhich we list in theorder (true, false). Firstaddup 0.108 + 0.012 + 0.072 +
0.008 = 0.2. Thenwe have

P(Cavity) = (0.2,0.8) .
c. Thisasksfor the vectorof probabilityvaluesfor Toothate giventhatCavityis true.
P(Toothache|cavity) = ((.108 + .012)/0.2, (0.072 + 0.008)/0.2) = (0.6, 0.4)

d. This asksfor the vectorof probability valuesfor Cavity, giventhateitherToothahe or
Catdhis true. FirstcomputeP (toothache V catch) = 0.1084+-0.012+0.016 +0.064 +
0.072 + 0.144 = 0.416. Then

P(Cavity|toothache V catch) =
((0.108 4+ 0.012 + 0.072)/0.416, (0.016 + 0.064 + 0.144)/0.416) =
(0.4615, 0.5384)

13.7 Independences symmetric(thatis, a andb areindependeniff b anda areindepen-
dent)so P(alb) = P(a) isthesameasP(bla) = P(b). Sowe needonly provethat P(a|b) =
P(a) is equivalentto P(a A b) = P(a)P(b). Theproductrule, P(a A b) = P(alb)P(b), can
be usedto rewrite P(a A b) = P(a)P(b) asP(a|b)P(b) = P(a)P(b), which simplifiesto
P(alb) = P(a)
13.8 Wearegiventhefollowing information:
P(test|disease) = 0.99
P(—test|~disease) = 0.99
P(disease) = 0.0001
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andthe obserationtest. Whatthe patientis concernediboutis P(disease|test). Roughly
speakingthereasont is agoodthingthatthediseasés rareis that P(diseasel|test) iS propoF
tionalto P(disease), soalower prior for disease will meanalowervaluefor P(disease|test).
Roughlyspeakingif 10,000peopletake thetest,we expectl to actuallyhave thediseaseand
mostlikely testpositive, while the restdo not have the diseasebut 1% of them (about100
people)will testpositve aryway, so P(diseasel|test) will beaboutl in 100. More precisely
usingthe normalizationequationfrom page428:
P(diseaseltest)
_ P(test|disease) P(disease)
- P(test|disease%)]g(disease)—}—P(test\ﬁdi.sease)P(—'diseuse)

— 0.99x0.0001
~ 0.99%0.000140.01x0.9999

= .009804

Themoralis thatwhenthe diseasas muchrarerthanthe testaccurayg, a positve testresult
doesnot meanthediseasas likely. A falsepositive readingremainsmuchmorelikely.

Hereis analternatve exercisealongthe samelines: A doctorsaysthataninfantwho
predominanthyturnsthe headto the right while lying on the backwill be right-handedand
onewho turnsto theleft will be left-handed.lsabellapredominantlyturnedher headto the
left. Giventhat90% of the populationis right-handedwhatis Isabellas probability of being
right-handedf thetestis 90%accurate?f it is 80%accurate?

Thereasonings the sameandthe answelis 50% right-handedf thetestis 90%accu-
rate,69%right-handedf thetestis 80%accurate.

13.9 Thebasicaxiomto usehereis the definition of conditionalprobability:

a. Wehave
P(A, BIE) = 7'3(1;‘;(2’)@
and
P(A|B, F)P(B|E) = Péf(l; é? P(;(%g) - P("F‘,’é’)E )

hence
P(A, B|E) = P(A|B,E)P(B|E)

b. Thederivation hereis the sameasthe derivation of the simpleversionof Bayes’'Rule
on page426. First we write down the dual form of the conditionalizedproductrule,
simply by switching A and B in the above dervation:

P(A, B|E) = P(B|A, E)P(A|E)
Thereforethetwo right-handsidesareequal:
P(B|A, E)P(A|E) = P(A|B, E)P(B|E)
Dividing throughby P(B|E) we get
P(B|A, E)P(A|E)

P(AIB, B) = =5




85

13.10 Thekey to this exerciseis rigorousandfrequentapplicationof the definition of con-
ditional probability P(X|Y) = P(X,Y)/P(Y). The original statementhat we are given
is:

P(A, B|C) = P(A|C)P(B|C)
We start by applying the definition of conditional probability to two of the termsin this
statement:
P(A,B,C) P(B,C)

P(C) P(C)

Now we substituteheright handsideof thesedefinitionsfor theleft handsidesin theoriginal
statemento get:

P(4,B,0) P(B,C)

P(C) P(C)

Now we needthe definitiononcemore:

P(4, B,C) = P(A[B,C)P(B, C)
We substitutethis right handsidefor P(A, B, C') to get:

P(A|B, C)P(B, C) P(B,C)

P(C) P(C)

Finally, we cancelthe P(B, C') andP(C)sto get:

P(A|B,C) = P(4|C)

The secondpart of the exercisefollows from by a similar deriation, or by noticing that A
and B areinterchangeable the original statemen{becausenultiplicationis commutatve
and A, B meanghesameas B, A).

In Chapterl4, we will seethatin termsof Bayesianmnetworks, the original statement
meangthat C' is thelone parentof A andalsothe lone parentof B. The conclusionis that
knowing thevaluesof B andC' is thesameasknowing justthevalueof C' in termsof telling
you somethingaboutthe valueof A.

13.11

a. Therearen waysto pick a coin, and2 outcomedor eachflip (althoughwith the fake
coin, the resultsof theflip areindistinguishable)so thereare 2n total atomicevents.
Of those,only 2 pick the fake coin,and2 + (n — 1) resultin heads.Sothe probability
of afake coingivenheads P(fake|heads),is2/(2+n —1) =2/(n + 1).

b. Now thereare2*n atomicevents,of which 2* pick thefake coin,and2* + (n— 1) result
in heads.Sothe probability of a fake coin givenarun of k heads,P(fake|heads"), is
2k /(2F + (n — 1)). Notethis approacheg ask increasesasexpected.If k = n = 12,
for example than P(fake|heads'’) = 0.9973.

c. Therearetwo kinds of errorto consider Casel: A fair coin might turn up headsk

timesin arow. The probability of this is 1/2", andthe probability of a fair coin being
chosenis (n — 1)/n. Case2: Thefake coin is chosen,in which casethe procedure

P(A, B|C) = and P(B|C) =

= P(AIC)

= P(4]C)
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alwaysmakesanerror The probability of drawing the fake coinis 1/n. Sothetotal
probability of erroris

[(n—1)/2" +1]/n

13.12 The importantpoint hereis that althoughthereare often mary possibleroutesby
which answersanbe calculatedn suchproblemsi,it is usuallybetterto stick to systematic
“standard’routessuchas Bayes’ Rule plus normalization. Chapterl4 describegyeneral-
purpose systematialgorithmsthat make heary useof normalization.We could guessthat
P(S|=M) =~ 0.05, or we couldcalculateit from theinformationalreadygiven (althoughthe
ideahereis to assumehat P(S) is notknown):

P(S|~M) = P(=M|S)P(S) _ (1—=P(M|S))P(S) _ 0.9998 x 0.05

P(—M) 1—P(—M) 0.99998

Normalizationproceedssfollows:

P(M|S) < P(S|M)P(M) = 0.5/50,000 = 0.00001

P(=M|S) x P(S|-M)P(—=M) = 0.049991 x 0.99998 = 0.04999

= 0.049991

_ 0.00001 _
P(M|S) = —0'0000%)%%8611999 = 0.0002
P(=M|S) = 5oo06110.01905 = 0-9998

13.13 The questionwould have beenslightly more consistentf we had asled aboutthe
calculationof P(H |E1, E») insteadbf P(H|E1, E»). Shawving thatagivensetof information
is suficient is relatvely easy: find an expressionfor P(H |E1, Fs) in termsof the given
information. Showving insuficiencycanbe doneby shaving that the information provided
doesnot containenoughindependentumbers.

a. Bayes'Rulegives
P(E1, Eo|H)P(H)
P(E1, Es)

Hencethe informationin (ii) is sufiicient—in fact, we dont needP(E, Fs) because
we canusenormalization. Intuitively, the informationin (iii) is insuficient because
P(E1|H) andP(FE>|H) provide noinformationaboutcorrelationsbetweenF; and s
that might be inducedby H. Mathematically supposedd hasm possiblevaluesand
E, and E; have n; andng possiblerespectiely. P(H|E1, E5) contains(m — 1)nine
independenhumbers,whereasthe informationin (iii) contains(m — 1) + m(n; —
1) + m(ny — 1) numbers—clearlynsuficient for large m, n1, andnsy. Similarly, the
informationin (i) contains(ning — 1) +m+m(n; — 1) + m(ny — 1) numbers—again
insuficient.

b. If £; andE> areconditionallyindependengiven H, then

P(E1, Eq|H) = P(E1|H)P(E2|H).
Usingnormalization(i), (ii), and(iii) areeachsuficientfor thecalculation.

P(H|E1, E3) =

13.14 Whendealingwith joint entries|t is usuallyeasiesto geteverythinginto theform of
probabilitiesof conjunctionssincethesecanbeexpressedssumsof joint entries.Beginning
with the conditionalindependenceonstraint

P(X,Y|Z)=P(X|Z)P(Y|Z)
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we canrewrite it usingthedefinitionof conditionalprobability on eachtermto obtain

P(X,Y,Z) P(X,Z)P(Y,Z)

P(Z)  P(Z) P(Z)
Hencewe canwrite anexpressiorfor joint entries:
Px,2)Pv,z) >, PXw2)y Pyz)

P(X,K Z) = ( P(>Z)( ) = “ Zx’y P(:r,y,Z)
This gives us 8 equationsconstrainingthe 8 joint entries,but several of the equationsare
redundant.

13.15 Therelevantaspecbf theworld canbedescribedy two randomvariables:B means
thetaxi wasblue,and L B meanghetaxi looked blue Theinformationon thereliability of
color identificationcanbewritten as

P(LB|B) =0.75 P(-LB|-B)=0.75
We needto know the probabilitythatthetaxi wasblue,giventhatit lookedblue:

P(B|LB) x P(LB|B)P(B) x 0.75P(B)

P(=B|LB) x P(LB|-B)P(—=B) x 0.25(1 — P(B))
Thuswe cannotdecidethe probability without someinformationaboutthe prior probability
of bluetaxis, P(B). For example,if we knew thatall taxiswereblue,i.e., P(B) = 1, then
obviously P(B|LB) = 1. Ontheotherhand,if we adoptLaplaces Principle of Indifference
which stateghatpropositionscanbe deemecdequallylikely in the absencef ary differenti-
atinginformation,thenwe have P(B) = 0.5 and P(B|LB) = 0.75. Usuallywe will have
somedifferentiatinginformation,sothis principle doesnotapply

Given that 9 out of 10 taxis are green,and assumingthe taxi in questionis drawn
randomlyfromthetaxi population we have P(B) = 0.1. Hence

P(B|LB) x 0.75 x 0.1 x 0.075

P(=B|LB) x 0.25 x 0.9 x 0.225
_ 0.075 —

P(B|LB) ~ 0.07540.225 0.25

13.16 This questionis extremelytricky. It is avariantof the“Monty Hall” problem,named
afterthehostof thegameshaw “Let’s Make aDeal” in which contestantareasledto choose
betweerthe prize they have alreadywon andan unknavn prize behinda door Severaldis-
tinguishedprofessorof statisticshave very publically got the wrong answer Certainly all
suchquestionanbe settledby repeatedrials!

Let F, = “x will befreed”, £, = “x will beexecuted”.If theinformationprovided by
theguardis expresseds Fz thenwe get:

P(Fp|Ea)-P(BEa) _1-1/3 1

This would be quite a shockto A—his chancesf executionhave increased!On the other
hand,if theinformationprovidedby theguardis expresse@sFy, = “The guardsaidthat F'z”
thenwe get:

Fy|EA)-P(Ea)  1/2-1/3 1
P(Fy) T 12 3

P(EalFp) = 2
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Thusthekey thingthatis missedby the naive approachs thattheguardhasachoiceof whom
to inform in the casewhereA will be executed.

Onecanproducevariantsof the questiornthatreinforcetheintuitionsbehindthe correct
approach.For example: Supposdherenow a thousandprisonerson deathrow, all but one
of whomwill be pardoned.PrisonerA finds a printout with the last pagetorn off. It gives
the namesof 998 pardoneesnot including A’'s name. What is the probability that A will
be executed?Now supposeA is left-handedandthe programwasprinting the namesof all
right-handedpardonees.What s the probability now? Clearly in the first caseit is quite
reasonabldor A to getworried, whereadn the secondcaseit is not—thenamesof right-
handedprisonerdo be pardonedshouldnotinfluenceA’s chanceslt is this secondcasethat
appliesin the original story, becausdhe guardis precludedfrom giving informationabout
A.

13.17 We canapplythedefinitionof conditionalindependencasfollows:
P(Cause|e) = P(e, Cause)/P(e) = aP(e, Cause) .

Now, divide the effect variablesinto thosewith evidence,E, andthosewithout evidence,Y .
We have

P(Causele) = aZP(y, e, Cause)
y

= az P(Cause)P(y| Cause) (H P(e;| C’ause))
y :

J

J

= aP(Cause) (H P(eﬂCause)) Z P(Cause)P(y|Cause)
j y

= aP(Cause) (H P(ej|C'ause))
J
wherethe last line follows becausahe summationover y is 1. Therefore,the algorithm
computeghe productof the conditionalprobabilititesof the evidencevariablesgiven each

valueof the causemultiplies eachby the prior probability of the cause andnormalizeshe
result.

13.18 This questionis essentiallypreviewing materialin Chapter23 (page842), but stu-
dentsshouldhave little difficulty in figuring out how to estimatea conditional probability
from completedata.

a. Themodelconsistwf the prior probability P(Category) andthe conditionalprobabil-
ities P(Word;|Category). For eachcatgory ¢, P(Category = c) is estimatedasthe
fractionof all documentshatareof cateyory c. Similarly, P(W ord; = true|Category = c)
is estimatedasthefractionof document®f cateyory ¢ thatcontainword .

b. Seetheanswerfor 13.17. Here,every evidencevariableis obsered, sincewe cantell
if any givenword appearsn agivendocumenbr not.
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¢. Theindependencassumptiotis clearlyviolatedin practice.For example theword pair
“artificial intelligence” occursmore frequentlyin ary given documentcategory than
would be suggestedby multiplying the probabilitiesof “artificial” and“intelligence”.

13.19 This probability modelis alsoappropriatfor MinesweepefEx. 7.11). If the total
numberof pitsis fixed,thenthevariablesP; ; and P ; arenolongerindependentln general,

P(P; j =true|Py; = true) < P(P; j = true| Py = false)
becauséearningthat P, ; = true malesit lesslikely thatthereis amineat (i, j] (asthereare
now fewer to spreadaround). The joint distribution placesequalprobability on all assign-
mentsto P » ... P, 4 thathave exactly 3 pits, andzeroon all otherassignmentsSincethere
are15 squaresthe probability of each3-pit assignmenis 1/ (') = 1/455.

To calculatethe probabilitiesof pitsin [1, 3] and|[2, 2], we startfrom Figure13.7. We
haveto considetheprobabilitiesof completeassignmentsincethe probabilityof the“other”
region assignmentoesnot cancelout. We cancountthe total numberof 3-pit assignments
thatareconsistentvith eachpartialassignmenin 13.7(a)and13.7(b).

In 13.7(a) therearethreepartialassignmentsvith P; 3 = true:

e Thefirst fixesall threepits, socorrespond$o 1 completeassignment.
e The secondeaves1 pit in the remaining10 squaresso correspondg$o 10 complete
assignments.
e Thethird alsocorresponds$o 10 completeassignments.
Hence thereare21 completeassignmentwith P 3 = true.
In 13.7(b),therearetwo partialassignmentwiith P; 3 = false:
e Thefirstleavesl pit in theremaininglOsquaressocorrespondso 10 completeassign-
ments.
e Thesecondeaves2 pitsin theremainingl0 squaressocorrespond$o (120) =45 com-
pleteassignments.
Hence thereare55 completeassignmentswvith P, 3 = false. Normalizing,we obtain
P(P13) = a(21,55) = (0.276,0.724) .
With P » = true, therearefour partial assignmentsvith a total of (%) + 2 - (*) +
(10) =66 completeassignments.With P, > = false, thereis only one partial assignment

0
with (') = 10 completeassignments-ence

P(Py5) = a(66,10) = (0.868,0.132) .



Solutionsfor Chapterl4
ProbabilisticReasoning

14.1 Adding variablesto an existing net can be donein two ways. Formally speaking,
oneshouldinsertthe variablesinto the variableorderingandrerunthe network construction
procesdrom the point wherethefirst new variableappearsinformally speakingonenever
really builds a network by a strict ordering.Instead pneaskswhatvariablesaredirectcauses
or influenceson whatotherones,andbuilds local parent/childgraphsthatway. It is usually
easyto identify wherein sucha structurethe new variablegoes but onemustbevery careful
to checkfor possibleinduceddependenciedovnstream.

a. IeyWeather is not causedby ary of the carrelatedvariables,so needsno parents.
It directly affects the batteryand the startermotor Starter Motor is an additional
preconditionfor Starts. Thenew network is shavn in FigureS14.1.

b. Reasonabl@robabilitiesmay vary a lot dependingon the kind of carandperhapghe
personakxperienceof the assessofThefollowing valuesindicatethe generalorderof

Figure S14.1 Car network amended to include IcyWeather and
Starter M otorWorking (SMW).

90
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magnitudeandrelative valuesthatmale sense:

e A reasonablerior for IcyWeathemight be 0.05 (perhapsdependingon location
andseason).
e P(Battery|IcyWeather) = 0.95, P(Battery|-IcyWeather) = 0.997.
P(Starter Motor|IcyWeather) = 0.98, P(Battery|—IcyW eather) = 0.999.
P(Radio| Battery) = 0.9999, P(Radio|—~Battery) = 0.05.
e P(Ignition|Battery) = 0.998, P(Ignition|—Battery) = 0.01.
P(Gas) = 0.995.
P(Starts|Ignition, Starter M otor, Gas) = 0.9999, otherentries0.0.
e P(Moves|Starts) = 0.998.

c. With 8 Booleanvariablesthejoint has2® — 1 = 255independengntries.

d. Giventhetopologyshavnin FigureS14.1 thetotalnumberof independenCPTentries
is 1+2+2+2+2+1+8+220.

e. The CPT for Starts describesa setof nearly necessarygonditionsthat are together
almostsufiicient. Thatis, all the entriesarenearlyzeroexceptfor the entrywhereall
the conditionsaretrue. Thatentrywill be not quite 1 (becausdhereis alwayssome
otherpossiblefaultthatwe didn’t think of), but aswe addmoreconditionsit getscloser
to 1. If we adda Leak nodeasan extra parent,thenthe probabilityis exactly 1 when
all parentsaretrue. We canrelatenoisy-AND to noisy-ORusing de Morgans rule:
AN B = —(=AV —B). Thatis, noisy-AND is the sameasnoisy-ORexceptthatthe
polaritiesof the parentandchild variablesarereversed.In the noisy-ORcasewe have

P(Y:tTU€‘$1,...,Ik):1— H q;
{i:x; =true}
whereg; is the probability that the presenceof the ith parentfails to causethe child to
betrue. In thenoisy-AND casewe canwrite

P(Y =true|zy,...,zx) = H Ti
{i:x; = false}
wherer; is the probability that the absenceof the ith parentfails to causethe child to
befalse(e.qg.,it is magicallybypassedy someothermechanism).

14.2 This questionexercisesmary aspect®f the students understandingf Bayesiamet-
worksanduncertainty

a. A suitablenetwork is shavn in FigureS14.2.Thekey aspectsare:thefailurenodesare
parentof the sensomodesandthetemperatur@odeis a parentof boththe gaugeand
the gaugefailure node. It is exactly this kind of correlationthat makesit difficult for
humango understandvhatis happeningn complex systemswith unreliablesensors.

b. No matterwhichway thestudentdrawsthenetwork, it shouldnotbeapolytreebecause
of thefactthatthetemperaturénfluenceghe gaugen two ways.

c. TheCPTfor G is shawvn belov. Thewordingof the questionis alittle tricky because:
andy aredefinedin termsof “incorrect” ratherthan“correct’
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FigureS14.2 A Bayesiametwork for the nuclearalarmproblem.

T=Normal| T=High
Fe | -Fg | Fg | ~Fg

G=Normal|l—y|l—z| y T
G = High Y z |1—y|l—2a

d. TheCPTfor A is asfollows:

G = Normal|G= High
Fa| —Fa |Fa|—Fa

A O 0 0 1
-Al 1l 1 1 0

e. This partactuallyasksthe studentto do somethingusuallydoneby Bayesiametwork
algorithms. The greatthing is that doing the calculationwithout a Bayesiannetwork
makesit easyto seethenatureof the calculationghatthe algorithmsaresystematizing.
It illustratesthemagnitudeof theachiezementinvolvedin creatingcompleteandcorrect
algorithms.

AbbreviatingT' = High andG = High by 1" andG, the probability of interesthere
is P(T|A,—~Fg,—F4). Becausdhe alarms behaior is deterministic,we canreason
thatif the alarmis working and sounds,G mustbe High. BecauseFy, and A are
d-separateffom 7', we needonly calculateP(T'|-Fg, G).

Therearesereralwaysto go aboutdoingthis. The“opportunistic”way is to notice
thattheCPTentriesgiveus P(G|T, —F¢ ), whichsuggestsisingthegeneralizeBayes’
Ruleto switch G andT with — F; asbackground:

P(T|-Fg,G) x P(G|T,—Fg)P(T|-~Fg)
WethenuseBayes’'Ruleagainonthelastterm:

P(T|~Fg,G) o P(G|T, ~Fg)P(~Fg|T)P(T)
A similar relationshipholdsfor =71

P(=T|~Fg,G) o< P(G|=T, ~Fg) P(~Fg|-T)P(-T)
Normalizing,we obtain

P(T|-Fg,G) =

P(G|T,~Fg)P(~Fg|T)P(T)
P(GIT,~Fa)P(-Fa|T)P(T)+P(G|-T,~Fg)P(=Fg|-T)P(-T)
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The"“systematic’wayto doit is to revertto joint entries(noticingthatthe subgraph
of T', G, and F is completelyconnectedgono lossof efficiency is entailed).We have
P(T,-Fg,G) P(T,-Fg,QG)

P(G,—Fg) N P(T,G,—-Fg)+ P(T,G,—Fg)
Now we usethe chainrule formula (Equation15.1 on page439) to rewrite the joint
entriesasCPT entries:

P(T|-Fg,G) =
P(T)P(~Fg|T)P(G|T,~Fg)
P(T)P(~Fg|T)P(GIT,~Fg)+P(-T)P(~Fg|-T)P(G|-T,~Fg)

which of courseis the sameasthe expressionarrived at above. Letting P(T") = p,
P(Fg|T) = g, andP(Fg|—T) = h, we get
_ p(l—g)(1—x)

p(1=g)(1 —z)+ (1 =p)(1 - h)z

P(T|-Fg,G) =

P(I'-Fg,G)

14.3

a. Although (i) in somesensedepictsthe “flow of information” during calculation,it is
clearlyincorrectasa network, sinceit saysthat giventhe measurements/; and Mo,
the numberof starsis independentf the focus. (ii) correctly representshe causal
structure:eachmeasuremeris influencedby the actualnumberof starsandthe focus,
andthe two telescopesre independentf eachother (iii) shavs a correctbut more
complicatechetwork—the oneobtainedby orderingthe nodesiM,, M, N, Fi, Fs. If
you order M, beforeM; you would getthe samenetwork exceptwith the arrowv from
M, to M, reversed.

b. (ii) requiresfewer parametersindis thereforebetterthan(iii).

c. TocomputeP(M;|N), wewill needto conditionon F; (thatis, considembothpossible
casedor F1, weightedby their probabilities).

P(M;|N) P(Mq|N, F1)P(F1|N) + P(M|N,—F)P(=Fi|N)

P(Mi|N, F1)P(F1) + P(Mi|N, —F1)P(—F1)

Let f bethe probability thatthetelescopas out of focus. The exercisestateghatthis
will causean “undercountof threeor morestars, but if V = 3 or lessthe countwiill
be 0 if the telescopeas out of focus. If it is in focus,thenwe will assumehereis a

probability of e of countingonetwo few, ande of countingonetoo mary. Therestof
thetime (1 — 2e), thecountwill beaccurateThenthetableis asfollows:

N=1 | N=2 | N=3
My = 0] f+e(1- f f

M, = 1|(1-2e)(1-)| e(1-f) 0.0
My =2| e@f) |@1-2e)(1-H e(1-h
My=3 00 e(1-f) |(1-2e)(1-9)
My =4| 00 0.0 e(1-f)

Notice thateachcolumnhasto addup to 1. Reasonable@aluesfor e and f might be

0.05and0.002.
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d. This questioncausesa surprisingamountof difficulty, soit is importantto make sure
studentsunderstandhe reasoningoehindan answer One approachusesthe factthat
it is easyto reasonin the forward direction, thatis, try eachpossiblenumberof stars
N andseewhethermeasurementd/; =1 and M, = 3 arepossible.(This is a sort of
mentalsimulationof the physicalprocess.)An alternatve approachs to enumeratéhe
possiblefocusstatesanddeducethevalueof NV for each.Eitherway, the solutionsare
N =2,4,0r> 6.

e. We cannotcalculatethe mostlikely numberof starswithoutknowing the prior distribu-
tion P(N). Letthepriorsbeps, ps, andps>¢. Theposteriorfor N =2 is pae?(1 — f)?%
for N=4 it is atmostpsef (at most,becauseavith NV =4 the out-of-focustelescope
could measure insteadof 1); for N > 6 it is at mostp>¢ f2. If we assumehatthe
priorsareroughly comparablethen N =2 is mostlikely becausave aretold that f is
muchsmallerthane.

For follow-up or alternatequestionsit is easyto comeup with endlessvariationson the
samethemeinvolving sensorsfailure nodes,hiddenstate. One canalsoaddin comple
mechanismsasfor the Starts variablein exercisel4.1.

14.5 Thisexercisesalittle tricky andwill appeato moremathematicalyrientedstudents.

a. Thebasicideais to multiply thetwo densitiesmatchtheresultto the standardorm for
amultivariateGaussianandhencedentify the entriesin theinversecovariancematrix.
Let’s bagin by looking atthe multivariateGaussianFrompage982in AppendixA we
have

1L (oS o)

Vv (2m)r X ’

wherep is the meanvectorandX is the covariancematrix. In our casex is (z; o)

andlet the (asyet) unknawn p be (m; m2) . Supposeheinversecovariancematrix is

-1 _ cd

Then,if we multiply outthe exponentwe obtain
3 (k- TE T x—p) =
— 2 c(x1 —mq)? + 2d(z1 — ma)(z2 — ma) + f(z2 — m2)?

Looking atthedistributionsthemseles,we have

P(x) =

1 2 2
P — —(z1—p1)?/(207)
(z1) 01\/2776
and
1 2 2
P - —(z2—(az1+b))?/(203)
(532‘371) 0_2\/%6
hence
P(xy,x5) = #e—(tf%(m—(afﬁl+b))2+fff($2—(a$1+b))2)/(20f<’§)

o109(2m)
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We canobtainequationdor ¢, d, ande by picking outthe coeficientsof x%, T1T2, and
2

z3:
¢ = (05 +a’0})/o0}
2d = —2a/o3
e = 1/o3

We canchecktheseby comparingthe normalizingconstants.
1 1 1 1

o102(2m)  /(2m)" X (2m)\/1/|= 7Y (2m)\/1/(ce — d?)
from which we obtainthe constraint

ce —d? =1/0%03

whichis easilyconfirmed.Similar calculationsyield m, andms, andpluggingthere-
sultsbackshavsthat P(z1, z2) is indeedmultivariateGaussianThe covariancematrix

IS
s_[¢ a\" _ 1 e —d)\ _ o? ao?
d e ce—d?\ —d c ac} o3 + o}

b. Theinductionis on n, the numberof variables. The basecasefor n =1 is trivial.
Theinductve stepasksusto shav thatif ary P(x1,...,z,) constructedvith linear
Gaussiarconditionaldensitiess multivariateGaussianthenary P(z1, ..., Ty, Tp41)
constructedwith linearGaussiarconditionaldensitiesis also multivariate Gaussian.
Without lossof generality we canassumehat X, ; is aleaf variableaddedto a net-
work definedin thefirst n variables By the productrule we have

P(xy,...,xn,xpy1) = P(rpsi|Tr, ..o xn)P(xy, .., 2p)

= P(zp41|parents(X,+1))P(x1,...,2,)

which, by theinductive hypothesisis the productof alinear Gaussiarwith a multivari-
ateGaussianExtendingtheargumentof part(a), thisis in turnamultivariateGaussian
of onehigherdimension.

14.6

a. With multiple continuougparentsye mustfind away to mapthe parentvaluevectorto
asinglethresholdvalue. The simplestway to do thisis to take a linear combinationof
theparentvalues.

b. For orderedvaluesy; < y2 < --- < y4, considerthe BooleanpropositionZ; defined
by Y < y;. ThepropositionY =y; is just Z; A ~(Z;_1) for j > 1. Now we can
proposeprobitdistributionsfor eachZ;, with means.; alsoin increasingorder

14.7 This questiondefinitely helpsstudentgyet a solid feel for variableelimination. Stu-
dentsmayneedsomehelpwith thelastpartif they areto doit properly
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P(B|j,m)
= aP(B ZP ZP alb,e)P(jla)P(m|a)
B 95 .29 ; 05 .71
= aP l9><7><<'94 .001>+'00X'01X<.06 .999>]
B 598525 183055
= ab 59223 0011295

508525 59223
= aP l002 < 183055 ) 1998 % (.0011295 )]
_(oon (59224259
— 41 999 .001493351
00059224259
0014918576

~ (.284,.716)

b. Includingthe normalizationstep,thereare 7 additions,16 multiplications,and 2 divi-

sions.Theenumeratioralgorithmhastwo extra multiplications.

. To computeP(X;|X,, = true) usingenumerationwe have to evaluatetwo complete

binarytrees(onefor eachvalueof X), eachof depthn — 2, sothetotalworkis O(2").
Usingvariableelimination,the factorsnever grow beyondtwo variables.For example,
thefirst stepis
P(X1|X,, = true)
= aP(X1). Z P(zp—o|zp—3 Z P(zp—1|zn—2)P(X, = true|z,—1)

Tn—2 Tn—1

= aP(Xl) ‘e Z P(.fn_g‘l‘n_g) Z an—l (xn_l,xn_g)fxn (J:n—l)
Tn—2 Tn—1

— aP(Xl) N Z P(.xn_g‘l‘n_g)fmxn (Jjn_g)
Tn—2

Thelastline is isomorphicto the problemwith n — 1 variablesinsteadof n; the work
doneon thefirst stepis a constanindependenbf n, hence(by inductionon n, if you
wantto beformal) thetotal work is O(n).

. Herewe canperformaninductionon the numberof nodesin the polytree. The base

caseis trivial. Fortheinductive hypothesisassumehatarny polytreewith n nodescan
be evaluatedin time proportionalto the size of the polytree(i.e., the sumof the CPT
sizes).Now, considera polytreewith n + 1 nodes.Any nodeorderingconsistentvith
the topologywill eliminatefirst someleaf nodefrom this polytree. To eliminateary
leaf node,we have to do work proportionalto the size of its CPT. Then, becausehe
networkis a polytree we areleft with independensubproblemspnefor eachparent.
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Eachsubproblemtakestotal work proportionalto the sumof its CPT sizes,sothetotal
work for n + 1 nodess proportionalto thesumof CPTsizes.

j\ﬂ/ g

Vs

FigureS14.3 A Bayesiametwork correspondingo a SAT problem.

0.5

14.8 Considera SAT problemsuchasthefollowing:
(mAVB)A(=BVC)AN(=CV D)A(=CV-DVE)

Theideais to encodehis asa Bayesnet,suchthatdoinginferencein the Bayesnetgivesthe
answerto the SAT problem.

a. Figure S14.3shaws the Bayesnet correspondingo this SAT problem. The general
constructiormethodis asfollows:

e Therootnodescorrespondo thelogical variablesof the SAT problem.They have
aprior probabilityof 0.5.

e EachclauseC; is anode. Its parentsarethe variablesin the clause. The CPTis
deterministiandimplementghedisjunctiongivenin theclause.(Negative literals
in theclauseareindicatedby negationsymbolsonthelinks in thefigure.)

e A singlesentencaéodeS hasall theclausesasparentanda CPTthatimplements
deterministicconjunction.

It is clearthat P(S) > 0 iff the SAT problemis satisfiable.Hence,we have reduced
SAT to Bayesnetinference.SinceSAT is NP-completewe have shavn thatBayesnet
inferences NP-hard(evenwithout evidence).

b. The prior probability of eachcompleteassignmenis 2-". P(S) is thereforeK - 2=
where K is the numberof satisfyingassignmentsHence,we cancountthe number
of satisfyingassignmentdy computingP(.S) - 2". This amountgo areductionof the
problemof countingsatisfyingassignmentto Bayesnetinference;sincetheformeris
#P-completethelatteris #P-hard.

14.9

a. To calculatethe cumulatie distribution of a discretevariable,we startfrom a vector
representatiom of the original distribution and a vector P of the samedimension.
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Then,we loop throughi, addingup the p; valuesaswe go alongandsetting P; to the
runningsum,2§ —; p;- Tosamplefrom thedistribution, we generatea randomnumber
r uniformly in [0, 1], andthenreturnz; for the smallest; suchthat P, > r. A nawve
way to find thisis to loop throughi startingat 1 until P; > r. ThistakesO(k) time. A
moreefficient solutionis binary search:startwith the full range[1, k|, choosei atthe
midpointof therange.lf P; < r, settherangefrom i to theupperbound,otherwiseset
therangefrom the lower boundto i. After O(log k) iterations,we terminatewhenthe
boundsareidenticalor differ by 1.

b. If we aregeneratingN > k samples,we can afford to preprocesghe cumulatie
distribution. Thebasicinsightrequiredis thatif the original distribution wereuniform,
it would be possibleto samplein O(1) time by returning[%r|. Thatis, we canindex
directlyinto thecorrectpartof therange(analograndomaccesspnemight say)instead
of searchingfor it. Now, supposewe divide the range[0, 1] into k& equalpartsand
constructa k-elementvector eachof whoseentriesis a list of all those: for which
P, is in the correspondingpart of the range. The ¢ we wantis in the list with index
[kr]. Weretrieve thislist in O(1) time andsearchthroughit in order(asin the nave
implementation)Letn; bethenumberof elementsn list j. Thentheexpecteduntime

is givenby
k k
> onj-1/k=1/k- Y nj=1/k-0(k) = O(1)
j=1 j=1

Thevarianceof theruntimecanbereducedy furthersubdviding ary partof therange
whoselist containamorethansomesmallconstanhumberof elements.

c. Onewayto generate samplefrom a univariateGaussians to computethe discretized
cumulatve distribution (e.g., integrating by Taylor’s rule) and usethe algorithm de-
scribedabore. We cancomputethe table onceandfor all for the standardGaussian
(meanO, variancel) andthen scaleeachsampledvalue z to oz + p. If we hada
closed-formjnvertible expressiorfor the cumulatve distribution #'(x), we could sam-
ple exactly, simply by returning (7). Unfortunatelythe Gaussiardensityis not
exactly integrable. Now, the densitya:re—xz/ 2 is exactly integrable,andtherearecute
schemesor usingtwo samplesandthis densityto obtainanexactGaussiarsample We
leave the detailsto theinterestednstructor

d. WhengueryingacontinuoussariableusingMontecarloinference anexactclosed-form
posteriorcannotbe obtained. Instead,onetypically definesdiscreteranges returning
a histogramdistribution simply by countingthe (weighted)numberof samplesn each
range.

14.10 Theseproofsaretricky for thosenotaccustomedo manipulatingorobability expres-
sions,andstudentsnayrequiresomehints.

a. Thereareseveralwaysto prove this. Probablythe simplestis to work directly from the
globalsemanticsFirst, we rewrite the requiredprobability in termsof thefull joint:
P(z1,...,2,)

P(Il, sy =1y Litly e o >In)

P(mi\xl, ey Li—1yLj41y - ,.In) =
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P(z1,...,x,)
> P(w1,. o y)
[T7_ P(zj|parentsX;)
>, =1 P(zj|parents X;)
Now, all termsin the productin the denominatothatdo not containz; canbe moved
outsidethe summationandthencancelwith the correspondingermsin the numeratar
This just leavesuswith the termsthatdo mentionz;, i.e., thosein which X; is a child
oraparentHence,P(z;|x1,...,zi—1,Tit1,-..,2T,) iSequalto
P(zi|parentsX;) [1y,ecnitaren(x;) P (yjlparents(Y;))
Zmi P(:Ei|pa7°entin) HYjEC’hildren(Xi) P(yj|parents(Yj))
Now, by reversingtheargumentin part(b), we obtainthedesiredresult.

b. Thisis arelatively straightforvard applicationof Bayes'rule.LetY =Y, ..., y, bethe
childrenof X; andlet Z; bethe parentof Y; otherthanX;. Thenwe have

P(Xi|MB(X;))
= P(X;|Parents(X;),Y,Z1,...,2Zy)
= aoP(X;|Parents(X;),Z1,...,2Zy)P(Y|Parents(X;), X;, Z1,...,2Zy)
= oP(X;|Parents(X
(

NP(Y|X;,2Z1,...,2Zy)
= aP(X;|Parents(X;)) H P(Y;|Parents(Yj))
Y;eChildren(X;)
wherethe derivation of the third line from the secondrelieson the factthata nodeis
independenobf its nondescendantgvenits children.

14.11

a. Therearetwo uninstantiatedooleanvariablegCloudy and Rain) andthereforefour
possiblestates.

b. First,wecomputahesamplingdistributionfor eachvariable ,conditionednits Markov
blanlket.

P(C|r,s) = aP(C)P(s|C)P(r|C)
a(0.5,0.5)(0.1,0.5)(0.8,0.2) = «(0.04,0.05) = (4/9,5/9)
P(C|-r,s) = aP(C)P(s|C)P(—r|C)
= (0.5,0.5)(0.1,0.5)(0.2,0.8) = a(0.01,0.20) = (1/21,20/21)
P(R|c,s,w) = aP(R|c)P(wl|s, R)
= (0.8,0.2)(0.99,0.90) = «(0.792,0.180) = (22/27,5/27)
P(R|-c,s,w) = aP(R|-c)P(w|s, R)
= «(0.2,0.8)(0.99,0.90) = «(0.198,0.720) = (11/51,40/51)
Strictly speakingthetransitionmatrixis only well-definedfor the variantof MCMC in
whichthevariableto be sampleds choserrandomly (In thevariantwherethevariables

arechosenn afixed order the transitionprobabilitiesdependon wherewe arein the
ordering.)Now considetthetransitionmatrix.
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e Entrieson the diagonalcorrespondo self-loops. Suchtransitionscan occur by
samplingeithervariable.For example,

q((¢e,r) — (e,7)) = 0.5P(c|r,s) + 0.5P(r|c, s,w) = 17/27
e Entrieswhereonevariableis changednustsamplethatvariable.For example,
q((c,r) — (¢,=r)) = 0.5P(—r|e, s,w) = 5/54
e Entrieswherebothvariableschangecannotoccur For example,
q((c,r) = (=¢,—r)) =0
This givesusthefollowing transitionmatrix, wherethetransitionis from the stategiven
by therow labelto the stategivenby the columnlabel:

(c,r) (e,—r) (—e,r) (—e,—r)

(c,m) 17/27  5/54  5/18 0
(c,—r) 11/27 22/189 0 10/21
(—e,r) 2/9 0 59/153  20/51
(—e, =) 0 1/42 11/102 310/357

c. Q? representshe probability of goingfrom eachstateto eachstatein two steps.

d. Q" (asn — oo) representshe long-termprobability of beingin eachstatestartingin
eachstate;for ergodic Q theseprobabilitiesare independendf the starting state,so
every row of Q is the sameandrepresentshe posteriordistribution over statesgiven
theevidence.

e. We can producevery large powers of Q with very few matrix multiplications. For
example,we cangetQ? with onemultiplication, Q* with two, andQ?" with k. Unfor-

tunately in a network with n. Booleanvariables the matrix is of size2™ x 2™, soeach
multiplicationtakes O (2°") operations.

14.12

a. TheclasseareTeam, with instancesA, B, andC, and M atch, with instancesA B,
BC,andC A. Eachteamhasa quality () andeachmatchhasaTeam, andTeams and
anQOutcome. Theteamnamedor eachmatchareof coursefixedin advance.Theprior
over quality could be uniform andthe probability of a win for teaml shouldincrease
with Q(Team1) — Q(Teams).

b. Therandonvariablesare A.QQ, B.Q, C.Q, AB.Outcome, BC.Outcome, andC A.Outcome.
Thenetwork is shavn in FigureS14.4.

c. Theexactresultwill dependonthe probabilitiesusedin the model. With ary prior on
qualitythatis thesameacrossall teamswe expectthattheposteriorover BC.Qutcome
will shav thatC' is morelikely to win than B.

d. Theinferencecostin suchamodelwill beO(2") becausell theteamqualitiesbecome
coupled.

e. MCMC appearsto do well on this problem, provided the probabilitiesare not too
skewed. Our resultsshav scalingbehaior that is roughly linear in the numberof
teamsalthoughwe did notinvestigatevery largen.



101

59
<

FigureS14.4 A Bayesiametwork correspondingo the soccemodelof Exercisel4.12.




Solutionsfor Chapterl5
ProbabilisticReasoningver Time

15.1 For eachvariableU; thatappearsasa parentof a variable X, o, definean auxiliary
variableU¢!4, suchthatU; is parentof U4 and U4 is a parentof X;,». This givesus
a first-orderMarkov model. To ensurethatthe joint distribution over the original variables
is unchangedwe keepthe CPTfor X; 5 is unchangeaxceptfor the nenv parentname,and
we requirethat P(U{’j”i |Uy) is anidentity mapping,i.e., the child hasthe samevalueasthe
parentwith probability 1. Sincethe parametern this modelarefixedandknown, thereis no
effective increasan the numberof free parameters the model.

15.2
a. Forall ¢, we thefiltering formula
P(Ri|u1s) = aP(u|Ry) Y P(Re|Ri—1)P(Re_1|u1:—1) -
Ri_1
At the fixed point, we additionallyexpectthat P(R¢|u1.t) = P(R¢—1|u1.+—1). Letthe
fixed-pointprobabilitiesbe (p, 1 — p). This providesuswith a systemof linearequa-
tions:

(p, 1 —p) = (0.9, 0.2)(0.7, 0.3)p + (0.3, 0.7)(1 — p)
= (0.9, 0.2)((0.4p, —0.4p) + (0.3, 0.7))
1

= 09041 03) 102 0ap 7 0.7y 0 0-2({04p, =0.40) + (0.3, 0.7))

Solvingthis systemwe find thatp ~ 0.8933.

b. Theprobabilitycorvergesto (0.5, 0.5) asillustratedin FigureS15.1.This convergence
makessensdf we considerafixed-pointequationfor P( Ry x|U1, Ua):

P(R2+k|U1,U2) = <0.7,0.3>P(7‘2+]€_1‘U1,U2) + <0.3,0.7>P(ﬂ7‘2+]€_1|U1,U2)
P(T’2+k|U1,U2) = 0.7P(7’2+k,1|U1,U2) —|—0.3(1 —P(T2+k,1‘U1,U2))
= 0.4P(T2+k;_1|U1, UQ) + 0.3

Thatis, P(T‘2+k‘U1, UQ) = 0.5.
Noticethatthefixed point doesnot dependon theinitial evidence.
15.3 Thisexercisedevelopsthelslandalgorithmfor smoothingn DBNs (?).

102
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Figure S15.1 A graphof the probability of rain asa function of time, forecastinto the
future.

a. Thechaptershavs thatP(X|e;.;) canbecomputedas

P(Xklert) = aP(Xg|€1x)P(&k+1:4[Xk) = afrpbpris
TheforwardrecursionEquationl5.3)shavsthatf,., canbecomputedromf,.;, ; and
€, which canin turn be computedfrom f;.;_, ande,_;, andso on down to f;.c and
€. Hence fy.;, canbecomputedrom f1.q ande;.;.. The backwardrecursion(Equation
15.7)shows thatby, ., 1.; canbe computedrom by o.; andey1, whichin turn canbe
computedrom by 3.; andey, o, andsoonupto by, 1.; ande,. Hence,by,1.; canbe
computedirom by, 1. andeg,1.;,. Combiningthesetwo, we find that P(X|e;.;) can
becomputedrom fy.g, by, 1.4, andey.y,.

b. The reasoningfor the secondhalf is essentiallyidentical: for &£ betweenh andt,
P(Xx|er+) canbecomputedrom fy.;,, byy 1.4, andey 1.4

c. The algorithmtakes 3 aguments:an evidencesequencean initial forward message,
andafinal backward messageTheforward messagés propagatedo the halfway point
and the backward messages propagatedackward. The algorithm then calls itself
recursvely on the two halves of the evidencesequenceavith the appropriateforward
andbackward messageslhe basecaseis a sequencef lengthl or 2.

d. At eachlevel of the recursionthe algorithmtraversesthe entire sequencedoing O(t)
work. Thereare O(log, t) levels, sothetotal time is O(tlog, t). Thealgorithmdoes
a depth-firstrecursion,so the total spaceis proportionalto the depth of the stack,
i.e., O(logy t). With n islands,the recursiondepthis O(log,, t), sothe total time is
O(tlog, t) butthespacds O(nlog, t).
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15.4 Thisis avery goodexercisefor deepeningntuitionsabouttemporalprobabilisticrea-
soning.First, noticethattheimpossibility of the sequencef mostlikely statescannotcome
from animpossibleobseration becausehe smoothedrobability at eachtime stepincludes
the evidencelikelihoodat thattime stepasa factor Hence,the impossibility of a sequence
must arise from an impossibletransition. Now considersucha transitionfrom X, =1 to
Xy4+1 =7 for somei, j, k. For X;,1 = j to bethemostlikely stateattime k + 1, eventhough
it cannotbereachedrom themostlik ely stateattime k, we cansimply have ann-statesystem
where,say thesmoothedprobabilityof X, =i is (1 + (n — 1)e)/n andtheremainingstates
have probability (1 — €) /n. Theremainingstatesall transitiondeterministicallyto X1 = j.
Fromhere,it is a simplematterto work out a specificmodelthatbehaesasdesired.

15.5

a. Looking atthe fragmentof the modelcontainingjust .Sy, Xy, andXy, we have
k

PX1) = 3 Plso) | PO0IP(Xalxo, 50)

sop=1

From the propertiesof the Kalmanfilter, we know that the integral gives a Gaussian
for eachdifferentvalue of s;. Hence,the predictiondistribution is a mixture of &
Gaussianssachweightedby P(sg).

b. Theupdateequationfor the switchingKalmanfilter is

P(X¢41, St+1/€1:041)

= oP(er1[Xt41, St41) Z P(Xt, 5tl€1:4)P(Xep1, St [Xe, s¢)

=1 Xt
k
= aP(e+1/X¢+1) Z P(5t|elzt)P(St+1\5t)/ P(X¢|€1:t)P(X¢p1[Xe, 5¢)
Xt

St=1

We aregiventhatP(x;|e;.;) is a mixture of m GaussiansEachGaussiaris subjectto
k differentlinear-Gaussiamrojectionsandthenupdatedoy alinearGaussiarobsena-
tion, sowe obtaina sumof km GaussiansThus,aftert stepswe have k! Gaussians.

c. Eachweight representshe probability of one of the k! sequencesf valuesfor the
switchingvariable.

15.6 Thisis asimpleexercisein algebra.We have

1(&;1_9) ,;<<112w02>2>
-2 2 (o8 (o8
P(x1]z1) = ae *\ = Je *

l\JI»—‘

(UO+032)(21 Zl) +C'z(zl F’O) )
2+o'2)

ml»—

(ao+um)(z1722111+zl>+uz(zz 2ppz1+1d)
. 2(0.2+U )

2+o’ +o' :v —2( (02+o'x)zl+o'z,u,0)zl+c>

o2(o2+02)

wl—‘
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FigureS15.2  Graphfor Ex. 15.7,shaving the posteriorvariances;? asa functionof ¢ for
variousvaluesof o2 ando?.
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2| (0g+02)02/ (ol +0i+02)

= e

15.7

a. SeeFigureS15.2.

b. We canfind afixed pointby solving
2 (0®+02)0?

o2+ 02+ 0?2
for o2. Usingthe quadratidormulaandrequirings? > 0, we obtain
2 _ —0s++/oi+ 40302
o= 2

o

z

We omit the proof of corvergence which, presumablycanbedoneby shaving thatthe
updateis a contraction(i.e., afterupdating,two differentstartingpointsfor o, become
closer).

c. As o2 — 0, we seethatthefixed points? — 0 also. Thisis becauser2 = 0 implies
a deterministicpathfor the object. Eachobseration suppliesmoreinformationabout
this path,until its parameterareknown completely
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Aso? — 0, thevarianceupdategiveso™! — ( immediately Thatis, if we haze an
exactobsenration of the objects state thenthe posterioris a deltafunction aboutthat
obseredvalueregardlesf thetransitionvariance.

15.8 Thereis oneclass, Times. Eachelementof the classhasa state attribute with n
possiblevaluesandan observation attributewhichmaybediscreteor continuousTheparent
of the observation attribute is the state attribute of the sametime step. Eachtime stephas
predecessor relationto anothertime step,andthe parentof the state attribute is the state
attribute of the predecessor time step.

15.9

a. The curwe of interestis the onefor E(Battery,|...5555000000...). In the absence
of ary usefulsensorinformationfrom the batterymeter the posteriordistribution for
the batterylevel is the sameasthe projectionwithout evidence. The transitionmodel
for the batteryincludesa smallprobabilityfor downwardtransitionsin the batterylevel
at eachtime step,but zeroprobability for upward transitions(thereare no rechaging
actionsin themodel). Thus,the stationarydistribution towardswhich the batterylevel
tendshasvalue O with probability 1. The curve for E(Battery,|...5555000000...)
will asymptotdo O.

b. SeeFigure S15.3. The CPT for BMeter; hasa probability of transientfailure (i.e.,
reporting0) thatincreasesvith temperature.

c. The agentcan obviously calculatethe posteriordistribution over Temp, by filtering
the obseration sequencen the usualway. This posteriorcan be informatie if the
effect of temperaturen transientfailure is non-ngligible andtransientfailuresoccur
morefrequentlythando major changesn temperature Essentiallythe temperaturas
estimatedrom the frequeng of “blips” in the sequencef batterymeterreadings.

15.10 Theprocessvorksexactly ason page507. We startwith thefull expression:
P(Rs3|u1, u2,u3) = « Z Z P(r1)P(ui|r1)P(ra|r1) P(us|ra)P(R3|r2)P(us| Rs)

Ty T2
Whicherer orderwe pushin the summationsthe variableeliminationprocesaever creates
factorscontainingmorethantwo variableswhichis thesamesizeasthe CPTsin theoriginal
network. In fact, givenan HMM sequencef arbitrary length, we can eliminatethe state
variablesin ary order

15.11 Themodelis shawvnin FigureS15.4.Thekey pointto noteis thatany phonevariation
atonepoint(here,[aa]vs.[ey] in thefourthphone)esultsin variationatthreepointsbecause
of the effectson the precedingandsucceedingphones.

15.12 The[C1,C2]and[C6,C7] mustcomefrom the onsetandend,respecirely. The C3
could comefrom 2 sourcesthe onsetor the mid, andthe [C4, C4] combinationcould come
from 3 sources:mid-mid, mid-end,or end-end.You cant go directly from onsetto end,so
the only possiblepaths(alongwith their pathandoutputprobabilities)areasfollows:
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Batteryo Batteryl

BMBroken

BMeter1

FigureS15.3 Modificationof Figurel5.13(a)o includetheeffect of externaltemperature
onthebatterymeter

TATH

p-lomitost

FigureS15.4 Transitiondiagramfor thetriphonepronunciatiormodelin Ex. 15.11.
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Sothe mostprobablepathis OOMMMEE (thatis, onset-onset-mid-mid-midndend), with

aprobabilityof 8.0 x 10~%. Thetotal probabilityof the sequencés the sumof thefive paths,
or1.3 x 1075,



Solutionsfor Chapterl6
Making SimpleDecisions

16.1 It is interestingto createa histogramof accurag on this taskfor the studentsn the
class.lt is alsointerestingto recordhow mary timeseachstudentcomeswithin, say 10% of
theright answer Thenyou geta profile of eachstudent:this oneis an accurateguessebut
overly cautiousaboutboundsetc.

16.2 Theexpectedmonetaryalueof thelottery L is

1
EMV(L) = — x $10
(L) = 55 > 810+ 5550000

Although$0.70 < $1, it is not necessarilyrrationalto buy theticket. Firstwe will consider
justthe utilities of the monetaryoutcomesignoringthe utility of actuallyplayingthelottery
game.UsingU (S, ) to representhe utility to theagentof having n dollarsmorethanthe
currentstate,andassuminghatutility is linearfor smallvaluesof mone (i.e., U(Sk+4n) =~

n(U(Sk+1) — U(Sk)) for —10 < n < 10), theutility of thelotteryis:

U(L) = %U(SkHO) + m(](&cﬂ,ooo,ooo)

1 1
3U(Sk.Jrl) + WU(Sk+1,ooo,ooo)

x $1000000 = $0.70

%

Thisis morethanU (Sj41) whenU (Sk+1,000,000) > 1,600,000U ($1). Thus,for a purchase
to berational(whenonly money is considered)the agentmustbe quite risk-seeking. This
would be unusualffor low-incomeindividuals,for whomthe price of aticketis non-trivial. It
is possiblethat somebuyersdo not internalizethe magnitudeof the very low probability of
winning—toimagineaneventis to assignit a“non-trivial” probability in effect. Apparently
thesebuyersare betterat internalizingthe large magnitudeof the prize. Suchbuyersare
clearlyactingirrationally.
Somepeoplemayfeeltheircurrentsituationis intolerable thatis, U (Sk) ~ U(Sk+1) ~
u . Thereforethe situationof having onedollar more or lesswould be equallyintolerable,
andit would berationalto gambleon a high payof, evenif onethathaslow probability
Gamblersalso derive pleasurefrom the excitementof the lottery and the temporary
possessionf atleasta non-zerochanceof wealth. Sowe shouldaddto the utility of playing
thelottery thetermt to representhethrill of participation. Seenthis way, the lottery is just
anotherform of entertainmentandbuying a lottery ticket is no moreirrational thanbuying
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a movie ticket. Eitherway, you pay your money, you geta smallthrill ¢, and(mostlikely)

you walk away empty-handed(Notethatit could be arguedthatdoingthis kind of decision-
theoreticcomputationdecreasethe valueof ¢. It is not clearif thisis a goodthing or a bad
thing.)

16.3
a. Theprobabilitythatthefirst headsappear®nthenth tossis 27", so

EMV(L)= > 27".2"=) 1=00
n=1 n=1
b. Typicalanswergangebetweert4 and$100.
c. Assumenitial wealth(afterpayingc to play thegame)of $(k — ¢); then

U(L) = i 9" . (alogy(k — ¢+ 2") + b)

n=1

Assumek — ¢ = $0 for simplicity. Then

U(L) = 3 27 (alogy(2") +b)

n=1

o

= 22_”-an+b
n=1

= 2a-+b

d. Themaximumamountc is givenby the solutionof

aloggk+b= Y 27" (alogy(k — c+2") +b)
n=1

For our simplecasewe have
alogoc+b=2a+b
orc=9%4.

16.4 Thisis aninterestingexerciseto doin class.ChooseM; = $100, M; = $100,$1000,
$10000,$1000000Ask for ashav of handsof thosepreferringthe lottery at differentvalues
of p. Studentswill almostalwaysdisplayrisk aversion,but theremaybe awide spreadn its
onset.A curve canbe plottedfor the classby finding the smallestp yielding a majority vote
for thelottery.

16.5 Theprogramitselfis prettytrivial. But notethattherearesomestudiesshaving you
getbetteranswerdf you asksubjectsto move a sliderto indicatea proportion,ratherthan
askingfor a probability number So having a graphicaluserinterfaceis an adwvantage.The
main point of the exerciseis to examinethe data,exposeinconsistenbehaior on the partof
the subjectsandseehow peoplevary in their choices.

16.6 The protocolwould be to ask a seriesof questionsof the form “which would you
prefer”’involving amonetarygain(or loss)versusanincreasdgor decreasein arisk of death.
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For example,“would you pay $100for a helmetthatwould eliminatecompletelythe one-in-
a-million chanceof deathfrom a bicycle accident.

16.7 Thecompleteproofis givenby Keeng andRaiffa (1976).

16.8 This exercisecanbe solved usinganinfluencediagrampackagesuchasIDEAL. The
specificvaluesarenotespeciallymportant.Noticehow thetediumof encodingall theentries
in the utility tablecriesout for a systemthat allows the additve, multiplicative, and other
formssanctionedy MAUT.

Oneof thekey aspect®f thefully explicit representatiom Figurel6.5is its amenabil-
ity to change.By doing this exerciseaswell asExercisel6.9, studentswill augmentheir
appreciatiorof the flexibility affordedby declaratie representationsyhich canotherwise
seemtedious.

a. For this part, onecould usesymbolicvalues(high, medium,low) for all the variables
and not worry too much aboutthe exact probability values,or one could use actual
numericalrangesandtry to assesshe probabilitiesbasedon someknowledgeof the
domain.Evenwith three-aluedvariablesthe costCPThas54 entries.

b. Thispartalmostcertainlyshouldbe doneusinga software package.

c. If eachaircraftgeneratetalf asmuchnoise,we needto adjustthe entriesin the Noise
CPT.

d. If thenoiseattribute becomeghreetimesmoreimportant,the utility tableentriesmust
all be altered. If an appropriate(e.g., additive) representatioris available, then one
would only needto adjustthe appropriateconstantgo reflectthe change.

e. This part shouldbe doneusing a software package. Somepackagesnay offer VPI
calculationalready Alternatively, onecaninvoke the decision-makingpackageaepeat-
edly to do all the what-if calculationsof bestactionsandtheir utilities, asrequiredin
the VPI formula. Finally, one canwrite general-purpos®¥Pl codeasan add-onto a
decision-makingpackage.

16.9 Theinformationassociategvith theutility nodein Figurel6.6is anaction-waluetable,
andcanbe constructegimply by averagingoutthe Deaths, Noise, andCost hodesn Fig-

ure16.5. As explainedin thetext , modificationsto aircraftnoiselevelsor to theimportance
of noisedo not resultin simplechangego the action-waluetable. Probablythe easiestvay

to doit is to go backto theoriginaltablein Figure16.5. The exercisethereforeillustratesthe

tradeofs involvedin usingcompiledrepresentations.

16.10 The answerto this exercisedependson the probability valueschosenby the stu-
dent.

16.11 Thisquestionis asimpleexercisein sequentiatiecisionmaking,andhelpsin making
the transitionto Chapterl?7. It alsoemphasizeshe point that the value of informationis
computedby examiningthe conditionalplanformedby determiningthe bestactionfor each
possibleoutcomeof the test. It may be usefulto introduce“decisiontrees” (asthetermis
usedn thedecisionanalysiditerature)to organizetheinformationin thisquestion.(SeePearl
(1988),Chapter6.) Eachpartof the questionanalyzessomeaspecbf thetree. Incidentally
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Test @

Buy

FigureS16.1 A decisionnetwork for the carbuying problem.

the questionassumedghat utility and monetaryvalue coincide,andignoresthe transaction
costsinvolvedin buying andselling.

a. Thedecisionnetwork is shawvn in FigureS16.1.
b. Theexpectednetgainin dollarsis
P(q™)(2000 — 1500) 4+ P(q)(2000 — 2200) = 0.7 x 500 + 0.3 x —200 = 290

¢. Thequestiorcouldprobablyhave beenstatedbetter:Bayes'theoremnis usedo compute
P(q*|Pass), etc.,whereazonditionalizatioris suficientto computeP(Pass).
P(Pass) = P(Pass|q")P(q") + P(Pass|q”)P(q™)
=0.8 x 0.7+ 0.35 x 0.3 = 0.665
UsingBayes’theorem:
P(P NP (¢t 0.8 x 0.7
P(Pass) 0.665
P(q |Pass) ~ 1—0.8421 = 0.1579
P(-P ) P(q™ 0.2 x 0.7
) = PEPassiq)P@T) 02X 0.7 417
P(—Pass) 0.335
P(q™|=Pass) =~ 1—0.4179 = 0.5821
d. If thecarpasseshetest,the expectedvalueof buyingis
P(q"|Pass)(2000 — 1500) + P(q~ | Pass)(2000 — 2200)
= 0.8421 x 500 + 0.1579 x —200 = 378.92
Thusbuying is thebestdecisiongivenapass.If thecarfailsthetest,theexpectedvalue
of buyingis
P(g*|=Pass)(2000 — 1500) + P(g~|~Pass)(2000 — 2200)
= 0.4179 x 500 4 0.5821 x —200 = 92.53

Buyingis againthe bestdecision.

P(q"|Pass

P(q"|—~Pass
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e. Sincetheactionis the samefor bothoutcomef thetest,thetestitself is worthles(if
it is theonly possibletest)andthe optimalplanis simplyto buy the carwithoutthetest.
(Thisis a trivial conditionalplan.) For the testto be worthwhile, it would needto be
morediscriminatingin orderto reducethe probability P(¢"|—Pass). Thetestwould
alsobeworthwhileif the marketvalueof thecarwereless,or if thecostof repairswere
more.

An interestingadditionalexerciseis to prove the generalpropositionthatif « is the
bestactionfor all the outcomef atestthenit mustbethe bestactionin theabsence
of thetestoutcome.

16.12 Intuitively, the value of informationis nonngatve becausean the worst caseone
couldsimplyignoretheinformationandactasif it wasnotavailable. A formalprooftherefore
begins by shawing thatthis policy resultsin the sameexpectedutility. The formulafor the
valueof informationis

VPIg(E;) = (ZP(Ej = ekl B)EU (0, |E, Ej:ejk)> — EU(alE)
k

If theagentdoesa giventheinformation£;, its expectedutility is
> P(Ej=ej|E)EU(a|E, Ej =eji,) = EU(o|E, Ej =eji)
k

wherethe equality holds becausehe LHS is just the conditionalizationof the RHS with
respecto £;. By definition,

EU(Oéejk|E, Ej :ejk) > EU(O[‘E, Ej :ejk)
henceV PIg(FE;) > 0.

16.13 Thisis relatvely straightforvardin the AIMA2e coderelease We needto addnode
typesfor actionnodesandutility nodes,we needto be ableto run standardBayesnetinfer-

enceonthenetwork givenfixedactionsjn orderto computeheposteriorexpectedutility; and
we needto write an“outerloop” thatcantry all possibleactionsto find the best.Giventhis,

addingVPI calculationis straightforvard, asdescribedn the answetto Exercisel6.8.
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17.1 Thisquestiorhelpsto bring homethedifferencebetweerdeterministicandstochastic
environments.Here,evena shortsequencspreadshe agentall over the place. The easiest
way to answerthe questionsystematicallyis to drav a treeshaving the statesreachedafter
eachstepandthe transitionprobabilities. Thenthe probability of reachingeachleaf is the
productof the probabilitiesalongthe path,becaus¢hetransitionprobabilitiesareMarkovian.
If the samestateappearsat morethanoneleaf, the probabilitiesof the leaves are summed
becausdhe eventscorrespondingdo the two pathsaredisjoint. (It is alwaysa goodideato
ensurethat studentgustify thesekinds of probabilisticcalculationsespeciallysincesome-
timesthe “naive” approaclhgetsthe wronganswey) The statesandprobabilitiesare: (3,1),
0.01;(3,2),0.08;(3,3),0.09;(4,2),0.18;(4,3),0.64.

17.2 Stationarityrequiresgheagentto have identicalpreferencebetweerthesequenceair
(S0, 81, 82, - - -], [S0, ST, S5, - . .| @andbetweerthesequenceair [s1, s, . . .], [s],5,...]. If the
utility of asequencés its maximumreward, we caneasilyviolate stationarity For example,

[4,3,0,0,0,...] ~[4,0,0,0,0,...]
but

[3,0,0,0,...] =10,0,0,0,...].
We canstill defineU™ (s) asthe expectedmaximumreward obtainedby executingr starting
in s. The agents preferenceseempeculiar nonethelessFor example,if the currentstate
s hasreward Rmax the agentwill be indifferentamongall actions,but oncethe actionis

executedandthe agentis no longerin s, it will suddenlystartto careaboutwhat happens
next.

17.3 A finite searchproblem(seeChapter3) is definedby aninitial states,, a successor
function S(s) thatreturnsa setof action—stat@airs,a stepcostfunctionc(s, a, s’), andagoal
test. An optimal solutionis aleast-cospathfrom sg to any goalstate.

To constructthe correspondingIDP, define R(s, a,s’) = — ¢(s,a,s’) unlesss is a
goalstate,in which caseR(s, a, s') =0 (seeEx. 17.5for how to obtainthe effect of a three-
argumentreward function); defineT'(s,a,s’) =1 if (a,s’) €S(s); andy=1. An optimal
solutionto this MDP is a policy thatfollows the least-cospathfrom eachstateto its nearest
goalstate.

17.4

113
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a. Intuitively, the agentwantsto getto state3 assoonaspossible becauset will paya
costfor eachtime stepit spendsn statesl and2. However, theonly actionthatreaches
state3 (actionbd) succeedsvith low probability sothe agentshouldminimize the cost
it incurswhile trying to reachthe terminal state. This suggestghat the agentshould
definitelytry actiond in statel; in state?, it mightbebetterto try actiona to getto state
1 (whichis the betterplaceto wait for admissiorto state3), ratherthanaimingdirectly
for state3. Thedecisionin state2 involvesanumericaltradeof.

b. Theapplicationof policy iterationproceedsn alternatingstepsof valuedetermination
andpolicy update.

e Initialization: U « (—1, —2, 0), P < (b, b).
¢ \Valuedetermination

up = —1+0.1ug + 0.9y
us = —2+ 0.1uz + 0.9us
us = 0

Thatis, u1 = —10 anduy = —20.
Policy update In statel,
> T(1,a,5)u; =08 x ~2040.2 x —10 = 18
J
while
D> T(1,b,5)u; =0.1x0x09%x ~10=-9
J
soactionb is still preferredfor statel.
In state2,
> T(1,a,5)u; =08 x ~10+0.2 x —20 = —12
J
while
> T(1,b,5)u; =0.1x0x0.9x —20=-18
J
soactiona is preferredfor statel. We setunchanged? «— false andproceed.
¢ Valuedetermination

up = —1+0.1ug + 0.9uq
uo = —2+ 0.8uqp + 0.2us
uz = 0
Oncemoreu; = —10; now, us = —15. Policy update In statel,

> T(1,a,5)u; =08 x =1540.2 x —10 = —14
j
while

> T(1,b,j)uj =0.1x0x0.9x —10 = -9
J
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soactionb is still preferredfor statel.
In state2,

> T(1,a,5)u; =08 x =104 0.2 x —15 = —11

J
while

> T(1,b,5)u; = 0.1 x 0x 0.9 x =15 = —13.5

J
soactiona is still preferredfor statel. unchanged? remainstrue, andwe termi-
nate.

Notethattheresultingpolicy matche®ur intuition: whenin state2, try to move to state
1, andwhenin statel, try to move to state3.

c. Aninitial policy with actiona in bothstatedeadsto anunsohableproblem.Theinitial
valuedeterminatiorproblemhastheform

ur = —1+0.2u; + 0.8us
Uy = —2+ 0.8uy; + 0.2uy
us = 0

andthefirst two equationsareinconsistentIf we wereto try to solve themiteratively,
we wouldfind thevaluestendingto —oo.

Discountingleadsto well-definedsolutionsby boundingthe penalty(expecteddis-
countedcost)anagentcanincur at eitherstate.However, the choiceof discountfactor
will affect the policy thatresults. For v small, the costincurredin the distantfuture
plays a negligible role in the value computation,becausey” is near0. As a result,
anagentcould chooseactiond in state2 becausehe discountedshort-termcostof re-
mainingin the non-terminaktateqstatesl and2) outweighsthe discountedong-term
costof actions failing repeatedlyandleaving the agentin state2. An additionalexer
cisecould askthe studentto determinethe value of + at which the agentis indifferent
betweerthetwo choices.

17.5 Thisis adeceptiely simpleexercisethatteststhe students understandingf thefor-
mal definitionof MDPs. Somestudentsnay needa hint or anexampleto getstarted.

a. Thekey hereis to getthemaxandsummatiorin theright place.For R(s, a) we have
U(s) = m(?x[R(s, a)+7v> T(s,a,s\U(s)

S

andfor R(s,a,s’) we have
U(s) = max Z T(s,a,s)[R(s,a,s") +~yU(s")] .
S/
b. Therearea variety of solutionshere. Oneis to createa “pre-state”pre(s, a, s’) for

every s, a, ', suchthatexecutinga in s leadsnotto s’ but to pre(s, a, s'). In this state
is encodedhefactthattheagentcamefrom s anddid « to gethere.Fromthepre-state,
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thereis just oneactionb thatalwaysleadsto s’. Let the nev MDP have transition7”,
reward R’, anddiscounty’. Then

T/(S‘/ CL?pTe(S? a” S/)) = T(S7 a” 8/)

T (pre(s,a,s’),b,s") =

R'(s,a) =0
R'(pre(s,a,s'),b) = “3R(s,a,s)
Y =7t
c. In keepingwith theideaof part(b), we cancreatestatesost(s, a) for every s, a, such
that
T'(s,a,post(s,a,s")) =1
T’(post(s a,s'),b,8")="T(s,a,s)
R'(s) =
R'<post<s,a, $')) =7 *R(s,a)
1
v =72
17.6 Theframeawork for thisproblemisin "uncertainty/d omai ns/ 4x3- mp. lis p".

Thereis still somesynthesidor the studentto do for answem. For c. someexperimentalde-
signis necessary

17.7 Thiscanbedonefairly simply by:

e Callpolicy-iteration (from "uncertainty/a lg orith mgd p. li sp")on
the Markov DecisionProcesseesepresentinghe 4x3 grid, with valuesfor the stepcost
rangingfrom, say 0.0to 1.0in increment®f 0.02.

e For ary two adjacenipoliciesthatdiffer, run binary searchon the stepcostto pinpoint
thethresholdvalue.

e Corvinceyourselfthatyou haven't missedary policies, eitherby usingtoo coarsean
incrementin stepsize(0.02),or by stoppingtoo soon(1.0).

Oneuseful obseration in this contet is that the expectedtotal reward of ary fixed
policy is linearin r, the persteprewardfor theemptystateslmaginedraving thetotal reward
of apolicy asafunctionof r—a straightline. Now draw all the straightlinescorresponding
to all possiblepolicies. Thereward of the optimal policy asafunctionof r is justthe maxof
all thesestraightlines. Thereforeit is a piecavise linear, corvex functionof . Hencethere
is avery efficientway to find all the optimalpolicy regions:

e Forary two consecutie valuesof r thathave differentoptimalpolicies,find theoptimal
policy for the midpoint. Oncetwo consecutie valuesof r give the samepolicy, then
theintenal betweerthetwo pointsmustbe coveredby thatpolicy.

e Repeathis until two pointsareknown for eachdistinctoptimalpolicy.

e SUpPpPOSET,1,va1) and(r,2, ve2) arepointsfor policy a, and (41, vp1) and (ry2, vp2)
arethe next two points,for policy b. Clearly we candraw straightlinesthroughthese
pairsof pointsandfind theirintersection.This doesnot mean however, thatthereis no
otheroptimal policy for the interveningregion. We candeterminethis by calculating
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the optimal policy for theintersectionpoint. If we geta differentpolicy, we continue
theprocess.

The policies and boundariesderived from this procedureare shavn in Figure S17.1. The
figure shavs that there are nine distinct optimal policies! Notice thatasr becomeamore
negative, the agentbecomeamore willing to dive straightinto the —1 terminal staterather
thanfacethe costof thedetourto the +1 state.

The somavhat ugly codeis asfollows. Notice thatbecausédhe lines for neighboring
policiesarevery nearlyparallel,numericalinstability is a seriousproblem.

(defun  policy-surface (mdp r1 r2 &aux prev (unchanged nil))
"returns points on the piecewise-linear surface
defined by the value of the optimal policy of mdp as a
function of r"
(setq rvplist
(list (cons rl (r-policy mdp rl)) (cons r2 (r-policy mdp r2))))
(do ()
(unchanged rvplist)
(setq unchanged t)
(setq prev nil)
(dolist (rvp  rvplist)
(let* ((rest (cdr  (member rvp rvplist test  #'eq)))
(next  (first rest))

(next-but-one (second rest)))
(dprint (list (first prev) (first rvp)
" (first next)  (first next-but-one)))
(when next
(unless  (or (= (first rvp)  (first next))
(policy-equal (third rvp) (third next) mdp))

(dprint "Adding new point(s)")
(setq unchanged nil)
(if (and prev next-but-one
(policy-equal (third prev) (third rvp) mdp)

(policy-equal (third next) (third next-but-one) mdp))
(let* ((intxy (policy-vertex prev rvp next next-but-one))

(int  (cons (xy-x intxy) (r-policy mdp (xy-x  intxy)))))
(dprint (list "Found intersection" intxy))

(cond ((or (< (first int)  (first rvp))
(> (first int)  (first next)))
(dprint "Intersection out of range!")

(let  ((int-r (/ (+ (first rvp)  (first next))  2)))
(setq int (cons int-r (r-policy mdp int-r))))
(push int (cdr (member rvp rvplist ‘test  #'eq))))
((or  (policy-equal (third rvp) (third int)  mdp)

(policy-equal (third next) (third int)  mdp))
(dprint "Found policy boundary")
(push  (list (first int) (second int) (third next))
(cdr  (member rvp rvplist test  #'eq)))
(push  (list (first int) (second int) (third rvp))
(cdr  (member rvp rvplist test  #'eq))))
(t (dprint "Found new policy!")
(push int (cdr (member rvp rvplist test  #'eq))))))
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(let* ((int-r (/ (+ (first rvp)  (first next))  2))
(int  (cons int-r (r-policy mdp int-r))))
(dprint (list "Adding split  point"  (list int-r (second int))))
(push int  (cdr (member rvp rvplist test  #'eq))))))))
(setq prev rvp))))

(defun  r-policy (mdp r &aux U)
(set-rewards mdp r)
(setq U (value-iteration mdp
(copy-hash-table (mdp-rewards  mdp) #'identity)
:epsilon 0.0000000001))

(list (gethash '(1 1) U) (optimal-policy U (mdp-model mdp) (mdp-rewards  mdp))))

(defun  set-rewards (mdp r &aux (rewards (mdp-rewards mdp))
(terminals (mdp-terminal-states mdp)))
(maphash #(lambda  (state  reward)
(unless  (member state terminals test  #'equal)
(setf  (gethash state rewards) 1))
rewards))

(defun  policy-equal (Pl p2 mdp &aux (match t)
(terminals (mdp-terminal-states mdp)))
(maphash #(lambda (state  action)
(unless  (member state terminals ‘test  #'equal)
(unless (eq (caar (gethash state pl)) (caar (gethash state
(setq match nil))))
p1)
match)

(defun  policy-vertex (rvpl rvp2 rvp3 rvp4)
(let (@ (make-xy :x (first rvpl) :y (second rvpl)))
(b (make-xy :x (first rvp2) :y (second rvp2)))
(c (make-xy :x (first rvp3) iy (second rvp3)))
(d (make-xy :x (first rvp4) :y (second rvp4))))
(intersection-point (make-line xyl a xy2 b)
(make-line xyl c :xy2 d))))

(defun intersection-point a1 12)
o 11 is line ab; 12 is line cd
;. assume the lines cross at alpha a + (1-alpha) b,
also known as beta c + (1-beta) d
;i returns the intersection point unless they're parallel
(let* (@ (line-xyl 11))
(b (line-xy2 11))
(c (line-xy1 12))
(d (line-xy2 12))
(xa (xy-x @) (ya (xy-y a))
(xb (xy-x b)) (yb (xy-y b))
(xc (xy-x c)) (yc (xy-y c))
(xd (xy-x d)) (yd (xy-y d))
(@ ¢ ¢ (- xa xb) (- yc yd)
* (- vya yb) (- xc xd))))

p2)))
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(unless  (zerop Q)
(let (@pha (¢ (- (* (- xd xb) (- yc yd)
(* (- yd yb) (- xc xd))
a))
(make-xy :x (float (+ (* alpha xa) (* (- 1 alpha) xb)))
y (float (+ (* alpha ya) (* (- 1 alpha) yb))))))))

| »| |0 || |3 || |3

| ]

A =(c| | A A=) | A =
A A A

||

r=[-o :-1.6284] r=[-1.6284 : -1.3702] r =[-1.3702 : —0.7083]

A ) [= A.AE. A.AE.
A A - -

= A A A= | A [
r=[-0.7083 : -0.4278] r =[-0.4278 : —0.0850] r =[-0.0850 : —0.0480]
] | | | ] |
r =[-0.0480 : —0.0274] r =[-0.0274 : -0.0218] r =[-0.0218 : 0.0000]

FigureS17.1  Optimalpoliciesfor differentvaluesof the costof a stepin the4 x 3 ervi-
ronment.andtheboundarie®f theregionswith constanbptimalpolicy.

17.8
a. ForU4 wehave
Ua(s)=R(s) + max > P(s'|a,s)Up(s")

andfor Up we have
Up(s)=R(s) + min Z P(s'|a,s)Ua(s") .
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1D —@EH—EH

w—al —.—m@
| |
w2 AT

(2,1) (3,1)

FigureS17.2 State-spacgraphfor thegameon pagel90 (for Ex. 17.8).

b. To dovalueiteration,we simply turn eachequationfrom part(a) into a Bellmanupdate
andapplythemin alternationapplyingeachto all statessimultaneously The process
terminateswhen the utility vector for one playeris the sameas the previous utility
vectorfor the sameplayer (i.e., two stepsearlier). (Notethattypically U4 andUp are
notthe samein equilibrium.)

c. Thestatespacds shavnin FigureS17.2.

d. Wemarktheterminalstatevaluesin bold andinitialize othervaluesto 0. Valueiteration
proceedssfollows:

(1,4)[(2,4)(3,4)|(1,3)[(2,3)[ (4,3)[(1,2)|(3,2)|(4,2)| (2,1)| (3,1)
Ua| O 0 0 0 O |+1]| O O |+y1|-1]| -1
Up| O 0 0 Oo|-1|+1| 0| -1|+1 | -1 -1
Uall O 0 O | 1|+ |+1 | -1|+1|+1| -1 -1
Ugpf 1| +1|+1 | -1 -1+ | -1 1|+ | -1]| -1
Ugl| +1 | +1 | +2 | -1 | +1 | +12 | -1 | +1 | +1 | -1 | -1
Ugpl 1| +1|+1 | -1 -1+ | -1 1|+ | -1]| -1

andtheoptimal policy for eachplayeris asfollows:

14)][24]B4)](13)](2,3)](4,3)](1,2)](.2)](4.2)](2.1](.1)
4 [(2.4)(3.4)](2.4)](2.3)| (4.3) (3.2)[(4.2)
m3](1,3)[(2,3)](3,2)] (1,2)] (2,1) 1.3)G1)

17.9 This questionis simplea matterof examiningthe definitions. In a dominantstratgy
equilibrium [sq, ..., s,], it is the casethatfor every playeri, s; is optimalfor every combi-
nationt_; by theotherplayers:

Vi \V/t, \V/S [Si,t,d fi [Sg,t,i] .

In a Nashequilibrium,we simply requirethats; is optimalfor the particularcurrentcombi-
nations_; by theotherplayers:

Vi Vs [s5,5_5] < [sh, 5] -
Thereforedominantstratgy equilibriumis a specialcaseof Nashequilibrium. Thecorverse

doesnothold, aswe canshav simply by pointingto the CD/DVD game whereneitherof the
Nashequilibriais adominantstratey equilibrium.
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17.10 In thefollowing table, the rows arelabelledby A's move andthe columnsby B’s
move, andthetableentrieslist the payofs to A andB respectiely.

R|P| S| F|W
0,0/-1,11,-1|-1,11,-1
1-1100(-1,1-1,1/1,-1
-1,11,-1 0,0|-1,11,-1
1-1|1,-1{1,-110,0|-1,1
-1,1-1,1-1,1)1,-1} 0,0

S nw oo

Supposed chooseamixedstrat@y [r: R; p: P;s:S; f: F; w: W], wherer + p+ s+
f +w=1. Thepayof to A of B’s possiblepureresponseareasfollows:

R:+p—s+f—w
P: —r+s+f—w
S:4r—p+f—-—w
F:—r—p—s+w
W :+r+p+s—f

It is easyto seethatnooptionis dominatedverthewholeregion. Solvingfor theintersection
of thehyperplaneswefindr=p=s=1/9 and f =w =1/3. By symmetrywe will find the
samesolutionwhen B chooses mixedstratayy first.

17.11 Thepayof matrix for three-fingeMorrais asfollows:

O: one O: two O: three
E:one |E=2,0=—-2|F=—-3,0=3|E=4,0= —4
E:two |E= -3,0=3|F=4,0=—-4|E=—-5,0=5
E:threel E=4,0= —4|F= —-5,0=5|FE=6,0= —6

Supposé? chooses mixedstrat@y [p; : one; ps : two; ps : three], wherep; +pa+ps = 1.
Thepayof to E of O’s possiblepureresponseareasfollows:

one : 2p1 — 3ps +4p3
two : —3p1 + 4ps — 5p3
three : 4p1 — 5po + 6p3

It is easyto seethatnooptionis dominatedverthewholeregion. Solvingfor theintersection
of thehyperplaneswe find p; = 1/4. po = 1/2, ps =1/4. Theexpectedvalueis 0.

17.12 Everygameis eitherawin for oneside(andalossfor theother)or atie. With 2 for a
win, 1 for atie, andO for aloss,2 pointsareawardedfor every game sothisis aconstant-sum
game.

If 1 pointis awardedfor alossin overtime,thenfor somegames3 pointsareawarded
in all. Thereforethe gameis nolongerconstant-sum.

Supposeave assumdhatteamA hasprobabilityr of winningin regulartime andteam
B hasprobability s of winningin regulartime (assuminghormalplay). Furthermoreassume
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teamB hasa probability ¢ of winningin overtime (which occursif thereis atie afterregular
time). Onceovertimeis reachedby ary means)the expectedutilities areasfollows:

U = 1+p

U9 = 144
In normal play, the expectedutilities are derived from the probability of winning plus the
probability of tying timesthe expectedutility of overtimeplay:

Us =2r+(1—-r—s)(1+p)

Up = 2s+(1—r—s)(1+gq)
HenceA hasanincentive to agredf U > U, or

l+p>2r+(1—r—s)(1+p) or rp—r+sp+s>0 or p>:;z
andB hasanincentive to agreef U9 > Ug, or

s—r

1+¢>2s+(1—r—s)(1+¢q) or sg—s+rqg+r>0 or q>r+s

Whenboth of theseinequalitieshold, thereis anincentie to tie in regulationplay. For ary
valuesof r ands, therewill bevaluesof p andq suchthatbothinequalitieshold.

For anin-depthstatisticalanalysisof the actualeffects of the rule changeanda more
sophisticatedreatmentof the utility functions,see“Overtime! RulesandIncentvesin the
NationalHockey League”by Stephenl. EastonandDuaneW. Rockerbie,availableat
http://people.u le th .c a/” ro cker bi e/OVERTIME. PDE

17.13 We applyiteratedstrict dominanceto find the pure stratgy. First, Pol: do nothing
dominatedPol: contract, sowe dropthe Pol: contract row. Next, Fed: contract dominates
Fed: do nothingandFed: expandon theremainingrows, sowe dropthosecolumns.Finally,

Pol: expanddominatedPol: do nothingon the oneremainingcolumn. Hencethe only Nash
equilibriumis a dominantstratgy equilibriumwith Pol: expandandFed: contract Thisis

not Paretooptimal: it is worsefor both playersthanthe four stratey profilesin thetop right

quadrant.



Solutionsfor Chapterl8
Learningfrom Obsenations

18.1 Theaim hereis to couchlanguagdearningin the framework of the chapter not to
solve the problem! This is a very interestingtopic for classdiscussion raising issuesof
naturevs. nurture theindeterminag of meaningandreferenceandsoon. Basicreferences
includeChomsly (1957)andQuine(1960).

The first stepis to appreciatehe variety of knowledgethat goesunderthe heading
“languagé€. Theinfantmustlearnto recognizeandproducespeech]earnvocalulary, learn
grammaylearnthesemanti@andpragmatidnterpretatiorof a speectact,andlearnstratgies
for disambiguationamongotherthings. The performanceslementdor this (in humansyand
their associatedearningmechanismsre obviously very complex andasyet little is known
aboutthem.

A nave modelof thelearningernvironmentconsidergusttheexchangef speeclsounds.
In reality, the physicalcontet of eachutteranceis crucial: a child mustseethe context in
which “watermelon”is utteredin orderto learnto associatéwatermelon”with watermel-
ons. Thus,the ervironmentconsistsnot just of otherhumansbut alsothe physicalobjects
andeventsaboutwhich discoursdakesplace.Auditory sensorsietectspeectsoundswhile
other sensegqprimarily visual) provide information on the physicalcontet. The relevant
effectorsarethe speechorgansandthe motor capacitieghat allow the infant to responadto
speectlor thatelicit verbalfeedback.

Theperformancetandaraouldsimply betheinfant's generaltility function,howvever
thatis realized,sothatthe infant performsreinforcementearningto performandrespondo
speechactsso asto improve its well-being—forexample,by obtainingfood and attention.
However, humans’built-in capacityfor mimicry suggestshatthe productionof soundssim-
ilar to thoseproducedoy otherhumanss a goalin itself. Thechild (oncehe or shelearnsto
differentiatesoundsandlearnaboutpointing or othermeansof indicatingsalientobjects)is
alsoexposedo examplesof supervisedearning:anadultsays‘shoe” or “belly button” while
indicatingthe appropriateobject. So sentenceproducedby adultsprovide labelledpositive
examplesandtheresponsef adultsto theinfant’s speechactsprovidesfurtherclassification
feedback.

Mostly, it seemghatadultsdo not correctthe child’s speechsotherearevery few neg-
ative classification®f thechild’s attemptedsentencesThis is significantbecausearlywork
on languagdearning(suchasthe work of Gold, 1967)concentrategust on identifying the
setof stringsthataregrammaticalassuming particulargrammaticaformalism. If thereare

123
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only positve examplesthenthereis nothingto rule outthegrammarS — Word*. Some
theoristgnotablyChomsly andFodor)usedwhatthey call the“poverty of thestimulus”argu-

mentto saythatthe basicuniversalgrammarof languagesnustbeinnate ,becaus@therwise
(giventhe lack of negatve examples)therewould be no way thata child could learna lan-

guage(underthe assumptionsf languagdearningaslearninga setof grammaticaktrings).
Critics have calledthisthe“poverty of theimagination"agument—Icant think of alearning
mechanisnthatwould work, soit mustbe innate. Indeed,if we go to probabilisticcontext

freegrammarsthenit is possibleto learnalanguagewithout negative examples.

18.2 Learningtennisis muchsimplerthanlearningto speak. The requisiteskills canbe
dividedinto movement playing strokes,andstratgy. The environmentconsistf the court,
ball, opponentandones own body The relevant sensorsarethe visual systemand propri-
oception(the senseof forceson and position of ones own body parts). The effectorsare
the musclesinvolved in moving to the ball andhitting the stroke. The learningprocessan-
volvesboth supervisedearningandreinforcemeniearning. Supervisedearningoccursin
acquiringthe predictive transitionmodels,e.g.,wherethe opponentwill hit the ball, where
the ball will land, andwhattrajectorythe ball will have after ones own stroke (e.g.,if | hit
a half-volley this way, it goesinto the net, but if | hit it that way; it clearsthe net). Rein-
forcementlearningoccurswhenpoints arewon and lost—thisis particularlyimportantfor
stratgic aspectof play suchasshotplacementndpositioning(e.g.,in 60% of the points
wherel hit alob in responsdo a cross-courshot,| endup losing the point). In the early
stagesreinforcementlsooccurswhena shotsucceed# clearingthe netandlandingin the
opponens court. Achieving this smallsuccesss itself a sequentiaprocessnvolving mary
motor controlcommandsandthereis no teacheravailableto tell the learners motor cortex
which motor controlcommanddgo issue.

18.3 Thisis a deceptiely simple question,designedo point out the plethoraof “excep-
tions” in real-world situationsandthe way in which decisiontreescapturea hierarchyof
exceptions.Onepossibletreeis shavn in Figure S18.1. Onecan,of course,imaginemary
more exceptions. The qualificationproblem,definedoriginally for actionmodels,appliesa
fortiori to condition—actiorrules.

18.4 In standarddecisiontrees,attribute testsdivide examplesaccordingto the attribute
value. Thereforeary examplereachingthe secondtestalreadyhasa known valuefor the
attribute andthe secondestis redundant.In somedecisiontree systemshowever, all tests
areBooleanevenif theattributesaremultivaluedor continuous.n this case additionaltests
of theattribute canbe usedto checkdifferentvaluesor subdvide the rangefurther (e.g. ,first
checkif X > 0, andthenif it is, checkif = > 10).

18.5 Thealgorithmmay not returnthe “correct” tree,but it will returnatreethatis logi-
cally equvalent,assuminghatthe methodfor generatingexampleseventuallygeneratesll
possiblecombinationf input attributes. This is true becausery two decisiontreedefined
on the samesetof attributesthatagreeon all possibleexamplesare,by definition, logically
equvalent. Theactuallyform of thetreemaydiffer because¢herearemary differentwaysto
representhesamefunction. (For example,with two attributes A and B we canhave onetree
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FrontOfQueue?
No Yes
| CarAheadMoving? | [ IntersectionBlocked? |
No Yes No Yes
No Yes [CrossTraffic? | | No |
No Yes
[ Pedestrians? | [ No |
No Yes
| Tuming? | | No |
Left No Right
| OncomingTraffic? | [Yes| [ Cyclist? |
No Yes No Yes
Figure S18.1 A decisiontreefor decidingwhetherto move forward at a traffic intersec-
tion, givenagreenlight.

with A attherootandanothemwith B attheroot.) Theroot attribute of the original treemay
notin factbethe onethatwill be choserby the informationgain geuristicwhenappliedto
thetrainingexamples.

18.6 Thisis aneasyalgorithmto implement. The main point is to have somethingto test
otherlearningalgorithmsagainstandto learnthe basicsof what a learningalgorithmis in
termsof inputsandoutputsgiventhe frameavork provided by the coderepository

18.7 If we leave outanexampleof oneclass,thenthe majority of theremainingexamples
areof theotherclass,sothe majority classifiewill alwayspredictthewronganswer

18.8 This questionbringsa little bit of mathematic$o bearon the analysisof the learning
problem, preparingthe groundfor Chapter20. Error minimizationis a basictechniquein
both statisticsand neuralnets. The main thing is to seethat the error on a given training
setcanbe written asa mathematicakxpressiorandviewed asa function of the hypothesis
chosenHere,the hypothesisn questionis a singlenumbera € [0, 1] returnedattheleaf.

a. If aisreturnedtheabsoluteerroris
E=p(l—a)+na=a(n—p)+p = nwhena =1
= pwhena =0
Thisis minimizedby setting
a=1ifp>n
a=0ifp<n
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Thatis, « is themajority value.
b. Firstcalculatethe sumof squarederrors,andits derivative:

E =p(1 - a)?+na?
% =2an —2p(1 —a) =2a(p+n) — 2p
Thefactthatthe secondderivative, % = 2(p+ n), is greatethanzeromeanghat £

is m|n|m|zed(notmammaed)wherew =0, i.e.,whena = T

18.9 Supposdhatwe drav m examples.Eachexamplehasn inputfeatureplusits classi-
fication,sothereare2"*! distinctinput/outputexamplesto choosefrom. For eachexample,
thereis exactly onecontradictoryexample,namelythe examplewith the samenput features
but the oppositeclassification.Thus,the probability of finding no contradictionis

numberof sequencesf mnon-contradictorgxamples 271 (2L 1) (27 —m 4 1)

numberof sequencesf m examples om(n+1)
on+1|

(2n+1 _ m)!2m(n+1)

For n = 10, with 2048 possibleexamples,a contradictionbecomedikely with probability
> (.5 after54 exampleshave beendrawn.

18.10 Thisresultemphasizethefactthatary statisticalfluctuationscausedy therandom
samplingproceswill resultin anapparentnformationgain.

The easypartis shaving thatthe gainis zerowheneachsubsethasthe sameratio of
positve examples.Thegainis definedas

I( P n )_Xv:prﬂli[( i ni )

p+n’p+n = p+n \pi+n; pi+n

Sincep = > p; andn = Y ny, if pi/(pi +ni) = pj(p; + n;) for all i, j thenwe musthave
pi/(pi +ni) = p/(p + n) for all i, andalson;/(p; + n;) = n/(p + n). Fromthis, we obtain

v
Gain—[( p__n )—Zpﬁ""f( p__n )
prn'ptn) “ptn \pinpin
v

i + 1y
( p__n ) IR
p+n’'p+n p+n

18.11 Thisis afairly small, straightforvard programmingexercise. The only hardpartis
the actualy? computationyou might wantto provide your studentswith a library function
to dothis.

18.12 Thisis anotherstraightforvard programmingexercise. The follow-up exerciseis to
runteststo seeif the modifiedalgorithmactuallydoesbetter
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18.13 Lettheprior probabilitiesof eachattribute valuebe P(v1), ..., P(v,). (Theseprob-
abilities are estimatedoy the empirical fractionsamongthe examplesat the currentnode.)
Frompageb540,theintrinsic informationcontentof the attributeis

[(P(v1),.... P(vy)) = 3 —P(v;) logv;
i=1
Given this formula and the empirical estimatesof P(v;), the modificationto the codeis
straightforvard.

18.14

18.15 Note: this is the only exerciseto cover the materialin section18.6. Althoughthe
basicideasof computationalearningtheoryarebothimportantandelegant,it is noteasyto
find goodexerciseghataresuitablefor anAl classasopposedo atheoryclass.If you are
teachinga graduateclass,or an undegraduateclasswith a strongemphasin learning, it
mightbeagoodideato usesomeof the exercisefrom KearnsandVazirani(1994).

a. If eachtestis an arbitrary conjunctionof literals, then a decisionlist canrepresent
an arbitrary DNF (disjunctve normal form) formula directly. The DNF expression
Civ (CyV---V C, whereC; is a conjunctionof literals, can be representedy a
decisionlist in which C; is theith testandreturnsT'rue if successfulThatis:

Ch — True;
Cy — True;

C,, — True;

True — False
Sinceary Booleanfunctioncanbewrittenasa DNF formula,thenary Booleanfunction
canberepresentetdy adecisionlist.

b. A decisiontreeof depthk canbetranslatednto adecisionlist whosetestshave at most
k literalssimply by encodingeachpathasatest. Thetestreturnsthecorrespondindeaf
valueif it succeedsSincethe decisiontreehasdepthk, no pathcontainsmorethank
literals.



Solutionsfor Chapterl9
Knowledgein Learning

19.1 In CNF, thepremisesareasfollows:

—Nationality(x,n) V ~Nationality(y,n) V = Language(x,l) V Language(y, 1)
Nationality(Fernando, Brazil)
Language(Fernando, Portuguese)

We canprove the desiredconclusiondirectly ratherthanby refutation. Resole thefirst two
premiseswith {z/Fernando} to obtain

—Nationality(y, Brazil) V = Language(Fernando,l) V Language(y, )
Resole thiswith Language(Fernando, Portuguese) to obtain
—Nationality(y, Brazil) V Language(y, Portuguese)

which is the desiredconclusionNationality(y, Brazil) = Language(y, Portuguese).

19.2 This questionis tricky in places. It is importantto seethe distinction betweenthe
sharedandunsharedrariableson the LHS and RHS of the determination.The sharedvari-
ableswill beinstantiatedo the objectsto be comparedn ananalogicalinference while the
unsharedrariablesareinstantiatedvith the objects’obsened andinferredproperties.

a. Herewe aretalking aboutthe zip codesandstatef housegor addressesr towns). If
two houses/addressesifus have the samezip code,they arein the samestate:

ZipCode(z, z) > State(zx, s)

The determinations true becausehe US PostalServicenever draws zipcodebound-
ariesacrosstatdines(perhapgor somereasorhaving to dowith interstatecommerce).
b. Herethe objectsbeingreasonedboutare coins,anddesign,denominationandmass
arepropertiesof coins.Sowe have
Coin(c) = (Design(c,d) N Denomination(c,a) = Mass(c,m))

Thisis (very nearlyexactly) true becauseoinsof a givendenominatioranddesignare
stampedrom the sameoriginal die usingthe samematerial;sizeandshapedetermine
volume;andvolumeandmaterialdeterminemass.

128
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c. Herewe have to be careful. The objectsbeingreasonedaboutare not programsbut
runs of a given program (This determinationis also one often forgottenby novice
programmers.yWe canusesituationcalculusto referto theruns:

Vp Input(p,i,s) = Output(p,o,s)

HeretheV p captureghe p variablesothatit doesnot participatein the determination
asoneof the sharedor unsharedrariables. The situationis the sharedvariable. The
determinatiorexpandsoutto thefollowing Horn clause:

Input(p,i,s1) A Input(p,i,s2) A Output(p, o,s1) = Output(p,o,s2)

Thatis, if p hasthe sameinputin two differentsituationsit will have the sameoutput
in thosesituations.This is generallytrue because&omputersoperateon programsand
inputsdeterministicallyhowever, it is importantthat“input” includethe entirestateof
the computers memory file systemandsoon. Noticethatthe “naive” choice

Input(p, i) > Output(p, o)
expandsoutto
Input(p1,i) A Input(pa, i) A Output(pr,0) = Output(pa,o)

which saysthatif ary two programshave the samenputthey producethe sameoutput!

d. Herethe objectsbeingreasonedare peoplein specifictime intenals. (The intenals
couldbethe samein eachcase or differentbut of the samekind suchasdays,weeks,
etc. We will stickto thesameinterval for simplicity. As above, we needto quantifythe
intenal to “precapture’thevariable.)We will useClimate(z, ¢, i) to meanthatperson
x experienceglimatec in intenval 7, andwe will assumdor the sale of varietythata
persons metabolisnis constant.

Vi Climate(zx,c,i) A Diet(x,d,i) N\ Exercise(x,e,i) A Metabolism(x,m)
= Gain(x,w,1)

While the determinationseemsplausible,it leaves out suchfactorsas waterintake,
clothing,diseaseetc. The qualificationproblemariseswith determinationgust aswith
implications.

e. Let Baldness(z,b) meanthatperson: hasbaldnes$ (whichmightbe Bald, Partial,
or Hairy, say).A first stabat the determinatiommight be

Mother(m,x) A Father(g,m) A Baldness(g,b) = Baldness(z,b)

but thiswould only allow aninferencewhentwo peoplehave the samemotherandma-
ternalgrandatherbecaus¢hem andg aretheunsharediariablesonthe LHS. Also, the
RHS hasno unsharedrariable. Notice thatthe determinatiordoesnot say specifically
thatbaldnesss inheritedwithout modification;it allows, for example,for a hypothet-
ical world in which the maternalgrandchildrenof a bald man are all hairy, or vice
versa.This might not seemparticularlynatural,but considerotherdeterminationsuch
as“Whetheror notl file atax returndeterminesvhetheror not my spousamnustfile a
taxreturn’
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Thebaldnes®f thematernalgrandtheris therelevantvaluefor prediction,sothat
shouldbethe unsharedrariableon the LHS. The motherand maternalgrandatherare
designatedby skolemfunctions:

Mother(M (x),z) A Father(F(M(x)), M(z)) A Baldness(F (M (x)),b1)
> Baldness(z, bs)

If weuseFather and M other asfunctionsymbols thenthemeaningoecomeglearer:
Baldness(Father(Mother(z)),b1) = Baldness(z,bs)
Justto check,this expandsinto

Baldness(Father(Mother(x)),b1) A Baldness(Father(Mother(y)),b1)
ABaldness(x,by) = Baldness(y, ba)

which hastheintendedmeaning.

19.3 Becauseof the qualification problem, it is not usually possiblein most real-world
applicationsto list on the LHS of a determinationall the relevant factorsthat determine
the RHS. Determinationswill usuallythereforebe true to an extent—thatis, if two objects
agreeon the LHS thereis someprobability (preferablygreaterthanthe prior) that the two
objectswill agreeon the RHS. An appropriatedefinition for probabilistic determinations
simply includesthis conditionalprobability of matchingon the RHS given a matchon the
LHS. For example,we could define Nationality(z,n) > Language(x,1)(0.90) to mean
thatif two peoplehave the samenationality thenthereis a 90% chancethatthey have the
samelanguage.

19.4 This exercisetestthe students understandin@f resolutionandunification,aswell as
stressinghenondeterminisnof theinverseresolutionprocesslit shouldhelpalot in making
theinverseresolutionoperatiorlessmysteriousandmoreamenabléo mathematicahnalysis.
It is helpfulfirst to drawv outtheresolution"V” whendoingtheseproblemsandthento doa
carefulcaseanalysis.

a. Thereis no possiblevaluefor Cs here. Theresolutionstepwould have to resohe away
boththe P(x,y) onthe LHS of C; andthe Q(x, y) ontheright, whichis notpossible.
(Resolutioncan remove morethanoneliteral from a clause,but only if thoseliterals
areredundant—i.e gnesubsumesheother)

b. Withoutlossof generalitylet C; containthenegative (LHS) literal to beresohed away.
The LHS of C; thereforecontainsoneliteral /, while the LHS of C'; mustbe empty
The RHS of (5 mustcontainl’ suchthat! and!’ unify with someunifier . Now we
have a choice: P(A, B) onthe RHS of C' could comefrom the RHS of C; or of Cs.
Thusthetwo basicsolutiontemplatesare

Cy =1 = False ; Cy=True = I'VP(AB)I™"
Ci=1= PABO " ; Co=True = I’

Within thesetemplatesthe choiceof [ is entirely unconstrainedSupposé is Q(z, y)
andl’ is Q(A, B). ThenP(A, B)0~! couldbe P(z,y) (or P(A,y) or P(x, B)) and
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thesolutionsare
C1=Q(z,y) = False ; Co=True = Q(A,B)V P(z,y)
Cl :Q(I',y) = P(Iay) ; 02 = True = Q(A7B)

c. As before,let C; containthe negative (LHS) literal to be resolhed away, with I’ onthe
RHSof C>. We now have four possibletemplatedecauseachof thetwo literalsin C
couldhave comefrom eitherC'; or Cs:

Ci=1= False ; Co=P(zx,9)07" = I'V P(x, f(y))0~!
Ci=1= Pla, fly)o ' ; Co=Plx,y)o ! =1
C; =1AP(z,y)0~! = False ; Cy=True = I'V P(z, f(y))0~*
C1=IAP(z,y)0™" = Pz, f(y)0" ; Cy=True = I

Again,we have afairly free choicefor [. However, sinceC containse andy, 8 cannot
bind thosevariables(elsethey would not appearin C). Thus,if I is Q(z,y), thenl’
mustbe Q(z, y) alsoandéd will beempty

19.5 Wewill assumghatPrologis thelogic programmindanguagelt is certainlytruethat
ary solutionreturnedoy thecallto Resolve will beacorrectinverseresohent. Unfortunately
it is quite possiblethatthe call will fail to returnbecausef Prologs depth-firstsearch. If
theclausesn Resolve andUni fy areinfelicitously arrangedthe proof treemight go down
the branchcorrespondindo indefinitely nestedfunction symbolsin the solutionand never
return. This canbe alleviated by redesigninghe Prologinferenceengineso that it works
using breadth-firstsearchor iteratve deepeningalthoughthe infinitely deepbrancheswill
still be a problem.Notethatary cutsusedin the Prologprogramwill alsobe a problemfor
theinverseresolution.

19.6 Thisexercisegivessomeideaof theratherlarge branchingactorfacingtop-davn ILP
systems.

a. It is importantto note that position is significant—P (A, B) is very different from
P(B,A)! The first agumentposition can containone of the five existing variables
or anew variable.For eachof thesesix choicesthe secondoositioncancontainoneof
the five existing variablesor a new variable,exceptthatthe literal with two new vari-
ablesis disalloved. Hencethereare 35 choices. With negatedliterals too, the total
branchingfactoris 70.

b. This seemsto be quite a tricky combinatorialproblem. The easiestway to solwe it
seemsto be to start by including the multiple possibilitiesthat are equivalent under
renamingof the new variablesaswell asthosethat containonly new variables.Then
theseredundanor illegal choicescanbe remaoved later Now, we canuseuptor — 1
new variables. If we use< i new variables,we canwrite (n + )" literals, sousing
exactlyi > 0 variableswe canwrite (n + i)" — (n 4+ — 1)" literals. Eachof these
is functionallyisomorphicunderary renamingof the new variables.With i variables,
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therearearei renamings.Hencethe total numberof distinctliterals (including those
illegal oneswith no old variables)s

r—1 . ;
(n+i)"—(n+i—1)"
,
n -I—; il

Now we justsubtracoff thenumberof distinctall-new literals. With < i new variables,
thenumberof (notnecessarilgistinct)all-new literalsis ", sothenumbemwith exactly
i > 0is¢" — (i — 1)". Eachof thesehasi! equvalentliteralsin the set. This givesus
thefinal total for distinct,legal literals:

r—1 . . r—1 . .
s R —(mti-1 R (-1
LDy il 2
i=1 i=1
which candoubtlesse simplified. Onecancheckthatfor » = 2 andn = 5 this gives
35.

. If aliteral containsonly new variables,then either a subsequeniliteral in the clause

body connectsone or more of thosevariablesto one or more of the “old” variables,
or it doesnt. If it does,thenthe sameclausewill be generatedvith thosetwo literals

reversed,suchthattherestrictionis not violated. If it doesnt, thentheliteral is either

alwaystrue (if the predicateis satisfiable)or alwaysfalse(if it is unsatisfiable)inde-

pendenbf the“input” variablesin thehead.Thus,theliteral would eitherberedundant
or would renderthe clausebodyequvalentto False.

19.7 FolL is availableonthewebat http://www-2.cs.cmu.edu/afs/csfipect/ai-repository-
/ai/areas/learningfstemsfoil/0.html (andpossiblyotherplaces).It is worthwhile to experi-
mentwith it.



Solutionsfor Chapter20
StatisticalLearningMethods

20.1 Thecodefor this exerciseis a straightforvard implementatiorof Equations20.1and
20.2. Figure S20.1shaws the resultsfor datasequencegeneratedrom h3 andhy. (Plots
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Figure S20.1 Graphsfor Ex. 20.1. (a) Posteriorprobabilities P(h;|d1, .. .,dxN) overa
samplesequenc®f length100 generatedrom h3 (50% cherry+ 50% lime). (b) Bayesian
prediction P(dn 41 = lime|ds, ...,dy) given the datain (a). (c) Posteriorprobabilities
P(h;ld1,...,dn) over a samplesequencef length 100 generatedrom h, (25% cherry
+75%lime). (d) BayesiarpredictionP(dy 1 = lime|ds, .. ., dy) giventhedatain (c).
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for h1 andhy areessentiallyidenticalto thosefor hs andhy.) Resultsobtainedby students
may vary becausehe datasequencearegeneratedandomlyfrom the specifiedcandydis-
tribution. In (a), the samplesvery closelyreflectthe true probabilitiesand the hypotheses
otherthanhg areeffectively ruled out very quickly. In (c), the early sampleproportionsare
someavherebetweerb0/50and25/75;furthermore 3 hasahigherprior thanh,. As aresult,
hs andhy vie for supremag Betweens0 and60 samplesa preponderancef limesensures
thedefeatof h3 andthepredictionquickly corvergesto 0.75.

20.2 Typical plotsareshavn in Figure S20.2.Becauséoth MAP andML chooseexactly
onehypothesidor predictionsthe predictionprobabilitiesareall 0.0,0.25,0.5,0.75,0r 1.0.
For smalldatasetsthe ML predictionin particularshavs very large variance.

20.3 This is a nontrivial sequentialdecisionproblem, but can be solved using the tools
developedin the book. It leadsinto generalissuesof statisticaldecisiontheory stopping
rules,etc. Here,we sketchthe “straightforward” solution.
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FigureS20.2 Graphdor Ex.20.2.(a)Predictionfromthe MAP hypothesigivenasample
sequencef length100generatedrom h3 (50%cherry+ 50%lime). (b) Predictionfrom the
ML hypothesigjiventhedatain (a). (c) Predictionfrom theMAP hypothesigivendatafrom

h4 (25%cherry+ 75%lime). (d) Predictionfrom the ML hypothesigjiventhe datain (c).
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We canthink of this problemasa simplified form of POMDP (seeChapterl7). The
“belief states”aredefinedby the numbersof cherryandlime candiesobsered sofarin the
samplingprocessLet thesebe C' and L, andlet U (C, L) betheutility of the corresponding
belief state.In ary givenstate therearetwo possibledecisions:sell andsample. Thereis a
simpleBellmanequatiorrelating@ andU for thesamplingcase:

Q(C, L, sample) = P(cherry|C, L)U(C + 1, L) + P(lime|C, L)U(C,L + 1)

Let the posteriorprobability of eachh; be P(h;|C, L), the size of the bagbe N, andthe
fraction of cherriesin a bagof typei be f;. Thenthe valueobtainedby sellingis given by
thevalueof thesampledcandiegwhich Ann getsto keep)plusthe price paidby Bob (which
equalshe expecteautility of theremainingcandiesor Bob):

Q(C, L, sell) = Cea + Lla + Z P(hi|C,L)[(fiN — C)ep + (1 — f;)N — L){3p]

andof coursewe have
U(C, L) = max{Q(C, L, sell),Q(C, L, sample)} .

Thuswe cansetup adynamicprogramto compute() giventheobviousboundaryconditions
for thecasewhereC'+ L = N. Thesolutionof this dynamicprogramgivestheoptimalpolicy

for Ann. It will have the propertythatif sheshouldsellat (C, L), thensheshouldalsosell

at(C, L + k) for all positve k. Thus,the problemis to determinefor eachC, thethreshold
valueof L at or above which sheshouldsell. A minor complicationis thatthe formula for

P(h;|C, L) shouldtake into accounthe non-replacemertf candiesandthefinitenesof N,

otherwiseoddthingswill happerwhenC + L is closeto N.

20.4 The Bayesianapproachwould be to take both drugs. The maximumlikelihood ap-
proachwould be to take the anti-B drug. In the casewherethereare two versionsof B,

theBayesiarstill recommendsakingbothdrugs,while themaximumlikelihoodapproachs

now to take theanti-A drug,sinceit hasa 40% chanceof beingcorrect,versus30%for each
of the B casesThisis of coursea caricatureandyouwould be hard-pressetb find adoctor

evenarabid maximume-likelihood advocatewho would prescribdik e this. But you canfind

oneswho doresearchik e this.

20.5 Boostednaive Bayeslearningis discussedy ? (?). The applicationof boostingto
naive Bayesis straightforvard. Thenaive Bayedearnerusesmaximume-likelihoodparameter
estimationbasedon counts,so using a weightedtraining setsimply meansaddingweights
ratherthancounting.Eachnaive Bayesmodelis treatedasa deterministicclassifierthatpicks
themostlikely classfor eachexample.

20.6 Wehave
L =-m(logo + log v2m) — Z
J
hencethe equationdor the derivativesat the optimumare

oL - Ij(yj — (Qll'j + 02)) N
891 N Z O'2 =0

(yj — (0125 + 02))?
202

J
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GAMMA FUNCTION

oL (y; — (b1 +02))

00y XJ: 02 =0

oL o m (yj — (Qll'j + 92))2 B
o o + Z o3 =0

andthe solutionscanbe computedas
m (5 25m) = (S5w) (2525)
m(3593) = (Sym)
6, = —Z — 1)

o’ = —Z 91]?] +92))

20.7 Therearea coupleof waysto solwe this problem. Here,we shav the indicatorvari-

able methoddescribedon page743. Assumewe have a child variable Y with parents

X1, ..., X, andlet the rangeof eachvariablebe {0,1}. Let the noisy-ORparameterde
=P(Y =0|X; =1, X_; =0). Thenoisy-ORmodelthenassertshat

k
P(Yzl‘ﬂfl,...,ik) =1- H qf“”
i=1

Assumewe have m complete-dataampleswith valuesy; for Y andx;; for eachX;. The
conditionallog likelihoodfor P(Y'| X1, ..., X}) is givenby

1—y;
el e (1
= Zyj log (1 — Hﬁ”) +(1 _yj)zfijk)g%

Thegradientwith respecto eachnoisy-ORparameters

0L  «—  yrglLig” (1 —yj)zij
dai EJ: qi (jllil'[ q‘””) i q; .
_ - (1-y - TL4")

J (1—H qm>

20.8
a. By integratingover the range[0, 1], shav that the normalizationconstantfor the dis-
tribution betala, b] is givenby o« = T'(a + b)/T'(a)I'(b) whereT'(z) is the Gamma
function, definedby I'(x + 1) =z - I'(z) andI'(1) = 1. (Forintegerz, I'(z + 1) = z!.)
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We will solwve this for positive integera andb by inductionover a. Let a(a,b) be
thenormalizationconstantFor the basecaseswe have

1
a(1,b) = 1// 0°(1 —0)" 1do = 4/[%(1 — ) =0
0
and
L(1+b) b-T(b)
L(re) 1-rod)
For theinductive step,we assumdor all b that
I'(a+0) a—1 T(a+b)
-1 1) = = .
ale—1b+ ) = = s - 5 T@r0)
Now we evaluatea(a, b) usingintegrationby parts.We have

b.

1/a(a,b) = /019“1(1 — 0y Lde

1 1
= [t (-0 + ‘LT/ 99=2(1 — 0)°do
0
1

— o+ 2]
B b afla—1,b+1)
Hence
b b a—1 TI'(a+0b) T(a+Db)
b)= ——ala—1,b+1) = : -
aa,b) = T—ala = Lo+ 1) = T == T F ) T T o)
asrequired.

b. Themeanis givenby thefollowing integral:

1
pla,b) = a(a,b)/o 6-6°"1(1—0)""1dp

— a(a,b) /01 6(1 — 6)"~'do

B ~ T(a+0b) T(a+1)I(b)
= a(a,b)/ala+1,b) = T(a)T(b) T(a+b+1)
I(a + b) al( @) _ e

~ T(a)l'(b) (a+b(a+b+1) a+b’
c. Themodeis foundby solvingfor dbetala, b](0)/dd = 0:

@ (o, 10" (1 - ) )

do
= ala,b)[la—1)0"21—-0)""—(b-1"11-0)"=0
= (a—1)(1—-0)=(0b-1)
a—1
= 0=

a+b—2

d. betale, e] = a(e, €)01(1 — #)¢~! tendsto very large valuescloseto § = 0 andf = 1,
i.e., it expresseshe prior belief thatthe distribution characterizedby 6 is nearlydeter
ministic (either positively or negatively). After updatingwith a positive examplewe
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obtainthe distribution beta[l + ¢, €], which hasnearlyall its massnearf = 1 (andthe
corversefor a negative example),i.e., we have learnedthatthe distribution character
ized by 6 is deterministicin the positve sense.If we seea “counter&kample”, e.g.,a
positve andanegative example,we obtainbeta[l + ¢, 1 + €], whichis closeto uniform,
i.e.,thehypothesi®f neardeterminisms abandoned.

20.9 Considethemaximum-likelihoodparametevaluesfor the CPTof nodeY in theorig-
inal network, wherean extra parentX;,; will beaddedto Y. If we setthe parametersor
P(y|z1,...,zk, xr+1) in thenew network to beidenticalto P(y|z1, ..., zx) in theoriginal
netavrk, regardlessof thevalue zy., 1, thenthe likelihood of the datais unchanged Maxi-
mizing thelikelihoodby alteringthe parametersanthenonly increasethelikelihood.

20.10

a. With threeattributes,thereare seven parametersn the modelandthe empirical data
give frequenciedor 23 =8 classeswhich supply 7 independenhumberssincethe 8
frequencieshave to sumto the total samplesize. Thus,the problemis neitherunder
nor over-constrained.With two attributes,therearefive parametersn the modeland
theempiricaldatagive frequenciesor 22 = 4 classeswhichsupply3 independentum-
bers.Thus,the problemis severelyunderconstrainedl herewill beatwo-dimensional
surfaceof equallygoodML solutionsandthe original parametersannotberecovered.

b. The calculationis sketchedand partly completedon pages729 and730. Completing
it by handis tedious;studentshouldencouragedo implementthe method,ideally in
combinatiorwith abayesnetpackageandtraceits calculations.

¢. Thequestiorshouldalsoassumé = 0.5 to simplify theanalysis With every parameter
identicalandd = 0.5, the new parametewaluesfor bagl1 will bethe sameasthosefor
bag2, by symmetry Intuitively, if we assumenitially thatthe bagsareidentical,then
it is asif we hadjustonebag.Likelihoodis maximizedunderthis constraintoy setting
the proportionsof candytypeswithin eachbagto the obsered proportions.(Seeproof
below.)

d. We begin by writing out L for thedatain thetable:
L = 2731og(00r10w10m1 + (1 — 0)0r20w20m2)
+93 10g(99F19W1(1 — 9H1) + (1 — 9)9F29W2(1 — 91{2)) + -
Now we candifferentiatewith respecto eachparameterFor example,

o . 00101
001 00p10w10m1 + (1 — 0)0p20w 2052
0010
o3 F10w1 .

00p10w1(1 — O0m1) + (1 — 0)0p20wa(1l — Op2)
Now if 1 = 0ps, Oy1 = Owe, andfy1 = 0o, the denominatorsimplify, everything
cancelsandwe have
oL 273 93 550 450
o] =]

90m  L0m (1—0m

Om (1 —0m)
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First,notethatd L /00 2 will have thesamevalueexceptthatf and(1—6) arereversed,
sothe parameters$or bagsl and2 will move in lock stepif § =0.5. Secondnotethat
OL /001 =0 whenfp, =550/(450 + 550), i.e., exactly the obsered proportionof
candieswith holes. Finally, we cancalculateseconddervatives andevlauatethemat
thefixed point. For example,we obtain

0’L

903,
which is negative (indicating the fixed point is a maximum)only when 6z, < 0.5.
Thus,in generakhefixedpointis a saddlepointassomeof the secondderivativesmay
bepositive andsomenegative. Nonetheles$:M canreachit by moving alongtheridge
leadingto it, aslong asthesymmetryis unbrolen.

= NO*0g1(1 — 0p1) (2051 — 1)

20.11 XOR (in factarny Booleanfunction)is easiesto constructusingstep-functiorunits.
BecauseXOR is notlinearly separableywe will needa hiddenlayer It turnsoutthatjustone
hiddennodesufices. To designthe network, we canthink of the XOR functionasOR with
the AND case(bothinputson) ruled out. Thusthe hiddenlayer computesAND, while the
outputlayercompute$OR but weightsthe outputof the hiddennodenegatively. Thenetwork
shawvn in FigureS20.3doesthetrick.

FigureS20.3 A network of step-functiomeuronghatcomputeghe XOR function.

20.12 Theexamplesmapfrom [z, z9] tO [z1, x1, z2] coordinatessfollows:

[—1, —1] (negative) mapsto [ 1, +1]

[—1,+1] (positive) mapsto [—1, —1]

[+1, —1] (positve) mapsto [+1, —1]

[+1, +1] (negative) mapsto [+1, +1]

Thus,the positve exampleshave 122 = — 1 andthe nggative exampleshave 122 = + 1.
The maximummaurgin separatotis the line z;x5 =0, with a magin of 1. The separator
correspondso thex; =0 andx, = 0 axesin theoriginal space—thisanbethoughtof asthe
limit of ahyperbolicseparatowith two branches.

20.13 The perceptronadjuststhe separatinghyperplanedefinedby the weightsso as to
minimizethetotal error The questionassumeshatthe perceptroris trainedto corvergence
(if possibleontheaccumulatediatasetaftereachnen examplearrives.

Therearetwo phasesWith few examplesthe datamayremainlinearly separableand
thehyperplanevill separaté¢he positive andnegative examplesalthoughit will notrepresent
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the XOR function. Oncethedatabecomenon-separablghe hyperplanewill move aroundto
find a local minimum-errorconfiguration.With parity data,positve andnegatve examples
aredistributeduniformly throughoutheinput spaceandin thelimit of large samplesizesthe
minimum erroris obtainedoy a weightconfigurationthat outputsapproximately0.5for any
input. However, in this region the error surfaceis basicallyflat, andarny smallfluctuationin
the local balanceof positive and negative examplesdueto the samplingprocesamay cause
the minimum-errorplaneto move arounddrastically

Hereis somecodeto try out agiventrainingset:

(setq *examples*
T . 0) (11 . 1) (12 .0 (I3 . 1) (4 . 0)
(T . 1) (11 . 1) (2 .0 (@3 . 1) (4 . 1)
(m .0 (@1 .1 @2 .0 (3 . 0 (14 . 1)
(T .0 (1 .0 (2 . 1) (13 . 1) (4 . o)
((T .0 (1 .0 (2 .0 (@3 . 1) (14 . 1)
(T . 1 @1 .1 @2 .0 (3 .0 (14 . 0)
((T .0 (1 . 1) (12 . 1) (13 . 0 (4 . 0)
(T . 1) (11 .0 (2 . 1) (13 . 1) (4 . 1)
(m .0 (@1 .0 (2 . 1) (3 . 1) (14 . 0)

(deftest ex20.13
((setg  problem
(make-learning-problem

-attributes @ 01 (12 01) (13 01) (4 0 1)
;goals (T 0 1))
:examples  (subseq *examples* 0 <n>)))) 5 vary <n> as needed

;7 Normally we'd call PERCEPTRON-LEARNINGere, but we need added control
;7 to set all the weights to 0.1, so we build the perceptron ourselves:
((setg  net (list (list (make-unit parents  (iota 5)
:children nil
‘weights  '(-1.0 0.1 01 01 0.1)
‘g #(lambda (i) (step-function (VM)
Now we call NN-LEARNING with the perceptron-update method,
but we also make it print out the weights, and set *debugging* to t
;7 So that we can see the epoch number and errors.
((let ((*debugging* 1))
(nn-learning
problem net
#(lambda (net inputs predicted target  &rest args)
(format t ““& A  Weights = {4,1F "T%"

(if (equal target predicted) “YES” “NO %)
(unit-weights (first (first net))))
(apply  #'perceptron-update net inputs predicted target  args))))))

Up to thefirst 5 examples,the network corvemgesto zeroerror, and corvergesto non-zero
errorthereafter

20.14 Accordingto ?(?),thenumberof linearly separabldooleanfunctionswith n inputs

IS
|
w5 ()
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Forn > 2 we have
2" —1
n

(' -D! 2+ D)@Y e

>:2(n+1).n!(2”—n—1)! - n! -

sothefraction of representabl@nctionsvanishesasn increases.

sn<2(n—|—1)<

20.15 Theseexampleswere generatedrom a kind of majority or voting function, where
eachinput hasa differentnumberof votes: 10 for Iy, 4 for I5 to 14, 2 for I5, andl for Ig. If
you assigrthis problemiit is probablya goodideato tell the studentghis. FigureS?? shavs
a perceptroranda feed-forward netwith logical nodesthatrepresenthis function. Our in-
tuition wasthat the function shouldhave beeneasyto learnwith a perceptronjput harder
with otherrepresentationsuchasa decisiontree. However, it turnsout thatthereare not
enoughexamplesfor evenaperceptrorio learn.In retrospectthatshouldnot betoo surpris-
ing, asthereareover 10'? differentBooleanfunctionsof six inputs,andonly 14 examples.
Runningthe following code(which makes useof the codein learning/nn.lis p and
learning/percep tr on.l isp ) we find thatthe perceptromuickly corvergesto learn
all 14 trainingexampleshut it performsat chancdevel onthefive-exampletestsetwe made
up (getting2 or 3 out of 5 right on mostruns). (The studentwho did not know whatthe un-
derlyingfunctionwaswould have to keepout someof the examplesto useasatestset.) The
weightsvary widely from runto run, althoughin every run the weightfor I; is the highest
(asit shouldbefor the specifiedfunction),andtheweightsfor I5 and Iz areusuallylow, but
sometimedg is higherthanothernodes. This may be a resultof the factthatthe examples
were chosento represensomeborderlinecaseswhere I caststhe decidingvote. So this
senesasalesson:f youare“clever” in choosingexamplesjput rely on alearningalgorithm
thatassumegxamplesarechosenat random,you will runinto trouble. Hereis the codewe
used:
(defun test-nn  (net problem &optional
(examples  (learning-problem-examples problem)))
(let  ((correct 0))
(for-each example in examples do
(if  (eql (cdr (first example))
(first (nn-output net (rest example)
(learning-problem-attributes problem)
nil)))
(incf  correct)))
(values  correct  ’out-of (length  examples))))
(deftest ex20.15
((setq  examples
(T .1 (@1 .1 (2 .0 (3 .1) (4 .0 (5 . 0) (6 . 0)
(T .10 .1 @ .0 (03 .1 @4 . 1) (05 .0 (16 . 0)
(T . 1) (1 . 1) (12 .0) (3 . 1) (4 .0 (5 . 1) (16 . 0)
(@ .10 .1 @ .1) (03 .0 (@4 .0 (5 . 1) (16 . 1)
(T .10 .1 @ .1) (@03 .1 @4 .1 (05 .0 (6 . 0)
(T . 1) (11 . 1) (12 .0) (3 .0 (4 .0 (5 . 1) (6 . 1)
(M .0 (1 .1 (@2 .0 (3 .0 (4 .0 (5 . 1) (16 . 0)
T .10 .0 (@2 .1) (03 .1 (@4 . 1) (5 .0 (16 . 1)
((r .0 @@ .0 (g2 . 1) 13 . 1) 14 .0 (5 . 1) (16 . 1)
(M .0 (1 .0 (2 .0 (3 .0 (4 . 1) (5 . 1) (16 . 0)
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(T .0 (1 .0 (12 . 1) (13 . 0 (14 . 1) (15 . 0) (16 . 1)
(m .0 @1 .0 (2 .0 (13 .0 (4 . 1) (05 . 0 @6 . 1)
(m .0 @1 .0 (2 . 1) I3 . 1) (14 . 0 (5 . 1) (6 . 1)
(T .0 (1 .0 (12 . 1) (13 . 1) (14 . 1) (15 . 0) (16 . O
((setqg  problem
(make-learning-problem
:attributes (@ 01 (12 01) (13 01) (14 01) (5 01) (I6 0 1)
;goals  '((T 0 1))
:examples examples)))

((setg  net (perceptron-learning problem)))
((setg  weights  (unit-weights (first (first net)))))
((test-nn net problem)
(= * 14)
((test-nn net problem
o(fr . 1) @m®@ . 1) 12 .0 (13 .0 (4 . 1) (5 . 0 (6 . 0)

(T .0 (1 .0 (2 .0 (3 .1 (4 . 1) (15 . 1) (16 . 1)

(T . 1) (1 . 1) (12 .1 (03 .0 (4 .0 (15 . 1) (16 . 0)

(T .0 (1 . 1) (12 .0 (3 .0 (4 .0 (15 . 0) (16 . 0)

(T . 1) (1 .0 (12 . 1) (3 . 1) (4 . 1) (5 . 1) (16 . 1))
(= * 95

20.16 The probability p outputby the perceptroris g(zj Wja;), whereg is the sigmoid
function. Sinceg’ = ¢g(1 — g), we have
ap/OW; = ¢'(D_ Wjaj)a; = p(1 — p)a;
J
For adatumwith actualvaluey, thelog likelihoodis

L =ylogp+ (1 —y)log(1l —p)
sothegradientof thelog likelihoodwith respecto eachweightis
oL y Op 1—y Op
8Wj N ]_DOW] B 1—p.8Wj
yp(1 —pla; (1 —y)p(l —pa;

_ . _ T =(y —p)aj = Errxa; .

20.17 Thisexercisereinforceshestudents understandingf neuralnetworksasmathemat-
ical functionsthat canbe analyzedat a level of abstractiorabove theirimplementatiorasa
network of computingelements.For simplicity, we will assumehatthe activationfunction
is the samelinear functionat eachnode: g(z) = cz + d. (The agumentis the same(only
messier)f we allow differentc; andd; for eachnode.)

a. Theoutputsof thehiddenlayerare

Hi=g (Z Wk,j1k> =cY Wili+d
k k

Thefinal outputsare

Oi=g (Z Wj,iHj) =c (Z Wi (CZ Wi il + d)) +d
j J k

J
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Now we just have to seethatthisis linearin theinputs:

0; = c2 Z I Z Wy Wi +d (1 + CZ Wj,i)
k j J

Thuswe cancomputehe samefunctionasthetwo-layernetwork usingjustaone-layer
perceptrorthathasweightsWy ; = >°; Wy, ;W;; andan actiation function g(z) =
621' +d (1 + CZ]‘ Wj,i)-

b. Theabove reductioncanbe usedstraightforvardly to reduceann-layernetwork to an
(n — 1)-layer network. By induction,the n-layer network canbe reducedo a single-

layernetwork. Thus,linearactivationfunctionrestrictneuralnetworksto represenbnly
linearly functions.

20.18 Theimplementatiorof neuralnetworks canbe approacheth severaldifferentways.
Thesimplestis probablyto storetheweightsin ann x n array Everythingcanbecalculated
asif all the nodeswerein eachlayer, with the zeroweightsensuringthat only appropriate
changesaremadeaseachlayeris processed.

Particularly for sparsenetworks, it can be more efficient to usea pointerbasedim-
plementationwith eachnoderepresentedy a datastructurethat containspointersto its
successorffor evaluation)andits predecessoror backpropagation)WeightsiV; ; areat-
tachedo nodesi. In bothtypesof implementationit is corvenientto storethe summednput
in; = Y_; Wj,a; andthe value g'(in;). The coderepositorycontainsan implementation
of the pointerbasedvariety Seethe file learning/algori th mgnn .| is p, andthe
functionnn-learning in thatfile.

20.19 Thisquestionis especiallyimportantfor studentsvho arenotexpectedo implement
or useaneuralnetwork system.Togethemith 20.15and20.17,it givesthestudenta concrete
(if slender)graspof what the network actually does. Many other similar questionscanbe
devised.

Intuitively, the datasuggesthat a probabilistic prediction P(Output =1) = 0.8 is
appropriateThe network will adjustits weightsto minimizetheerrorfunction. Theerroris

1 1
E=g > (yi—ai)? = 518001 — a1)? +20(0 — a1)?] = 500? — 800; + 50
Thederiative of theerrorwith respecto thesingleoutputa; is
E
6_ = 100a; — 80
ai

Settingthe deriative to zero,we find thatindeeda; = 0.8. The studentshouldspotthe
connectiorto Ex. 18.8.

20.20 Theapplicationof cross-alidationis straightforvard—themethodologyis the same
asthatfor arny parameteselectiornproblem.With 10-fold cross-alidation,for example,each
size of hiddenlayeris evaluatedby training on 90% subsetsand testingon the remaining
10%. The best-performingizeis thenchosentrainedon all thetrainingdata,andtheresult
is returnedasthe systems$ hypothesis. The purposeof this exerciseis to have the student
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understandhow to designtheexperiment run somecodeto seeresultsandanalyzeheresult.
The higherorder purposeis to causethe studentto questionresultsthat make unwarranted
assumptiongibouttherepresentationsedin alearningproblem,whetherthatrepresentation
is the numberof hiddennodesin aneuralnet,or ary otherrepresentationaihoice.

20.21 Themainpurposeof this exerciseis to make concretethe notionof the capacityof a
functionclass(in this caseJinear halfspaces)It canbe hardto internalizethis concept but
theexamplesreally help.

a. Threepointsin generalpositionon a planeform a triangle. Any subsetof the points
canbe separatedrom the restby a line, as can be seenfrom the two examplesin
FigureS20.4(a).

b. FigureS20.4(b)shavs two casesvherethe positve and negative examplescannotbe
separatedby aline.

c. Fourpointsin generabpositionon a planeform atetrahedronAny subsebf the points
canbe separatedrom the restby a plane,as canbe seenfrom the two examplesin
FigureS20.4(c).

d. FigureS20.4(d)shavs a casewherea negative pointis insidethe tetrahedrorformed
by four positive points;clearly no planecanseparatéhe two sets.

O ON
® o O

@) (b)

e e 2

/ / /

at; at; ouf.
ke @ he)

(© (d)

Figure S20.4 lllustrative examplesfor Ex. 20.21.




Solutionsfor Chapter21
Reinforcement.earning

21.1 Thecoderepositoryshavs anexampleof this,implementedn thepassie 4 x 3 envi-
ronment.Theagentsarefoundunderlisp/learning/ agents /pa ssiv e*.l isp and
the ervironmentis in lisp/learning/do man s/ 4x3-p assi ve-mdp. li sp. (The
MDP is corvertedto a full-blown ernvironmentusing the function mdp->environmen t
which canbefoundin lisp/uncertain ty /e nvi ro nments /mdp. li sp.)

21.2 Consideraworld with two states,S; andS7, with two actionsin eachstate:staystill

or move to the otherstate.Assumethe move actionis non-deterministic—isometimedails,

leaving theagenin thesamestate.Furthermoreassumeheagenistartsin Sy, andthatS; isa
terminalstate.If theagentriesseseralmove actionsandthey all fail, theagentmayconclude
that7'(Sy, Move, S1) is 0, andthusmay choosea policy with 7(Sy) = Stay, whichis an
improperpolicy. If we wait until the agentreachesS; beforeupdating,we won't fall victim

to this problem.

21.3 This guestionessentiallyasksfor a reimplementatiorof a generalschemefor asyn-
chronousdynamic programmingof which the prioritized sweepingalgorithmis an exam-
ple (MooreandAtkeson,1993).For a., thereis codefor a priority queuen boththeLisp and
PythoncoderepositoriesSomostof thework is the experimentatiorcalledfor in b.

21.4 Whenthereare no terminal statesthereare no sequencesso we needto definese-
gquencesWe cando thatin severalways. First, if rewardsaresparsewe cantreatary state
with arewardasthe endof asequenceWe canuseequation(21.2);the only problemis that
we don't know the exacttotl reward of the stateat the endof the sequencehecausét is not

aterminalstate. We canestimateit usingthe currentlU (s) estimate. Anotheroptionis to

arbitrarily limit sequence® n statesandthenconsiderthenext n statesetc. A variationon

thisis to useasliding window of statessothatthefirst sequencés statedl .. . n, thesecond
sequences2...n + 1, etc.

21.5 Theideahereis to calculatethe reward that the agentwill actually obtainusinga
givenestimateof U anda givenestimatednodel M. Thisis distinctfrom thetrue utility of
the statesvisited. First,we computethe policy for theagentby calculating for eachstate the
actionwith the highestestimatedutility:

P(i) = arg mgxz M;;U(])
J
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Chapter 21. Reinforcement.earning

Thenthe expectedvaluescanbe found by applyingvalue determinatiorwith policy P and
canthenbe comparedo the optimalvalues.

21.6 Thecorversionof the vacuumworld problemspecificationinto an ervironmentsuit-
ablefor reinforcementearningcanbe doneby meging elementof mdp->environmen t
from lisp/uncertain ty /en vi ro nments/ mdp. li sp with elementsof the corre-
spondingunctionproblem->enviro nment fromlisp/search/age nts. lis p.The
point hereis twofold: first, thatthe reinforcementearningalgorithmsin Chapter20 arelim-
ited to accessibleervironments;secondthatthe dirt makesa hugedifferenceto the size of
the statespace. Without dirt, the statespaceis O(n) with n locations. With dirt, the state
spaceis O(2") becauseeachlocationcanbe cleanor dirty. For this reasonjnput general-
izationis clearly necessaryor n above about10. This illustratesthe misleadingnatureof
“navigation” domainsin which the statespaceis proportionalto the “physical size” of the
environment. “Real-world” environmentstypically have somecombinatorialstructurethat
resultsin exponentialgrowth.

21.7 Codenot shavn. Serveral reinforcementiearningagentsare given in the directory
lisp/learning/a gents.

21.8 This utility estimationfunctionis similarto equation(21.9),but addsatermto repre-
sentEuclideandistanceon a grid. Usingequation(21.10),the updateequationsarethe same
for 6, through6s, andthe new parametef; canbe calculatedby taking the derivative with
respecto 0s:

0o — Op+ a(uj(s) — Uy(s)) ,

01 — 01+ a(u;(s) — Ug(s))x ,

Os — 02+ o (uj(s) — Up(s))y,

O3 — 03+ o (u(s) — Up(s)\/(x — 4)2 + (y — yg)?

21.9 Possibldeaturednclude:

Distanceto the nearest-1 terminalstate.

Distanceto thenearest-1 terminalstate.

Numberof adjacent-1 terminalstates.

Numberof adjacent-1 terminalstates.

Numberof adjacenbbstacles.

Numberof obstacleshatintersectwith a pathto thenearestt+1 terminalstate.

21.10 This is a relatively time-consumingexercise. Code not shavn to computethree-
dimensionaplots. Theutility functionsare:

a U(z,y) =1—~((10 — z) 4+ (10 — y)) is thetrue utility, andis linear

b. Sameasin a, exceptthatU(10,1) = —1.

¢. Theexactutility depend®nthe exactplacemenbf the obstaclesThebestapproxima-
tion is thesameasin a. Thefeaturesn exercise21.9mightimprove theapproximation.
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d. The optimal policy is to headstraightfor the goal from ary point on theright side of
thewall, andto headfor (5, 10) first (andthenfor the goal) from ary point on theleft
of thewall. Thus,theexactutility functionis:

U(z,y) = 1—~((10 —z) + (10 — y)) (if z > 5)
=1-v((B-2)+(10—-1y)) -5y (if x < 5)

Unfortunately this is not linearin = andy, asstated. Fortunately we canrestatethe
optimal policy as“head straightup to row 10 first, then headright until column 10
This givesusthe sameexactutility asin a, andthe samedinearapproximation.

e U(z,y) =1—7(5—=x| + |5 —y|) is thetrueutility. Thisis alsonotlinearin z andy,
becausef theabsolutevaluesigns.All canbefixedby introducingthefeaturegs — x|
and|5 — y.

21.11 Themodificationinvolvescombiningelement®f theenvironmentcorverterfor games
(game->environme nt inlisp/search/gam es.li sp)with element®f thefunction
mdp->environmen t. Therewardsignalis justthe utility of winning/draving/losingand
occursonly atthe endof the game.The evaluationfunctionusedby eachagentis the utility
functionit learnsthroughthe TD process.lIt is importantto keepthe TD learningprocess
(which is entirely independenbf the fact that a gameis being played) distinct from the
game-playingalgorithm. Usingthe evaluationfunctionwith a deepsearchs probablybetter
becausdt will helptheagentgo focuson relevantportionsof the searchspaceby improving
the quality of play. Thereis, however, atradeof. the deepetthe searchthe morecomputer
timeis usedin playingeachtraininggame.

21.12 Codenotshavn.

21.13 Reinforcementearningas a general“setting” can be appliedto almostary agent
in ary ervironment. The only requirements that therebe a distinguishedreward signal.
Thus, given the signalsof pain, pleasure hungey and so on, we can map humanlearning
directly into reinforcemeniearning—althougtthis saysnothingabouthow the “program”
is implemented. What this view missesout, however, is the importanceof otherforms of
learningthat occurin humans.Theseinclude “speeduplearning” (Chapter21); supervised
learningfrom otherhumanswherethe teachelrs feedbackis taken asa distinguishednput;
andtheproces®f learningtheworld model,whichis “supervised'by theervironment.

21.14 DNA doesnot, asfar aswe know, sensehe ervironmentor build modelsof it. The
rewardsignalis thedeathandreproductiorof the DNA sequencehut evolution simply mod-
ifies the organismratherthanlearninga U or @ function. Thereally interestingproblemis

decidingwhatit is thatis doingthe evolutionarylearning.Clearly it is nottheindividual (or

theindividual’s DNA) thatis learning,becaus¢heindividual's DNA getstotally intermingled
within afew generationsPerhapgou couldsaythespeciess learning,but if soit is learning
to produceindividualswho survive to reproducebetter;it is notlearningarything to do with

the speciesasa wholeratherthanindividuals. In The SelfishGene RichardDawkins (1976)
proposeshatthegeneis theunit thatlearnsto succeedsan“individual” becaus¢hegeneis

preseredwith small,accumulatedanutationsover mary generations.



Solutionsfor Chapter22
Communication

22.1 No answerrequired;ustreadthe passage.

S — NP(Subjective, number, person) VP (number, person) | ...
NP(case, number, person) — Pronoun(case, number, person)
NP(case, number, Third) — Name(number) | Noun(number) | ...
VP (number, person) — VP(number, person) NP (Objective, _,_) | ...
PP — Preposition NP(Objective, _, _)

Pronoun(Subjective, Singular, First) — |

Pronoun(Subjective, Singular, Second) — you
Pronoun(Subjective, Singular, Third) — he| she| it
Pronoun(Subjective, Plural, First) — we

Pronoun(Subjective, Plural, Second) — you
Pronoun(Subjective, Plural, Third) — they
Pronoun(Objective, Singular, First) — me

Pronoun(Objective, Singular, Second) — you
Pronoun(Objective, Singular, Third) — him | her | it
Pronoun(Objective, Plural, First) — us

Pronoun(Objective, Plural, Second) — you
Pronoun(Objective, Plural, Third) — them

Verb(Singular, First) — smell

Verb(Singular, Second) — smell

Verb(Singular, Third) — smells

Verb(Plural, ) — smell

Figure S22.1 A partial DCG for £;, modified to handle subject—erb number/person
agreemendasin Ex. 22.2,

22.2 SeeFigureS22.1for apartial DCG.Weincludebothpersorandnumberannotatioral-
thoughEnglishreally only differentiateghethird persorsingularfor verbagreemengexcept
for theverbbe).

22.3 SeeFigureS22.2
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NP(case, number, Third) — Name(number)

NP(case, Plural, Third) — Noun(Plural)

NP(case, number, Third) — Article(number) Noun(number)
Article(Singular) — a| an| the

Article(Plural) — the | some| many

Figure S22.2 A partial DCG for £, modified to handlearticle—nounagreements in
Ex.22.3.

22.4 Thepurposef thisexercises to getthestudenthinkingaboutthepropertieof natural
languageThereis awide variety of acceptablenswersHereareours:

Grammar and Syntax Java: formally definedin areferencebook. Grammaticalityis
crucial; ungrammaticaprogramsarenot accepted English: unknavn, never formally
defined,constantlychanging.Most communicationis madewith “ungrammaticalut-
terancesThereis a notion of gradedacceptability:someutterancegrejudgedslightly
ungrammaticabr alittle odd,while othersareclearlyright or wrong.

SemanticsJava: the semanticof a programis formally definedby the languagespec-
ification. More pragmatically one can say that the meaningof a particularprogram
is the JVM codeemittedby the compiler English: no formal semanticsmeaningis

contet dependent.

Pragmatics and Context-Dependencelava: somesmall partsof a programare left
undefinedn the languagespecificationandare dependenbn the computeron which
the programis run. English: almosteverythingaboutan utterancdas dependenbn the
situationof use.

Compositionality Java: almostall compositional. The meaningof “A + B” is clearly
derived from the meaningof “A” andthe meaningof “B” in isolation. English: some
compositionaparts,but mary non-compositionaflependencies.

Lexical Ambiguity Java: asymbolsuchas“Avg” canbelocally ambiguoussit might
referto a variable,a class,or a function. The ambiguity canbe resohed simply by
checkingthe declaration;declarationghereforefulfill in a very exact way the role
playedby backgroundknowledgeandgrammaticakontext in English. English: much
lexical ambiguity

Syntactic Ambiguity Java: the syntaxof the languageaesolhesambiguity For exam-
ple,in “if (X) if (Y) A; elseB;” onemight think it is ambiguouswvhetherthe “else”
belonggo thefirst or secondif,” but thelanguagés specifiedsothatit alwaysbelongs
to the second English: muchsyntacticambiguity

ReferenceJava: thereis a pronoun‘this” to referto the objecton which amethodwas
invoked. Otherthanthat, thereareno pronounsor othermeansof indexical reference;
no “it,” no “that” (Comparethis to stack-basedanguagessuchas Forth, wherethe
stackpointeroperatesasa sortof implicit “it.”) Thereis referenceby hame however.
Note thatambiguitiesare determinedby scope—iftherearetwo or moredeclarations
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of thevariable"X”, thenauseof X refersto theonein theinnermostscopesurrounding
theuse.English: mary techniquesgor reference.

e Background Knowledge Java: noneneededo interpreta program,althougha local
“context” is built up asdeclarationsreprocessedeEnglish: muchneededo do disam-
biguation.

e Understanding Java: understanding programmeandranslatingt to JVM byte code.
English:understandingnutterancaneangamongotherthings)respondindo it appro-
priately;participatingn adialog(or choosingnhotto participate put having thepotential
ability to do so).

As a follow-up question,you might wantto comparedifferentlanguagesfor example: En-
glish, Java, Morsecode,the SQL databaseguerylanguagethe Postscriptlocumentdescrip-
tion languagemathematicsetc.

22.5 This exerciseis designedo clarify the relation betweenquasi-logicalform andthe
final logical form.

a. Yes. Without a quasi-logicalform it is hardto write rulesthat produce for example,
two differentscopedor quantifiers.

b. No. It justmakesambiguitiesandabstractionsnoreconcise.

c. Yes.Youdon't needto explicitly represené potentiallyexponentialnumberof disjunc-
tions.

d. Yesandno. Theform is moreconcise andsoeasierto manipulate Onthe otherhand,
the quasi-logicalform doesnt give you ary cluesasto how to disambiguate.But if
you do have thoseclues,it is easyto eliminatea wholefamily of logical formswithout
having to explicitly expandthemout.

22.6 Assumingthat/s is theinterpretatiorof “is,” and It is theinterpretatiornof “it,” then
we getthefollowing:

a. Itisawumpus:
de e € Is(It,[Jw Wumpus(w)]) A During(Now,e)

b. Thewumpusis dead:
de e € Dead([F'w Wumpus(w)]) A During(Now, e)

¢. Thewumpusisin 2,2:
de e € Is([Fw Wumpus(w)],y) A In(y, [2,2]) A During(Now, e)

We shoulddefinewhat /s means—one&easonableaxiom for one senseof “is” would be
Ve,y Is(z,y) & (z =y). (Thisis the"is the sameas” sense.Thereareothers.) The
formuladxz Wumpus(x) is areasonablsemanticgor “It is awumpus. The problemis if
we usethatformula,thenwe have novhereto gofor “It wasawumpus”—theras no eventto
which we canattachthetime information. Similarly, for “It wasnt awumpus;, we cant use
—Jdz Wumpus(z), norcouldwe usedz —Wumpus(z). Soit is bestto have anexplicit
eventfor “is.”
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22.7 Thisis avery difficult exercise—mosteadershave no ideahow to answerthe ques-
tions (except perhapsto rememberthat “too few” is betterthan“too mary”). This is the
whole point of the exerciseaswe will seein exercise23.14.

22.8 Thepurposeof this exerciseis to getsomeexperiencewith simplegrammarsandto
seehow context-sensitve grammarsaremorecomplicatedhancontet-free. Oneapproacho
writing grammarss to write down the stringsof thelanguagen anorderlyfashion,andthen
seehow a progressiorfrom onestring to the next could be createdoy recursve application
of rules.For example:

a. Thelanguagex™b™: Thestringsaree, ab, aabb, ...(wheree indicatesthe null string).
Eachmemberof this sequenceanbe derived from the previous by wrappingan a at
thestartandab attheend. Thereforeagrammaiis:

S — €

S — aSb

b. Thepalindromeanguagel et’'s assumehealphabeis justa, b andc. (In generalthe
sizeof thegrammarwill beproportionalto the sizeof thealphabet.Thereis nowayto
write a context-free grammarwithout specifyingthe alphabet/Igicon.) The stringsof
thelanguagencludee, a, b, c, aa, bb, cc,aaa,aba,aca,bab,bbb,bcb,.... In general,
astringcanbeformedby bracletingary previousstringwith two copiesof arny member
of thealphabetSoa grammairis:

S — €|lalb|lclaSalbSb| cSc

¢. The duplicatelanguage:For the moment,assumehat the alphabets just ab. (It is
straightforvard to extendto a larger alphabet.)The duplicatelanguageconsistsof the
strings:e, aa, bb, aaaa, abab, bbbb, baba, ... Notethatall stringsareof evenlength.
Onestratay for creatingstringsin thislanguages this:

e Startwith markersfor the front and middle of the string: we canusethe non-
terminal F' for thefront and M for the middle. Soat this point we have the string
FM.

e Generatatemsat the front of the string: generatean a followed by an A, orab
followedby a B. Eventuallywe get,say FlaAaAbBM. Thenwe nolongerneed
the F marker andcandeleteit, leaving aAa AbB M .

e Move the non-terminalsA and B down theline until just beforethe M. We end
up with aabAABM.

e Hopthe As and Bs over the M, corverting eachto aterminal(a or b) aswe go.
Thenwe deletethe M, andareleft with theendresult: aabaab.
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Hereis agrammarto implementthis stratey:
S — FM  (startingmarkers)

' — FaA (introducesymbols)

F —-— FbB

F — € (deletethe F' marker)

Aa — aA (movenon-terminalsiovn to the M)
Ab — b A

Ba — aB

Bb — bB

AM — M a (hopover M andcorvertto terminal)
BM — Mb

M — € (deletethe M marker)

Hereis atraceof thegrammarderiing aabaab:

S

FM
FbBM
FaAbBM
FaAaAbBM
aAaAbBM
aaAAVBM
aaAbABM
aabAABM
aabAAMDb
aabAMab
aabMaab

aabaab

22.9 Grammar(A) doesnotwork, becauséehereis noway for theverb“walked” followed
by the adwerb “slowly” andthe prepositionabhrase'to the supermar&t” to be parsedasa
verbphrase A verbphrasdan (A) musthave eithertwo adverbsor bejustaverh Hereis the
parseundergrammar(B):

S---NP-+-Pro---Someone

I-VP-+-V---waIked
I-Vmod-+-Adv---sI0wa
I-Vmod---Adv--—PP---Prep-+-to
I-N P-+-Det---the
I

|-NP---Noun---supermarket
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Hereis the parseundergrammarnC):

S---NP-+-Pro---Someone

I
|-VP-+-V---walked

I
|-Adv-+-Adv---slowly

I
|-Adv---PP---Prep-+-to

I
|-NP-+-Det---the

[-NP---Noun---supermarket

22.10 Codenotshavn.
22.11 Codenotshavn.

22.12 This is the grammarsuggestedy the exercise. Thereare additionalgrammatical
constructionghat could be coveredby more ambitiousgrammarswithout addingary new
vocalulary.

S —- NPVP

NP — Noun

NP — Adjective Noun

NP — NP NP Verb (forrelative clause)
VP — Verb NP

Adjective — Buf falo

Noun — buffalo

Verb — buf falo

Runningthe parserfunction parses from the coderepositorywith this grammarandwith
stringsof theform Bu f falo™, andthenjust countingthe numberof results,we get:

N 1234567 8 9 10

Number of parses0 0 1 2 3 6 11 22 44 90
To countthe numberof sentencesje Marcken implementeda parserik e the pacled forest
parserof example22.10,exceptthatthe representationf a forestis just aninteger countof
the numberof parseqandthereforethe combinationof n adjacenforestsis justthe product
of theconstituenforests).He thengetsa singleintegerrepresentinghe parsedor thewhole
200-word sentence.

22.13 Heresonewayto drawv theparsereefor thestoryonpage823. Theparsetreeof the
students’storieswill depnedntheirchoice.

Segment(Evaluat o n)
Segment(l) “A funny thing happened”
Segment(Ground- Fi gure)
Segment(Cause)
Segment(Enable)
Segment(2) “John went to a fancy restaurant”
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Segment(3) “He ordered the duck”
Segment(4) “The bil came to $50”
Segment(Cause)
Segment(Enable)
Segment(Explanat io n)
Segment(5) “John got a shock...”
Segment(6) “He had left his wallet at home”
Segment(7) “The waiter said it was all right”
Segment(8) “He was very embarrassed...’ ’

22.14 Now we cananswerthedifficult questionf 22.7:

e Thestepsaresortingtheclothesinto piles(e.g.,whitevs. colored);goingto thewashing
machine(optional); taking the clothesout and sorting into piles (e.g., socksversus
shirts); puttingthe pilesaway in the closetor bureau.

e Theactualrunningof thewashingmachines never explicitly mentionedsothatis one
possibleanswer Onecouldalsosaythatdrying the clothesis a missingstep.

e Thematerialis clothesandperhapotherwashables.
e Puttingtoo mary clothestogethercancausesomecolorsto run ontootherclothes.
e |t is betterto dotoo few.

e Sothey won't run; sothey getthoroughlycleanedsothey don't causehe machineto
becomeunbalanced.
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ProbabllisticLanguageProcessing

23.1 Codenotshavn. The approachsuggestedherewill work in somecasesfor authors
with distinctvocalularies. For moresimilar authors otherfeaturessuchasbigrams,average
word andsentencdength, partsof speechand punctuationmight help. Accuragy will also
dependon how mary authorsarebeingdistinguished Oneinterestingway to malke thetask
easielis to groupauthorsinto maleandfemale,andtry to distinguishthe sex of anauthornot
previously seen.This wassuggestedby thework of ShlomoArgamon.

23.2 Codenotshavn. Thedistribution of wordsshouldfall alonga Zipfian distribution: a
straightline on alog-log scale.The generatedanguageshouldbe similar to the examplesin
thechapter

23.3 Codenot shavn. Thereare nowv several open-sourcerojectsto do Bayesianspam
filtering, sobewareif you assigrnthis exercise.

23.4 Doing the evaluationis easy if a bit tedious(requiring 150 pageevaluationsfor the
completel0 documentsx 3 enginesx 5 queries).Explainingthe differencess morediffi-
cult. Somethingsto checkarewhetherthe goodresultsin oneengineareevenin the other
enginesat all (by searchingor uniquephraseson the page);checkwhetherthe resultsare
commerciallysponsoredare producedoy humaneditors,or arealgorithmicallydetermined
by a searchrankingalgorithm;checkwhethereachenginedoesthefeaturesmentionedn the
next exercise.

23.5 Onegoodwaytodothisistofirstfind asearchhatyieldsasinglepage(or afew pages)
by searchindor rarewordsor phrasesn the page. Thenmale the searchmoredifficult by
addingavariantof oneof thewordson the page—aword with differentcasedifferentsufix,
differentspelling,or a synorym for oneof the wordson the page ,andseeif the pageis still
returned.(Make surethatthe searchenginerequiresall termsto matchfor this techniqueto
work.)

23.6 Computationsikethisaregivenin thebookManaging GigabytegWittenetal., 1999).
Heres oneway of doingthe computation:Assumean averagepageis about10KB (giving
usa 10TB corpus),andthatindex sizeis linearin the sizeof the corpus.Bahleet al. (2002)
shav anindex sizeof about2GB for a 22GB corpus;soour billion pagecorpuswould have
anindex of about1TB.

155



156

Chapter 23. ProbabilisticLanguageProcessing

23.7 Codenot shavn. The simplestapproachs to look for a string of capitalizedwords,
followed by “Inc” or “Co.” or “Ltd.” or similar markers. A more comple approachis to
geta list of comparny names(e.g. from an online stock service),look for thosenamesas
exactmatchesandalsoextractpatterndrom them. Reportingrecallandprecisionrequiresa
clearly-definedcorpus.

23.8 Themainpointof this exerciseis to shav thatcurrenttranslationsoftwareis far from
perfect. The mistalesmadeareoftenamusingfor students.

23.9 Hereis astartof agrammar:

time => hour ™" minute
| extendedhour
| extendedhour  "o’clock"
| difference before_after extendedhour
hour => 11 2| .. | 24| "one" | .. | "twelve"
extendedhour  => hour | "midnight" | "noon"
minute => 11| 2| .. | 60
before-after => "pefore" | “after” | "to" | "past"
difference => minute | "quarter" | "half"
23.10

a. “lI have never seena betterprogramminganguage’is easyfor mostpeopleto see.
b. “Johnlovesmary” seemdo be preferedo “Mary lovesJohn”(on Google,by amagin

of 2240to 499,andby asimilar maigin ona smallsampleof respondentsjut bothare
of courseacceptable.

c. This oneis quite difficult. The first sentenceof the secondparagraplof Chapter22
is “Communicationis the intentional exchangeof information broughtaboutby the
productionandperceptiorof signsdravn from a sharedsystemof corventionalsigns’
However, this cannotbe reliably recoreredfrom the string of wordsgiven here. Code
not shavn for testingthe probabilitiesof permutations.

23.11 In parlimentarydebate a standardexpressionof apprwal is “bravo” in French,and
“hear, hear”in English. That meansthatin going from Frenchto English, “bravo” would
oftenhave afertility of 2, but for Englishto Frenchthefertility distribution of “hear” would
be half 0 andhalf 1 for this usage.For otherusagesit would have variousvalues,probably
centerectloselyaroundl.



Solutionsfor Chapter24
Perception

24.1 ThesmallspacebetweerleavesactaspinholecamerasThatmeanghatthecircular
light spotsyou seeareactuallyimagesof the circular sun. You cantestthis theorynext time

thereis a solareclipse:the circularlight spotswill have a crescenbite taken out of themas
the eclipseprogresses(Eclipseor not, the light spotsare easierto seeon a sheetof paper
thanon theroughforestfloor.)

24.2 Givenlabelsontheoccludingedgeqi.e.,they areall arrons pointingin theclockwise
direction),therewill be no backtrackingat all if the orderis ABC' D; eachchoiceis forced
by the existing labels. With the order BD AC, the amountof backtrackingdependon the
choicesmade.Thefinal labellingis shavn in FigureS24.1.

24.3 Recallthattheimagebrightnes®f aLambertiarsurface(page743)isgivenby I (z, y) =
kn(z,y).s. Herethelight sourcedirectionsis alongthe z-axis. It is sufiicientto considera
horizontalcross-sectiolin the x—z plane)of thecylinderasshaovn in FigureS24.2(a).Then,
the brightness/ (z) = k& cos 0(x) for all the pointson theright half of the cylinder. The left

FigureS24.1 Labellingof the L-shapedbject(Exercise24.2).
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halfis in shadev. As = = r cos §, we canrewrite thebrightnesgunctionasi(z) = ﬁi which
revealsthattheisobrightnesgontoursin thelit partof the cylinder mustbe equallyspaced.
Theview from the z-axisis shavn in FigureS24.2(b).

X |IIum|nat|on

N

z X
viewer () (b)

Figure S24.2 (a) Geometryof the sceneasviewed from alongthe y-axis. (b) The scene
from the z-axis, shaving the evenly spacedsobrightnesgontours.

24.4 Welist thefour classesndgive two or threeexamplesof each:

a. depth Betweenthe top of the computermonitor andthe wall behindit. Betweenthe
sideof the clock tower andthe sky behindit. Betweenthe white sheetof papetrin the
foregroundandthe bookandkeyboardbehindthem.

b. surfacenormal At thenearcornerof thepagesof thebookonthedesk.At the sidesof
thekeys onthe keyboard.

c. reflectance Betweenthe white paperandthe black linesonit. Betweenthe “golden”
bridgein the pictureandthe blue sky behindit.

d. illumination Onthewindowsill, theshadev from the centerglasspanedivider. Onthe
paperwith Greektext, the shadav alongthe left from the paperon top of it. On the
computemonitor, the edgebetweerthe white window andthe bluewindow is caused
by differentillumination by the CRT.

24.5 This exerciserequiressomebasicalgebraandenoughcalculusto know that(fg)" =
fd' + f'g. Studentswith freshmarcalculusasbackgroundshouldbe ableto handleit. Note
thatall differentiationis with respecto z. Crucially, thismeanghat f (u)’ = d f(u)/dx = 0.
We work the solutionfor thediscretecase the continuougintegral) caseis similar.

(fxg) = (Zu fu)g(z —u)) (definition of %)
= ( (w)g(x —u))’ (derivative of asum)
= w f(W)g' (@ —u) + f'(w)g(z — u) (since(fg)" = fg' + f'g)
= (u) g (z —u) (sinced f(u)/dx = 0)
= f g (definition of )

24.6 Beforeansweringhis exercise we drav a diagramof theapparatugtop view), shavn
in FigureS24.3.Noticethatwe malke the approximatiorthatthe focal lengthis the distance
from thelensto theimageplane;this is valid for objectsthatarefar away. Notice thatthis
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10cm 16cm

_—
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10cm

512x512
pixels T

<X —={ Object

FigureS24.3 Topview of the setupfor stereoviewing (Exercise24.6).

gquestionasksnothingaboutthe y coordinateof points;we might aswell have a singleline
of 512 pixelsin eachcamera.

a. Solwe this by constructingsimilar triangles: whosehypotenuses the dottedline from
objectto lens,and whoseheightis 0.5 metersandwidth 16 meters. This is similar
to a triangle of width 16cmwhosehypotenuserojectsonto the imageplane;we can
computethatits heightmustbe 0.5cm;this is the offset from the centerof the image
plane.Theothercamerawill have anoffsetof 0.5cmin theoppositedirection. Thusthe
total disparityis 1.0cm,or, at 512 pixels/10cm.a disparity of 51.2pixels, or 51, since
thereareno fractionalpixels. Objectsthatarefartheraway will have smallerdisparity
Writing this asan equationwhered is the disparityin pixelsand Z is the distanceto
the object,we have:

J— 9« 512 pixels o 16 oM x 0.5m
10 cm

b. In otherwords,this questionis askinghow muchfurtherthan16m couldanobjectbe,

andstill occupy the samepixelsin theimageplane?Rearranginghe formulaabore by

swappingd and Z, andpluggingin valuesof 51 and52 pixelsfor d, we getvaluesof

Z of 16.06and15.75meters for a differenceof 31cm(alittle overafoot). Thisis the
rangeresolutionat 16 meters.

c. In otherwords,this questionis askinghow far avay would an objectbeto generatea

disparityof onepixel? Objectsfartherthanthis arein effect out of range;we cant say

wherethey arelocated. Rearranginghe formula abore by swappingd and Z we get

51.2meters.

24.7 In the 3-D case the two-dimensionalmageprojectedby anarbitrary 3-D objectcan
vary greatly dependingon the poseof the object. But with flat 2-D objects,the imageis
alwaysthe “same’; exceptfor its orientationandposition. All featurepointswill alwaysbe
presentbecausaherecanbe no occlusion,som = n. Supposene computethe centerof
gravity of theimageand modelfeaturepoints. For the modelthis canbe doneoffline; for
theimagethisis O(n). Thenwe cantake thesetwo centerof gravity points,alongwith an
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arbitraryimagepointandoneof then modelpoints,andtry to verify the transformatiorfor
eachof then casesVerificationis O(n log n) asbefore sothewholeprocesss O(n? log n).
A follow-up exerciseis to look at someof thetricks usedby Olson(1994)to seeif they are
applicablehere.

24.8 A, B, C canbe viewed in stereoand hencetheir depthscan be measuredallowing
the viewer to determinghat B is nearestA andC areequidistantandslightly further away.
Neither D nor E can be seenby both camerasso stereocannotbe used. Looking at the
figure,it appearshatthebottleoccluded from Y andE from X, soD andE mustbefurther
awvaythanA, B, C, buttheirrelatve depthscannotbedeterminedThereis, however, another
possibility (noticedby Alex Fabrikant). Remembethat eachcameraseesthe cameras-g/e
view not the bird’s-eye view. X seesDABC andY seesABCE. It is possiblethatD is very
closeto cameraX, so closethatit falls outsidethe field of view of cameraY; similarly, E
might be very closeto Y andbe outsidethe field of view of X. Hence,unlessthe cameras
have a 180-dgreefield of view—probablyimpossible—therés nowayto determinevhether
D andE arein front of or behindthebottle.

24.9
a. False.This canbe quite difficult, particularlywhensomepoint areoccludedfrom one
eye but nottheother

b. True. The grid createsan apparentexture whosedistortiongivesgoodinformationas
to surfaceorientation.

c. False.It appliesonly to trihedralobjects.excludingmary polyhedrasuchasfour-sided
pyramids.

True. A bladecanbecomeafold if oneof theincidentsurfacess warped.
True. Thedetectablalepthdisparityis inverselyproportionalto b.

False.

False.A disk viewededge-orappearsasa straightline.

Q -~ o 2

24.10 Thereare at leasttwo reasons:(1) The leftmost car appeas bigger and carsare
usuallyroughlysimilarin size,thereforeit is closer (2) It is assumedhattheroadsurfaceis
anapproximatelyhorizontalgroundplane,andthatboth carsareonit. In thatcasebecause
theleftmostcarappeardowerin theimage,it mustbecloser



5 ROBOTICS

25.1 To answerthis question,considerall possibilitiesfor the initial samplesbeforeand
afterresampling.This canbe donebecauséhereareonly finitely mary states.Thefollowing
C++programcalculatesheresultsfor finite V. Theresultfor N = oo is simplytheposterioy
calculatedusingBayesrule.

int
main(int - arge . char *arg v[) /I inc rement counter

/I parse comnand line argu ment for (nt i =0; i < numSmples && i !'= -L)}{
if (ar gc = 3} samples[i  ]++;

cerr << "Usage: " << argv[0] << " <number of samples> " if (samples [i] >= numSate s)
<< _<nun'ber of stat es>" << endl; samples[ i++] = 0;

exit (0); else
} )

i = -1;
int numSamples = atoi( argv [1]) ; if (i == numSample s)
int numSates = atoi(arg Vv[2] ); done = 1,
cerr << "number of samples: " << numSmples << endl| }
<< "number of state s: " << numSate s << endl; }

asse rt(n  umSarples >= 1);
asse rt(n umsStates >= 1); .
/I pri nt resu lt

/I generate counter cout << "Result:

int  samples[n umSanples J; » for (int i =0; i < numSate s; i++)

for (int i =0; i < numSamples; i++) cout << " " << poste rior Prob [i];
samples[i ] = 0; !

cout << endl
/I set up pro babi lity tabl es

assert(n umStates == 4); // presentl y defi ned for 4 stat es
double condProbOfz[ 4] = {0.8 , 0.4, 01, 0.1} ; /I cal culat e asymptoti c expectati on
double post erio rPro b[num Stat es]; double tota IWei ght = 0.0;
for (int i =0; i < numSate s; i++) for (int i =0 i <numSate s; i++)

post erior Prob[i] = 0.0; . T R
double eventPro b = 1.0 / pow(numState s, numSamples); tota IWeig ht += condProbOfZ[i ];
/Mo op thro ugh all possi bili ties cout << "Unbi ased:"
for (int done = 0; l!done ; ) for (int i = 0; i < numSate s; i++)

cout << " " << condProbOfZ[i ] / tot alWeight;

/I compute importanc e weig hts (is pro babil ity dist ribut ion)

double weig htfn umSarples ], tota IWei ght = 0.0 ; cout << endk;

for (int i =0; i < numSamples; i++)
tota IWeig ht += weigh tli] = cond Prob OfZ[s amples[i ]]; /I cal culat e KL div ergen ce
/I nor maliz e them double kI = 0.0;
for (nt i =0; i <numamples; i++) for (nt i =0; i < numSate s; i++)
weig hifi] /= total - Weight; kI += poste rior Prob[ i * (lo g(pos teri orPro bfi] ) -

/I cal culat e cont ribut ion to post erio r proba bili ty log( Condp_mbsz[i] ! tot alWei ght) );
for (int i =0; i < numSamples; i++) cout << "KL div erge nce: " << kIl << endl ;
post erior Prob [samples[ i]] += eventPro b * weight[ i]; }

(@) (b)

FigureS25.1 Codeto calculateanswetrto exercise25.1.

a. The program(correctly) calculatesthe following posteriordistributions for the four
statesasafunctionof thenumberof samplesV. Notethatfor V = 1, themeasurement
is ignoredentirely! The correctposteriorfor N = oo is calculatedusingBayesrule.
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0.25
0.163889
0.127677
0.109874

0.0999636
0.0938788
0.0898447
0.0870047
0.0849091
0.0833042
0.0714286

N p(sampleats;) p(sampleats;) p(sampleatss) p(sampleatsy)
N=1 0.25 0.25 0.25
N =2 0.368056 0.304167 0.163889
N=3 0.430182 0.314463 0.127677
N =14 0.466106 0.314147 0.109874
N =5 0.488602 0.311471 0.0999636
N=6 0.503652 0.308591 0.0938788
N=7 0.514279 0.306032 0.0898447
N =38 0.522118 0.303872 0.0870047
N =9 0.528112 0.30207 0.0849091
N =10 0.532829 0.300562 0.0833042
N =x 0.571429 0.285714 0.0714286
b. Pluggingthe posteriorfor N = oc into the definition of the Kullback Liebler Diver
gencegivesus:
N | KL(p,p) N | KL(p,p)
N =1| 0.386329 N =7 [0.00804982
N =2 0.129343 N =8 [0.00593024
N = 3| 0.056319 N =9 [0.00454205

N =41 0.029475
N =5]0.0175705

N =10/0.00358663

N =00 0

c. Theprooffor N = 1 istrivial, sincethe re-weightingignoresthe measuremenroba-
bility entirely Thereforethe probabilityfor generatingasamplen ary of thelocations
in S is givenby theinitial distribution, whichis uniform.

For N = 2, aproofis easilyobtainedby consideringall 2 = 16 waysin which

initial samplesaregenerated:

number| samples probability p(z]s) weights probability of resampling
of sampleset| for eachsample for eachsample for eachlocationin S
T 00 % |3 3 [} 5 |& 00 o
2 Joo1 | & |2 4 3 & & ko0 o
soJo2 & |6 4 |5 5 |k 0 0
4 o | & & 4 5 5 & 0 o0
RN T R T B
6 11| & |2 2 |3 5 o g oo o
AEREN N R
N O N R T T O R I R
o 2o & |t & |5 b |k 0 0
0 2 1| & |2 & |f 1 o o5 & o
11 |2 2 L L1 1 o 0o L+ o
12 2 8| & |5 & |3 3 oo & g
133 0| [ % 5 b & 0 0 g
RS O T LR
1503 2| & |5 & |5 f |00 &
16 |3 3 L Ll 1 o 0o o0 L
sumof all probabilities R N N8
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A quick checkshouldcorvince you thatthesenumbersarethe sameasabore. Placing
this into the definition of the Kullback Liebler divergencewith the correctposterior
distribution, givesus 0.129343.

For N = oo we know thatthe sampleris unbiased.Hence the probability of gen-
eratinga sampleis the sameasthe posteriordistribution calculatedby Bayesfilters.
Thosearegivenabore aswell.

d. Herearetwo possiblemodifications. First, if the initial robotlocationis known with
absolutecertainty the sampleraborve will alwaysbe unbiased.Second,if the sensor
measurement is equallylikely for all statesthatis p(z|s1) = p(z|s2) = p(z|s3) =
p(z]s4), it will alsobeunbiasedAn invalid answeyrwhich we frequentlyencountered
in class,pertainsto the algorithm (insteadof the problemformulation). For example,
replacingpatrticlefilters by the exact discreteBayesfiler remediegshe problembut is
notalegitimateanswetto this question.Neitheris the useof infinitely mary particles.

25.2 ImplementingMonte Carlolocalizationrequiresalot of work but is a premierewayto
gaininsightsinto thebasicworkingsof probabilisticalgorithmsin robotics,andtheintricacies
inherentin realdata. We have usedthis exercisein mary coursesandstudentsonsistently
expressedaving learnedalot. We stronglyrecommendhis exercise!

Theimplementations notasstraightforvard asit may appeantfirst glance.Common
problemsinclude:

e Thesensomodelmodelstoo little noise,or the wrong type of noise. For example,a
simpleGaussiawill notwork here.

e The motion modelassumegoo little or too muchnoise,or the wrong type of noise.
Herea Gaussiawill work fine though.

e Theimplementatiormay introduceunnecessarilyigh variancein the resultingsam-
pling set,by samplingtoo often, or by samplingin thewrongway. This problemman-
ifestsitself by diversity disappearingprematurely often with the wrong samplessur
viving. While the basicMCL algorithm,asstatedin the book, suggestshat sampling
should occur after eachmotion update,implementationghat samplelessfrequently
tendto yield superiorresults. Further draving samplesndependentlyof eachother
is inferior to so-callediow variancesamplers.Hereis a versionof low variancesam-
pling, in which X denoteghe particlesandW theirimportanceweights. Theresulting
resamplegarticlesresidein thesetsS’.

function Low-VARIANCE-WEIGHTED-SAMPLE-WITH-REPLACEMENT (S, W):
' ={}
b= 7:]\;1 Wil
r = rand(0; b)
forn=1to N do
i = argmin; S Wim]>r
adds|i] to S’
r = (r + rand(0; ¢)) modulob
return S’
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Theparameter determineshe speedat which we cycle throughthe sampleset. While
eachsamples probabilityremainghe sameasif it weresampledndependentlythere-
sultingsamplesaredependentandthevarianceof thesamplesetS’ is lower (assuming
c < b). As apleasansideeffect, the low-variancesampless alsoeasilyimplemented
in O(N) time, whichis moredifficult for theindependensampler

e Samplesarestartedin the occupiedor unknavn partsof the map, or areallowed into
thosepartsduringtheforwardsampling(motionprediction)stepof theMCL algorithm.

e Too few samplesare used. A few thousandshoulddo the job, a few hundredwill
probablynot.

Thealgorithmcanbespedup by pre-cachingll noise-freemeasurement$or all x-y-6 poses
thatthe robot might assume.For that, it is corvenientto definea grid over the spaceof all
poseswith 10 centimeterspatialand2 degreesangularresolution.Onemightthencompute
the noise-freemeasurementfor the centersof thosegrid cells. The sensomodelis clearly
justafunctionof thosecorrectmeasurementsndcomputingthosetakesthe bulk of timein
MCL.

25.3 Leta betheshouldermndgs betheelbav angle. Thecoordinate®f theendeffectorare
thengivenby thefollowing expressionHerez is theheightandz thehorizontaldisplacement
betweertheendeffectorandtherobot’s basg(origin of the coordinatesystem):

) Ocm sin «v sin(« + ()
( z > o (60cm) + < cosa > - 40em + ( cos(a + 3) > - 40em

Notice thatthis is only oneway to definethe kinematics. The zero-positionf the angles
« andf canbearnywhere,andthe motorsmayturn clockwiseor counterclockwiseHerewe
chosedefinetheseanglesn awaythatthearmpointsstraightupata = g = 0; furthermore,
increasingx and 8 makesthe correspondingoint rotatecounterclockwise.

Inversekinematicds the problemof computinga. and 8 from the endeffector coordi-
natesx andz. For that, we obsenre thatthe elbov angles is uniquely determinedby the
Euclideandistancebetweenhe shoulderjoint andthe endeffector Let uscall this distance
d. Theshoulderoint is located60cm above the origin of the coordinatesystem;hence the
distanced is givenby d = /22 + (2 — 60cm)?. An alternatve way to calculated is by
recovering it from the elbav angle s andthe two connectedoints (eachof which is 40ecm
long): d = 2-40cm - cos g Thereadercaneasilyderive thisfrom basictrigonomy exploiting
thefactthatboththeelbon andtheshoulderareof equallength. Equatingthesetwo different
derivationsof d with eachothergivesus

22 4+ (z — 60cm)?2 = 80cm - cos é 25.1
2
or

B = =£2-arccos V2 + (= — 60cm)?
80cm
In mostcases,s canassumawo symmetricconfigurations,one pointing dovn and one
pointingup. We will discussexceptionsbelow.
To recover theanglea, we notethatthe anglebetweenthe shoulder(the base)andthe
endeffectoris givenby arctan 2(x, z — 60cm). Herearctan 2 is thecommongeneralization

(25.2)
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of the arcustangengo all four quadrantgcheckit out—it is a functionin C). Theanglea
is now obtainedby addingg, againexploiting that the shoulderandthe elbov areof equal
length:

a = arctan2(z,z — 60cm) — g (25.3)
Of course the actualvalue of o dependsn the actualchoiceof the valueof 5. With the

exceptionof singularities,s cantake on exactly two values.
Theinversekinematicss uniqueif 3 assumesa singlevalue;asaconsequenceodoes
alpha.For thisto bethe casewe needthat

arccos Va? + (2 — 60cm)® =0 (25.4)
80cm

This is the caseexactly whenthe argumentof the arccos is 1, thatis, whenthe distance
d = 80cm andthearmis fully stretched.The endpointsz, z thenlie on a circle definedby
V2?2 + (z — 60cm)? = 80cm. If thedistanced > 80cm, thereis no solutionto theinverse
kinematicproblem:the pointis simply too far away to bereachablédy therobotarm.

Unfortunately configurationdik e theseare numericallyunstable asthe quotientmay
beslightly largerthanone(dueto truncationerrors).Suchpointsarecommonlycalledsingu-
larities, andthey cancausemajorproblemsfor robotmotion planningalgorithms.A second
singularityoccurswhenthe robotis “folded up;’ thatis, 3 = 180°. Herethe endeffector’s
positionis identicalwith thatof the robotelbaw, regardlessof the anglea: x = 0cm and
z = 60cm. This is animportantsingularity asthereare infinitely mary solutionsto the
inversekinematics.As long as 3 = 180°, the value of o canbe arbitrary Thus,this sim-
ple robotarmgivesus an examplewherethe inversekinematicscanyield zero,one,two, or
infinitely mary solutions.

25.4 Codenotshawvn.
25.5

a. Theconfigurationof therobotsareshavn by the blackdotsin thefollowing figures.

FigureS25.2 Configurationof therobots.
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b. Theabove figure answersalsothe secondpartof this exercise:it shaws the configura-
tion spaceof therobotarmconstrainedby theself-collisionconstrainandtheconstraint
imposedoy theobstacle.

c. Thethreeworkspacenbstaclesareshavn in thefollowing diagrams:

FigureS25.3 Workspaceobstacles.

d. This questionis a greatmind teasetthatillustratesthe difficulty of robotmotion plan-
ning! Unfortunatelyfor anarbitraryrobot,aplanarobstacleeandecompos¢heworkspace
into any numberof disconnectedubspacesTo see,imaginea 1-DOFrigid robotthat
moveson a horizontalrod, andpossessed’ upward-pointingfingers,like a giantfork.
A single planarobstacleprotrudingvertically into one of the free-spacebetweenthe
fingerscouldeffectively separat¢he configurationrspacdanto NV + 1 disjoint subspaces.
A secondOF will notchangethis.

More interestingis the robot arm usedas an example throughoutthis book. By
slightly extendingthe vertical obstaclegrotrudinginto the robot’s workspacewne can
decomposéhe configurationspaceinto five disjoint regions. The following figures
shawv the configurationspacealongwith representate configurationsfor eachof the
five regions.

Is five the maximumfor ary planarobjectthatprotrudesnto the workspaceof this
particularrobotarm? We honestlydo not know; but we offer a $1 reward for the first
personwho presentdo usa solutionthatdecomposethe configurationspacento six,
seven,eight,nine,or tendisjointregions. For therewardto beclaimed,all theseregions
mustbe clearly disjoint, andthey mustbe a two-dimensionamanifold in the robot’s
configurationspace.

For non-planaiobjects the configurationspacds easilydecomposethto ary num-
ber of regions. A circular object may force the elbav to be just about maximally
bent;theresultingworkspacewnould thenbe avery narrav pipethatleave the shoulder
largely unconstrainedhut confinegheelbaw to anarrawv range.This pipeis theneasily
choppednto pieceshby smalldentsin the circularobject;the numberof suchdentscan
beincreasedvithout bounds.
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25.6 A simpledeliberatecontrollermight work asfollows: Initialize the robot's mapwith
an empty map, in which all statesare assumedo be navigable, or free. Theniteratethe
following loop: Find the shortestpathfrom the currentpositionto the goal positionin the
mapusingA*; executethe first stepof this path; senseandmodify the mapin accordance
with the sensedbstaclesif therobotreacheshe goal,declaresuccessTherobotdeclares
failure whenA* fails to find a pathto the goal. It is easyto seethat this approachis both
completeandcorrect. The robotalwaysfind a pathto a goalif oneexists. If no suchpath
exists, theapproactdetectghis throughfailure of the pathplanner Whenit declaredailure,
it is indeedcorrectin thatno pathexists.

A commonreactive algorithm,which hasthe samecorrectnesandcompletenesprop-
erty asthe deliberateapproachjs known asthe BUG algorithm. The BUG algorithmdis-
tinguisheswo modes the boundary-follaving andthe go-to-goalmode. Therobot startsin
go-to-goalmode.In this mode,therobotalwaysadwancedo the adjacengrid cell closesto
thegoal. If thisis impossiblebecaus¢hecell is blocked by anobstacletherobotswitchesto
the boundary-folleving mode. In this mode,the robotfollows the boundaryof the obstacle
until it reachesa point on the boundarythatis alocal minimumto the straight-linedistance
to thegoal. If sucha pointis reachedtherobotreturnsto the go-to-goalmode. If therobot
reacheghegoal,it declaresuccesslt declaregailurewhenthesamepointis reachedwice,
which canonly occurin the boundary-folleving mode. It is easyto seethatthe BUG algo-
rithm is correctandcomplete. If a pathto the goal exists, the robotwill find it. Whenthe
robot declaredailure, no pathto the goal may exist. If no suchpathexists, the robot will

N

= = =

Figure S25.4 Configurationspacdor eachof thefive regions.
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ultimatelyreachthe sameocationtwice anddetectits failure.

Bothalgorithmscancopewith continuousstatespaceprovidesthatthey canaccurately
perceve obstaclesplan pathsaroundthem(deliberatve algorithm)or follow their boundary
(reactve algorithm).Noisein motioncancausdailuresfor bothalgorithms especiallyif the
robothasto move througha narrawv openingto reachthe goal. Similarly, noisein perception
destrgs both completenesand correctnessin both caseghe robot may erroneouslycon-
cludeagoal cannotbereachedjust becausdts perceptionvasnoise. However, adeliberate
algorithmmight build a probabilisticmap,accommodatinghe uncertaintythat arisesfrom
the noisy sensors Neitheralgorithmasstatedcan copewith unknavn goallocations;how-
ever, thedeliberatealgorithmis easilycorvertedinto anexploration algorithmby which the
robotalwaysmovesto thenearestinexploredlocation. Suchanalgorithmwouldbecomplete
andcorrect(in the noise-freecase). In particular it would be guaranteedo find andreach
thegoalwhenreachableThe BUG algorithm,however, would notbeapplicable A common
reactie techniquéor finding a goalwhoselocationis unknavn is randommotion; this algo-
rithm will with probabilityonefind agoalif it is reachablehowever, it is unableto determine
whento give up, andit maybe highly inefficient. Moving obstacleswill causeproblemsfor
boththe deliberateandthe reactve approachijn fact, it is easyto designan adwersarialcase
wheretheobstaclealwaysmovesinto therobot'sway. For slowv-moving obstaclesacommon
deliberatgechniquss to attachatimerto obstaclesn thegrid, anderasehemaftera certain
numberof time steps.Suchanapproactoftenhasa goodchanceof succeeding.

25.7 Thereareanumberof waysto extendthesingle-lgg AFSM in Figure25.22(b)into aset
of AFSMsfor controlling a hexapod. A straightforvard extension—thougmot necessarily
themostefficientone—isshowvn in thefollowing diagram.Herethesetof legsis dividedinto
two, namedA andB, andlegsareassignedo thesesetsin alternatingsequenceThetoplevel
controller shavn ontheleft, goesthroughsix stagesEachstagdifts asetof legs,pusheghe
onesstill onthegroundbackwards,andthenlowersthelegsthathave previously beenlifted.
The samesequencas thenrepeatedor the other set of legs. The correspondingsingle-
leg controlleris essentiallythe sameasin Figure 25.22(b),but with addedwait-stepsfor
synchronizatiorwith the coordinatingAFSM. The low-level AFSM is replicatedsix times,
oncefor eachleg.

For shaving thatthis controlleris stable we shav thatat leastoneleg groupis onthe
groundat all times. If this conditionis fulfilled, the robot’s centerof gravity will alwaysbe
above theimaginarytriangledefinedby thethreelegs onthe ground.The conditionis easily
proven by analyzingthetop level AFSM. Whenonegroupof legsin s4 (or onthewayto s,
from s3), theotheris eitherin s, or s1, bothof which areonthe ground.However, this proof
only establisheshatthe robotdoesnotfall over whenon flat ground;it makesno assertions
abouttherobot’s performancen non-flatterrain. Our resultis alsorestrictedo static stabil-
ity, thatis, it ignoresall dynamiceffectssuchasinertia. For a fast-mwaing hexapod,asking
thatits centerof gravity be enclosedn thetriangleof supportmaybeinsuficient.

25.8 We have usedthis exercisein classto greateffect. Thestudentgjeta clearemictureof
why it is hardto do robotics. The only dravbackis thatit is alot of fun to play, andthusthe
studentsvantto spenda lot of time onit, andthe oneswho arejust observingfeel like they
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retract, lift higher

move
initially: forward
A-legs in s,
B-legs in s,
Wait until send U to A-legs Wait until lift up
B-legsins, A-legsins,

X
send D to B-legs send P to B-legs uvnv;zi.illtU qu‘,ti’lltD
2 received received
‘Wait until Wait until
A-legsinss, B-legsins,
7Y set down
send P to A-legs send D to A-legs
v push backward | Wait

Wait until Wait until until P
B-legsins, send U to B-legs A-legsin’s, received
@) (b)
FigureS25.5 Controllerfor ahexapodrobot.

aremissingout. If you have laboratoryor TA sectionsyou candotheexercisethere.

Bearin mindthatbeingtheBrainis avery stressfujob. It cantake anhourjustto stack
threeboxes. Choosesomeonenho is not likely to panicor be crushedoy studentderision.
Help the Brain out by suggestingisefulstratgjies suchasdefininga mutually agreedHand-
centric coordinatesystemso that commandsare unambiguous Almost certainly the Brain
will startby issuingabsolutecommandssuchas“Move the Left Hand 12 inchespositive y
direction”or “MovethelLeft Handto (24,36). Suchactionswill neverwork. Themostuseful
“invention” that studentswill suggests the guardedmotiondiscussedn Section25.5—that
is, macro-operatorsuchas“Move theLeft Handin thepositive y directionuntil theeyessay
theredandgreenboxesarelevel” ThisgetstheBrainoutof theloop, soto speakandspeeds
thingsup enormously

We have alsouseda relatedexerciseto shav why roboticsin particularandalgorithm
designin generalis difficult. Theinstructorusesaspropsadoll, atable,a diaperandsome
safetypins, and asksthe classto comeup with an algorithmfor putting the diaperon the
baby Theinstructorthenfollows the algorithm, but interpretingit in the leastcooperatie
way possible:putting the diaperon the doll's headunlesstold otherwise droppingthe doll
onthefloor if possibleandsoon.



Solutionsfor Chapter26
PhilosophicaFoundations

26.1 Wewill takethedisabilities(seepage949)oneatatime. Notethatthis exercisemight
bebetterasa classdiscussiomratherthanwritten work.

a.

bekind: Certainlythereareprogramghatarepolite andhelpful, but to bekind requires
anintentionalstate sothis oneis problematic.

. resoucefutl Resourcefumeans‘clever at finding ways of doing things? Marny pro-

gramsmeetthis criteriato somedegree:a compilercanbe clever makingan optimiza-
tion that the programmemmight not ever have thoughtof; a databaserogrammight
cleverly createanindex to male retrievals faster;a checlers or backgammormrogram
learnsto play aswell asary human. One could argue whetherthe machinesare “re-

ally” clever or just seemto be, but mostpeoplewould agreethis requirementasbeen
achieved.

. beautiful Its notclearif Turing meantto be beautifulor to createbeautynoris it clear

whetherhe meantphysicalor inner beauty Certainlythe mary industrial artifactsin
the New York Museumof ModernArt, for example,are evidencethata machinecan
be beautiful. Therearealso programsthat have createdart. The bestknown of these
is chronicledin Aaron’s code: Meta-art, artificial intelligence andthework of Harold
Cohen(McCorduck,1991).

d. friendly This appeardo fall underthe samecategory askind.
e. haveinitiative Interestinglythereis now a seriousdebatevhethersoftwareshouldtake

initiative. The whole field of software agentssaysthatit should; critics suchasBen
Schneidermasaythatto achieve predictability software shouldonly be an assistant,
not an autonomousgent. Notice that the debateover whethersoftware shouldhave
initiative presupposethatit hasinitiative.

. havea senseof humorWe know of no majoreffort to producehumorouswvorks. How-

ever, this seemdo beachiezablein principle. All it would take is someondik e Harold

Cohenwhois willing to spendalongtime tuninga humorproducingmachine We note

thathumoroudext is probablyeasierto producethanothermedia.

tell right fromwrong Thereis considerableesearchn applyingAl to legal reasoning,
andtherearenow toolsthatassisthelawyerin decidinga caseanddoingresearchOne

couldarguewhetherfollowing legal precedentss the sameastelling right from wrong,

andin ary casethis hasa problematicconsciousaspecto it.
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h. male mistalesAt this stage every computeruseris familiar with softwarethatmakes
mistales! It is interestingto think backto what the world waslike in Turing’s day,
whensomepeoplethoughtit would be difficult or impossiblefor a machineto make
mistales.

i. fall in love Thisis oneof the caseghatclearlyrequiresconsciousnes\ote thatwhile
somepeopleclaimthattheir petslove them,andsomeclaimthatpetsarenot conscious,
| don't know of anybodywho makesbothclaims.

j. enjoystrawberriesand creamTherearetwo partsto this. First, therehasbeenlittle to
nowork ontasteperceptiorin Al (althoughtherehasbeenrelatedwork in thefood and
perfumeindustriesseehttp://198.80.36.88/gmmed/techU0450.htmlfor onesuchar-
tificial nose),sowe’re nowhereneara breakthrouglon this. Secondthe “enjoy” part
clearlyrequiresconsciousness.

k. male someondall in love with it This criteriais actuallynot too hardto achieve; ma-
chinessuchasdolls andteddybearshave beendoingit to childrenfor centuries.Ma-
chinesthattalk andhave more sophisticatedehaiors just have a larger advantagen
achiezing this.

[. learnfromexperiencePart VI shawvs thatthis hasbeenachiezed mary timesin Al.

m. usewordsproperly No programuseswordsperfectly but therehave beenmary natural
languagerogramshatusewordsproperlyandeffectively within alimited domain(see
Chapter22-23).

n. bethe subjectof its ownthoughtThe problematicword hereis “thought! Marny pro-
gramscanprocesghemseles, aswhena compilercompilesitself. Perhapsloserto
humanself-examinationis the casewherea programhasan imperfectrepresentation
of itself. Oneanecdotef this involves Doug Lenats Eurisko program. It usedto run
for long periodsof time, and periodically neededo gatherinformationfrom outside
sources.It “knew” thatif a personwereavailable,it could type out a questionat the
console andwait for areply. Late onenightit sav thatno persorwasloggedon, soit
couldnt askthe questiont neededo know. But it knew that Eurisko itself wasup and
running,anddecidedit would modify the representationf Eurisko sothatit inherits
from “Personi, andthenproceededo askitself the question!

0. haveas mud diversity of behavioras manClearly no machinehasachiered this, al-
thoughthereis no principledreasorwhy onecouldnot.

p. do somethingreally new This seemsto be just an extensionof the idea of learning
from experience:if you learnenough,you cando somethingreally nev. “Really” is
subjectve, and somewould saythat no machinehasachieved this yet. On the other
hand,professionabackgammorplayersseemunanimousn their belief that TDGam-
mon (Tesauro;1992),anentirely self-taughtoackgammormprogram hasrevolutionized
the openingtheoryof the gamewith its discoveries.

26.2 No. Searles Chineseroom thesissaysthat there are somecaseswhere running a
programthatgenerategheright outputfor the Chineseoomdoesnot causdrue understand-
ing/consciousnessThe negation of this thesisis thereforethat all programswith the right
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outputdo causetrue understanding/catiouness. Soif you wereto disprose Searles the-
sis thenyou would have a proof of machineconsciousnesddowever, whatthis questionis
gettingatis theargumentbehindthethesis.If youshav thattheamgumentis faulty, thenyou
may have proved nothingmore: it might be thatthethesisis true (by someotherargument),
orit mightbefalse.

26.3 Yes,thisis alegitimateobjection.Rememberthepointof restoringthebrainto normal
(page957) is to be ableto ask “What wasit like during the operation?” and be sure of
gettinga“human”answernotamechanicabne.But the skeptic canpoint out thatit will not
do to replaceeachelectronicdevice with the correspondingheuronthat hasbeencarefully
kept aside,becausehis neuronwill not have beenmodifiedto reflectthe experienceghat
occurredwhile the electronicdevice wasin theloop. Onecouldfix the algumentby saying,
for example thateachneuronhasasingleactivationenegy thatrepresentsts “memory’ and
thatwe setthis level in the electronicdevice whenwe insertit, andthenwhenwe remove it,
we readoff the new activationenegy, andsomehw settheenegy in the neuronthatwe put
backin. Thedetails,of coursedependon your theoryof whatis importantin the functional
and conscioudunctioning of neuronsandthe brain; a theorythatis not well-developedso
far.

26.4 This exercisedependson what happendo have beenpublishedlately The NEWS
and MAGS databasesavailable on mary online library catalogsystems,canbe searched
for keywords suchas Penrose Searle,ChineseRoom, Dreyfus, etc. We found about90
reviews of Penroses books. Here are someexcerptsfrom a fairly typical one, by Adam
Schulman(1995).

RogerPenrosethedistinguishednathematicaphysicist,hasagainenteredheliststo rid
theworld of aterribledragon.The nameof this dragonis "strongartificial intelligence.

StrongAl, asits defendersall it, is both a widely held scientificthesisandan ongoing
technologicaprogram.Thethesisholdsthatthehumanmindis nothingbut afangy calcu-
lating machine-"-acomputemadeof meat’—andhatall thinking is merelycomputation;
theprogramis to build fasterandmorepowerful computerghatwill eventuallybeableto

do everythingthe humanmind cando andmore. Penroséelievesthatthe thesisis false
andthe programunrealizableandheis confidentthathe canprove theseassertions. . .

In Part| of Shadavs of the Mind Penrosenakeshis rigorouscasethathumanconscious-
nesscannotbefully understoodn computationaterms.. .. How doesPenroserove that
thereis moreto consciousnesthanmerecomputation?Most peoplewill alreadyfind it
inherentlyimplausiblethatthe diversefacultiesof humanconsciousness—selfvareness,
understandingwilling, imagining,feeling—difer only in compleity from the workings
of, say anIBM PC.

Studentsshouldhave no problemfinding thingsin this andotherarticleswith which to dis-
agree.Thecomp.ai Newsnetgroupis alsoa goodsourceof rashopinions.

Dubiousclaims alsoemege from the interactionbetweenjournalists’ desireto write
entertainingandcontroversialarticlesandacademicstesireto achiere prominenceandto be
viewed asaheadof the curve. Heres onetypical result—Is Nature’s Way The Best\Way?,
Omni, Februaryl995,p. 62:
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Artificial intelligencehasbeenone of the leastsuccessfutesearchareasin computer
science. That's becausén the past,researchersried to apply corventionalcomputer
programmingto abstracthumanproblems,suchas recognizingshapesor speakingin
sentencesBut researcheratMIT’ sMediaLabandBostonUniversity’s Centerfor Adap-
tive Systemdocuson applying paradigmf intelligencecloserto whatnaturedesigned
for humanswhich includeevolution, feedbackandadaptationareusedto producecom-
puterprogramghatcommunicat@monghemselesandin turnlearnfrom theirmistales.
ProfilesIn Artificial Intelligence David Freedman

This is not an agumentthat Al is impossible just thatit hasbeenunsuccessful.The full
text of the article is not given, but it is implied that the amgumentis that evolution worked
for humans thereforeit is a betterapproachfor programsthanis “conventional computer
programming. Thisis a commonargument,but onethatignoresthe factthat (a) thereare
mary possiblesolutionsto a problem;onethathasworkedin the pastmaynot bethebestin
the present{b) we don't have a goodtheoryof evolution, sowe maynotbe ableto duplicate
humanevolution, (c) naturalevolution takes millions of yearsand for almostall animals
doesnotresultin intelligencethereis no guarante¢hatartificial evolution will do better(d)
artificial evolution (or geneticalgorithms,ALife, neuralnets,etc.) is not the only approach
thatinvolvesfeedbackadaptatiorandlearning.“Conventional”’ Al doesthis aswell.

26.5 Thisalsomightmake agoodclassdiscussiortopic. Hereareour attempts:

intelligence ameasuref the ability of anagentto make theright decisionsgiventhe
availableevidence.Giventhe samecircumstancesa moreintelligentagentwill make better
decisionon average.

thinking : creatinginternalrepresentationis serviceof thegoalof comingto aconclu-
sion,makinga decision,or weighingevidence.

consciousnessheingawareof one’s own existenceandof ones currentinternalstate.

Herearesomeobjectiongwith replies]:

For intelligence too much emphasigs put on decision-making. Haven't you ever
known a highly intelligent personwho madebad decisions? Also no mentionis madeof
learning.You cant beintelligentby usingbrute-forcdook-up,for example,couldyou?[The
emphasion decision-makings only a liability whenyou areworking at too coarsea gran-
ularity (e.g.,“What shouldl do with my life?”) Onceyou look at smallergrain decisions
(e.g.,“Shouldl answer, b, c or noneof theabore?),you getat thekinds of thingstestedby
currentlQ tests,while maintainingthe advantagef the action-orientecapproachcovered
in Chapterl. As to the brute-forceproblem,think of intelligencein termsof anecological
niche:anagentonly needgo be asintelligentasis necessaryo be successfullf this canbe
accomplishedhroughsomesimplemechanismfine. For the comple ernvironmentsthatwe
humansarefacedwith, morecomplex mechanismareneeded.]

Forthinking , we have thesameobjectionsaboutdecision-makinghut in generalthink-
ing is theleastcontroversialof thethreeterms.

For consciousnesshe weaknesss the definition of “aware” How doesonedemon-
strateawarenessAlso, it is not ones true internalstatethatis important,but somekind of
abstractioror representationf someof the featureof it.



174

Chapter 26. PhilosophicaFoundations

26.6 Itishardto give adefinitive answeto thisquestionputit canprovoke someinteresting
essaysMary of thethreatsareactuallyproblemsof computettechnologyor industrialsociety
in general,with somecomponentghat canbe magnifiedby Al—examplesinclude loss of

privagy to suneillance,andthe concentratiorof power andwealthin the handsof the most
powerful. As discussedn the text, the prospectof robotstaking over the world doesnot
appeatto beaserioughreatin theforeseeabléuture.

26.7 Biologicalandnucleartechnologieprovide mushmoreimmediatehreatsof weapons,
yieldedeitherby statesor by smallgroups. Nanotechnlogyhreatengo producerapidly re-
producingthreatsgitherasweapon®r accidently but thefeasibility of thistechnologyis still
quitehypothetical As discussedh thetext andin thepreviousexercise computetechnology
suchascentralizeddatabasegjetwork-attacheccamerasand GPS-guidedveaponseento
posea moreseriousportfolio of threatsthanAl technologyat leastasof today

26.8 To decideif Al is impossible,we mustfirst defineit. In this book, we've chosena
definition that makesit easyto shaw it is possiblein theory—fora given architecturewe
just enumeratall programsand choosethe best. In practice,this might still be infeasible,
but recenthistory shawvs steadyprogressat a wide variety of tasks. Now if we defineAl as
the productionof agentghatactindistinguishablyform (or atleastasintellgiently as)human
beingson ary task,thenonewould have to saythatlittle progresshasbeenmade,andsome,
suchasMarvin Minsky, bemoarthefactthatfew attemptsareevenbeingmade.Othersthink
it is quite appropriateto addresscomponentasksratherthanthe “whole agent” problem.
Our feelingis that Al is neitherimpossiblenor a oomingthreat. But it would be perfectly
consistenfor someondo ffel thatAl is mostlikely doomedto failure, but still thattherisks
of possiblesuccessresogreatthatit shouldnotbe persuedor fearof success.



Solutionsfor Chapter27
Al: PresenandFuture

Thereare no exercisesin this chapter Thereare mary topicsthat are worthy of classdis-
cussion,or of paperassignment$or thosewho like to emphasizesuchthings. Examples
are:

e Whatarethebiggesttheoreticalbbstacledo successfuhl systems?
WhatarethebiggestpracticalobstaclesMHow arethesedifferent?

Whatis theright goalfor rationalagentdesign?Doesthe choiceof agoalmale all that
muchdifference?

Whatdo you predictthe future holdsfor Al?
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