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Preface

This Instructor’s Solution Manual provides solutions (bfemst solution sketches) for
almost all of the 400 exercises Attificial Intelligence: A Modern Approach (Third Edition)
We only give actual code for a few of the programming exes;iseiting a lot of code would
not be that helpful, if only because we don’t know what larggugou prefer.

In many cases, we give ideas for discussion and follow-ugstipres, and we try to
explainwhywe designed each exercise.

There is more supplementary material that we want to offeh&instructor, but we
have decided to do it through the medium of the World Wide Wahar than through a CD
or printed Instructor's Manual. The idea is that this s@otmanual contains the material that
must be kept secret from students, but the Web site contaitsrial that can be updated and
added to in a more timely fashion. The address for the webssite

http://aima.cs.berkeley.edu
and the address for the online Instructor’'s Guide is:
http://aima.cs.berkeley.edu/instructors.html
There you will find:

« Instructions on how to join thaima-instructors discussion list. We strongly recom-
mend that you join so that you can receive updates, corretinotification of new
versions of this Solutions Manual, additional exercised exam questions, etc., in a
timely manner.

» Source code for programs from the text. We offer code in L Bgthon, and Java, and
point to code developed by others in C++ and Prolog.

» Programming resources and supplemental texts.

* Figures from the text, for making your own slides.

« Terminology from the index of the book.

« Other courses using the book that have home pages on theYdlzan see example
syllabi and assignments here. Pledsenotput solution sets for AIMA exercises on
public web pages!

Al Education information on teaching introductory Al cees.

* Other sites on the Web with information on Al. Organized bgjter in the book; check
this for supplemental material.

We welcome suggestions for new exercises, new environmardsagents, etc. The
book belongs to you, the instructor, as much as us. We hopgadbieenjoy teaching from it,
that these supplemental materials help, and that you valesitour supplements and experi-
ences with other instructors.






Solutions for Chapter 1
Introduction

1.2

Dictionary definitions ofintelligence talk about “the capacity to acquire and apply
knowledge” or “the faculty of thought and reason” or “the lapito comprehend and
profit from experience.” These are all reasonable answertsif ve want something
guantifiable we would use something like “the ability to apkhowledge in order to
perform better in an environment.”

. We defineartificial intelligence as the study and construction of agent programs that

perform well in a given environment, for a given agent arettitire.
We define aragentas an entity that takes action in response to percepts froemén
ronment.

. We definerationality as the property of a system which does the “right thing” given

what it knows. See Section 2.2 for a more complete discus®aith describe perfect
rationality, however; see Section 27.3.

We defindogical reasoningas the a process of deriving new sentences from old, such
that the new sentences are necessarily true if the old oeesus. (Notice that does
not refer to any specific syntax oor formal language, but édequire a well-defined
notion of truth.)

See the solution for exercise 26.1 for some discussion @npiall objections.
The probability of fooling an interrogator depends on justvtunskilled the interroga-

tor is. One entrant in the 2002 Loebner prize competitionigiviis not quite a real Turing
Test) did fool one judge, although if you look at the transgrit is hard to imagine what
that judge was thinking. There certainly have been examplies chatbot or other online
agent fooling humans. For example, see See Lenny Fonermuatof the Julia chatbot
at foner.www.media.mit.edu/people/foner/Julia/. Weay she chance today is something
like 10%, with the variation depending more on the skill o# interrogator rather than the
program. In 50 years, we expect that the entertainment tnd(rsovies, video games, com-
mercials) will have made sufficient investments in artifi@ators to create very credible
impersonators.

13

Yes, they are rational, because slower, deliberative metieould tend to result in more

damage to the hand. If “intelligent” means “applying knogde” or “using thought and
reasoning” then it does not require intelligence to makdlaxection.

1



Chapter 1. Introduction

1.4 No. IQ test scores correlate well with certain other measgech as success in college,
ability to make good decisions in complex, real-world diitoras, ability to learn new skills
and subjects quickly, and so on, tartly if they're measuring fairly normal humans. The 1Q
test doesn’'t measure everything. A program that is speeilonly for 1Q tests (and special-
ized further only for the analogy part) would very likely pe&m poorly on other measures

of intelligence. Consider the following analogy: if a hunrans the 100m in 10 seconds, we
might describe him or her agery athleticand expect competent performance in other areas
such as walking, jumping, hurdling, and perhaps throwini¢gsblut we would not desscribe

a Boeing 747 asery athleticbecause it can cover 100m in 0.4 seconds, nor would we expect
it to be good at hurdling and throwing balls.

Even for humans, 1Q tests are controversial because ofttheiretical presuppositions
about innate ability (distinct from training effects) admetgeneralizability of results. See
The Mismeasure of Maoy Stephen Jay Gould, Norton, 1981 Multiple intelligences: the
theory in practiceby Howard Gardner, Basic Books, 1993 for more on 1Q tests,twhiey
measure, and what other aspects there are to “intelligence.

1.5 In order of magnitude figures, the computational power ofdbeputer is 100 times
larger.

1.6 Just as you are unaware of all the steps that go into making lyeart beat, you are
also unaware of most of what happens in your thoughts. Youasle b conscious awareness
of some of your thought processes, but the majority remai@sjoe to your consciousness.
The field of psychoanalysis is based on the idea that one rieeded professional help to
analyze one’s own thoughts.

1.7

* Although bar code scanning is in a sense computer visi@settare not Al systems.
The problem of reading a bar code is an extremely limited atifiicgal form of visual
interpretation, and it has been carefully designed to bénasls as possible, given the
hardware.

« In many respects. The problem of determining the relevarfigeweb page to a query
is a problem in natural language understanding, and thaigebs are related to those
we will discuss in Chapters 22 and 23. Search engines likecask which group
the retrieved pages into categories, use clustering tqubsi analogous to those we
discuss in Chapter 20. Likewise, other functionalitiesvided by a search engines use
intelligent techniques; for instance, the spelling caweases a form of data mining
based on observing users’ corrections of their own spebfimgrs. On the other hand,
the problem of indexing billions of web pages in a way thata$ retrieval in seconds
is a problem in database design, not in artificial intelligen

» To a limited extent. Such menus tends to use vocabulariéshvare very limited —
e.g. the digits, “Yes”, and “No” — and within the designersintrol, which greatly
simplifies the problem. On the other hand, the programs negdtwlith an uncontrolled
space of all kinds of voices and accents.



The voice activated directory assistance programs usecelbpione companies,
which must deal with a large and changing vocabulary araicgytAl programs.

 This is borderline. There is something to be said for vigytimese as intelligent agents
working in cyberspace. The task is sophisticated, the in&tion available is partial, the
techniques are heuristic (not guaranteed optimal), andttte of the world is dynamic.
All of these are characteristic of intelligent activiti€d3n the other hand, the task is very
far from those normally carried out in human cognition.

1.8 Presumably the brain has evolved so as to carry out this tipesaon visual images,
but the mechanism is only accessible for one particular gaepn this particular cognitive
task of image processing. Until about two centuries agaethers no advantage in people (or
animals) being able to compute the convolution of a Gaudsiaany other purpose.

The really interesting question here is what we mean by gayiat the “actual person”
can do something. The person can see, but he cannot computertvolution of a Gaussian;
but computing that convolution isart of seeing. This is beyond the scope of this solution
manual.

1.9 Evolution tends to perpetuate organisms (and combinaimus mutations of organ-

isms) that are successful enough to reproduce. That isytewolfavors organisms that can
optimize their performance measure to at least survived@te of sexual maturity, and then
be able to win a mate. Rationality just means optimizing gremiince measure, so this is in
line with evolution.

1.10 This question is intended to be about the essential natuhedfl problem and what is
required to solve it, but could also be interpreted as a $agical question about the current
practice of Al research.

A scienceis a field of study that leads to the acquisition of empiricabkledge by the
scientific method, which involves falsifiable hypothesesulwhat is. A puresngineering
field can be thought of as taking a fixed base of empirical kedggé and using it to solve
problems of interest to society. Of course, engineers dgadfiscience—e.g., they measure the
properties of building materials—and scientists do bitemgineering to create new devices
and so on.

As described in Section 1.1, the “human” side of Al is cleatyempirical science—
called cognitive science these days—because it involwashptogical experiments designed
out to find out how human cognition actually works. What abitt the “rational” side?
If we view it as studying the abstract relationship among doitrary task environment, a
computing device, and the program for that computing detviatyields the best performance
in the task environment, then the rational side of Al is feaflathematics and engineering;
it does not require any empirical knowledge about #imtual world—and theactual task
environment—that we inhabit; that a given program will ddhirea given environment is a
theorem (The same is true of pure decision theory.) In practice,dw@r we are interested
in task environments that do approximate the actual woddgewen the rational side of Al
involves finding out what the actual world is like. For examgh studying rational agents
that communicate, we are interested in task environmeutscttntain humans, so we have



Chapter 1. Introduction

to find out what human language is like. In studying perceptwe tend to focus on sensors
such as cameras that extract useful information from theaaetorld. (In a world without
light, cameras wouldn’t be much use.) Moreover, to desigiowi algorithms that are good
at extracting information from camera images, we need teetstdnd the actual world that
generates those images. Obtaining the required undenstpofiscene characteristics, object
types, surface markings, and so on is a quite different kireti@nce from ordinary physics,
chemistry, biology, and so on, but it is still science.

In summary, Al is definitely engineering but it would not bgesially useful to us if it
were not also an empirical science concerned with thosecespéthe real world that affect
the design of intelligent systems for that world.

1.11 This depends on your definition of “intelligent” and “tellfi one sense computers only
do what the programmers command them to do, but in anotheesehat the programmers
consciously tells the computer to do often has very littlddavith what the computer actually
does. Anyone who has written a program with an ornery bug lenthis, as does anyone
who has written a successful machine learning program. $oénsense Samuel “told” the
computer “learn to play checkers better than | do, and they that way,” but in another

sense he told the computer “follow this learning algorithamit it learned to play. So we're
left in the situation where you may or may not consider leagrib play checkers to be s sign
of intelligence (or you may think that learning to play in thght way requires intelligence,

but not in this way), and you may think the intelligence residéh the programmer or in the
computer.

1.12 The point of this exercise is to notice the parallel with tlievious one. Whatever

you decided about whether computers could be intelligert.ii, you are committed to

making the same conclusion about animals (including humangessyour reasons for de-

ciding whether something is intelligent take into accodm& mechanism (programming via
genes versus programming via a human programmer). Not&tate makes this appeal to
mechanism in his Chinese Room argument (see Chapter 26).

1.13 Again, the choice you make in 1.11 drives your answer to thestjon.

1.14

a. (ping-pong) A reasonable level of proficiency was achidwedndersson’s robot (An-
dersson, 1988).

b. (driving in Cairo) No. Although there has been a lot of pexg in automated driving,
all such systems currently rely on certain relatively canstclues: that the road has
shoulders and a center line, that the car ahead will travetdigtable course, that cars
will keep to their side of the road, and so on. Some lane clsaagd turns can be made
on clearly marked roads in light to moderate traffic. Drivingdowntown Cairo is too
unpredictable for any of these to work.

c. (driving in Victorville, California) Yes, to some exterds demonstrated in DARPA's
Urban Challenge. Some of the vehicles managed to negotistets intersections,
well-behaved traffic, and well-behaved pedestrians in gaggal conditions.



d. (shopping at the market) No. No robot can currently put tiegiethe tasks of moving in
a crowded environment, using vision to identify a wide vigrief objects, and grasping
the objects (including squishable vegetables) withoutatsing them. The component
pieces are nearly able to handle the individual tasks, bubitld take a major integra-
tion effort to put it all together.

e. (shopping on the web) Yes. Software robots are capable rallimg such tasks, par-
ticularly if the design of the web grocery shopping site dneschange radically over
time.

f. (bridge) Yes. Programs such as GIB now play at a solid level.

g. (theorem proving) Yes. For example, the proof of Robbimglhfa described on page
360.

h. (funny story) No. While some computer-generated prose @oetry is hysterically
funny, this is invariably unintentional, except in the cadgrograms that echo back
prose that they have memorized.

i. (legal advice) Yes, in some cases. Al has a long history séarch into applications
of automated legal reasoning. Two outstanding examplethar®rolog-based expert
systems used in the UK to guide members of the public in dgalith the intricacies of
the social security and nationality laws. The social ség@sistem is said to have saved
the UK government approximately $150 million in its first ye@operation. However,
extension into more complex areas such as contract law savaiatisfactory encoding
of the vast web of common-sense knowledge pertaining to cential transactions and
agreement and business practices.

j. (translation) Yes. In a limited way, this is already beirand. See Kay, Gawron and
Norvig (1994) and Wahlster (2000) for an overview of the fiefdspeech translation,
and some limitations on the current state of the art.

k. (surgery) Yes. Robots are increasingly being used foresyralthough always under
the command of a doctor. Robotic skills demonstrated atrbupean levels include
drilling holes in bone to insert artificial joints, suturingnd knot-tying. They are not
yet capable of planning and carrying out a complex operadiggonomously from start
to finish.

1.15
The progress made in this contests is a matter of fact, butrthact of that progress is
a matter of opinion.

* DARPA Grand Challenge for Robotic CarsIn 2004 the Grand Challenge was a 240
km race through the Mojave Desert. It clearly stressed tite sif the art of autonomous
driving, and in fact no competitor finished the race. The lbeain, CMU, completed
only 12 of the 240 km. In 2005 the race featured a 212km couitefewer curves
and wider roads than the 2004 race. Five teams finished, wathf@&d finishing first,
edging out two CMU entries. This was hailed as a great achiew for robotics and
for the Challenge format. In 2007 the Urban Challenge puw taa city setting, where
they had to obey traffic laws and avoid other cars. This timedCddged out Stanford.
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The competition appears to have been a good testing groysut tbeory into practice,
something that the failures of 2004 showed was needed. Bsiintportant that the
competition was done at just the right time, when there wasrttical work to con-
solidate, as demonstrated by the earlier work by Dickmamri®$e VaMP car drove
autonomously for 158km in 1995) and by Pomerleau (whoseadtesér drove 5000km
across the USA, also in 1995, with the steering controllédrmamously for 98% of the
trip, although the brakes and accelerator were controljed buman driver).

International Planning Competition In 1998, five planners competed: Blackbox,
HSP, IPP, SGP, and STAN. The result pafip:{/ftp.cs.yale.edu/pub/
mcdermott/aipscomp-results.html ) stated “all of these planners performed
very well, compared to the state of the art a few years ago Sthdtans found were 30 or
40 steps, with some over 100 steps. In 2008, the competiadreRpanded quite a bit:
there were more tracks (satisficing vs. optimizing; segakmts. temporal; static vs.
learning). There were about 25 planners, including suliorissfrom the 1998 groups
(or their descendants) and new groups. Solutions found merh longer than in 1998.
In sum, the field has progressed quite a bit in participatiotreadth, and in power of
the planners. In the 1990s it was possible to publish a Rignpaper that discussed
only a theoretical approach; now it is necessary to show tifative evidence of the
efficacy of an approach. The field is stronger and more matowe and it seems that
the planning competition deserves some of the credit. Heweome researchers feel
that too much emphasis is placed on the particular classpsobfems that appear in
the competitions, and not enough on real-world application

Robocup Robotics Soccefhis competition has proved extremely popular, attracting
407 teams from 43 countries in 2009 (up from 38 teams from 1hties in 1997).
The robotic platform has advanced to a more capable humdoirig and the strategy
and tactics have advanced as well. Although the competitasspurred innovations
in distributed control, the winning teams in recent yeargehalied more on individual
ball-handling skills than on advanced teamwork. The coitipethas served to increase
interest and participation in robotics, although it is nete how well they are advancing
towards the goal of defeating a human team by 2050.

TREC Information Retrieval Conference This is one of the oldest competitions,
started in 1992. The competitions have served to bring beyed community of re-
searchers, have led to a large literature of publicationd, reave seen progress in par-
ticipation and in quality of results over the years. In thel\egears, TREC served
its purpose as a place to do evaluations of retrieval alymston text collections that
were large for the time. However, starting around 2000 TRECame less relevant as
the advent of the World Wide Web created a corpus that wasaélaito anyone and
was much larger than anything TREC had created, and theageweint of commercial
search engines surpassed academic research.

NIST Open Machine Translation Evaluation This series of evaluations (explicitly
not labelled a “competition”) has existed since 2001. Sithem we have seen great
advances in Machine Translation quality as well as in thelvemof languages covered.



The dominant approach has switched from one based on gracahrales to one that
relies primarily on statistics. The NIST evaluations seentrack these changes well,
but don't appear to be driving the changes.

Overall, we see that whatever you measure is bound to inei@ae time. For most of
these competitions, the measurement was a useful one, @sthth of the art has progressed.
In the case of ICAPS, some planning researchers worry tlatrtoch attention has been
lavished on the competition itself. In some cases, prognasdeft the competition behind,
as in TREC, where the resources available to commerciatlseamgines outpaced those
available to academic researchers. In this case the TRE@atdion was useful—it helped
train many of the people who ended up in commercial searchnesg-and in no way drew
energy away from new ideas.



Solutions for Chapter 2
Intelligent Agents

2.1 This question tests the student’s understanding of erwiemts, rational actions, and
performance measures. Any sequential environment in wieishrds may take time to arrive
will work, because then we can arrange for the reward to ber‘twe horizon.” Suppose that
in any state there are two action choicegndb, and consider two cases: the agent is in state
s attimeT or attimeT' — 1. In states, actiona reaches state’ with reward 0, while action

b reaches state again with reward 1; irs’ either action gains reward 10. At tinié — 1,

it's rational to doa in s, with expected total reward 10 before time is up; but at tilet's
rational to dob with total expected reward 1 because the reward of 10 cammatbbained
before time is up.

Students may also provide common-sense examples fromfeahvestments whose
payoff occurs after the end of life, exams where it doesn’kemsense to start the high-value
question with too little time left to get the answer, and so on

The environment state can include a clock, of course; thesdd change the gist of
the answer—now the action will depend on the clock as wellrathe non-clock part of the
state—but it does mean that the agent can never be in the sat@dvece.

2.2 Notice that for our simple environmental assumptions wedmes worry about quanti-
tative uncertainty.

a. It suffices to show that for all possible actual environrsdne., all dirt distributions and
initial locations), this agent cleans the squares at leafdsd as any other agent. This is
trivially true when there is no dirt. When there is dirt in timitial location and none in
the other location, the world is clean after one step; no tg@mdo better. When there
is no dirt in the initial location but dirt in the other, the vidis clean after two steps; no
agent can do better. When there is dirt in both locationswbed is clean after three
steps; no agent can do better. (Note: in general, the conditated in the first sentence
of this answer is much stricter than necessary for an agdre tational.)

b. The agent in (a) keeps moving backwards and forwards eventhe world is clean.
It is better to doNoOp once the world is clean (the chapter says this). Now, since
the agent’s percept doesn't say whether the other squaleds,dt would seem that
the agent must have some memory to say whether the othereshjaaralready been
cleaned. To make this argument rigorous is more difficult—dgample, could the
agent arrange things so that it would only be in a clean lefasgwhen the right square

8



was already clean? As a general strategy, an aggmtise the environment itself as

EXTERNAL MEMORY a form of external memory—a common technique for humans who use things like
appointment calendars and knots in handkerchiefs. In triscplar case, however, that
is not possible. Consider the reflex actions [fdr Clean] and[B, Clean]. If either of
these isNoOp, then the agent will fail in the case where that is the inipiaicept but
the other square is dirty; hence, neither canNag)p and therefore the simple reflex
agent is doomed to keep moving. In general, the problem witlx agents is that they
have to do the same thing in situations that look the same) e¥ven the situations
are actually quite different. In the vacuum world this is g bability, because every
interior square (except home) looks either like a squaré ditt or a square without
dirt.

c. If we consider asymptotically long lifetimes, then it iseat that learning a map (in
some form) confers an advantage because it means that thecageavoid bumping
into walls. It can also learn where dirt is most likely to agulate and can devise
an optimal inspection strategy. The precise details of #poeation method needed
to construct a complete map appear in Chapter 4; methodseiwrirtg an optimal
inspection/cleanup strategy are in Chapter 21.

a. An agent that senses only partial information about theestatnnot be perfectly ra-
tional.
False. Perfect rationality refers to the ability to make djolecisions given the sensor
information received.

b. There exist task environments in which no pure reflex agenbehave rationally.
True. A pure reflex agent ignores previous percepts, so ¢astain an optimal state
estimate in a partially observable environment. For exampbrrespondence chess is
played by sending moves; if the other player's move is thestuipercept, a reflex agent
could not keep track of the board state and would have to respm say, “a4” in the
same way regardless of the position in which it was played.

c. There exists a task environment in which every agent ismatio
True. For example, in an environment with a single statel ¢hat all actions have the
same reward, it doesn’t matter which action is taken. Moreegaly, any environment
that is reward-invariant under permutation of the actionissatisfy this property.

d. The input to an agent program is the same as the input to thetdgaction.
False. The agent function, notionally speaking, takes pstithe entire percept se-
quence up to that point, whereas the agent program takesitient percept only.

e. Every agent function is implementable by some program/maaombination.
False. For example, the environment may contain Turing mashand input tapes and
the agent’s job is to solve the halting problem; there is anéfyinctionthat specifies
the right answers, but no agent program can implement it.tiAarcexample would be
an agent function that requires solving intractable pnobilestances of arbitrary size in
constant time.
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Chapter 2. Intelligent Agents

MOBILE AGENT

2.4

Suppose an agent selects its action uniformly at random therset of possible actions.
There exists a deterministic task environment in whichagent is rational.

True. This is a special case of (c); if it doesn’t matter whaciion you take, selecting
randomly is rational.

Itis possible for a given agent to be perfectly rational irotdistinct task environments.
True. For example, we can arbitrarily modify the parts of gmironment that are
unreachable by any optimal policy as long as they stay uhedse.

. Every agent is rational in an unobservable environment.

False. Some actions are stupid—and the agent may know thikdé a model of the
environment—even if one cannot perceive the environmexté st

. A perfectly rational poker-playing agent never loses.

False. Unless it draws the perfect hand, the agent can allwagsf an opponent has
better cards. This can happen for game after game. The tataement is that the
agent’s expected winnings are nonnegative.

Many of these can actually be argued either way, dependirtheitevel of detail and

abstraction.

A.
B.

IO 7 m

2.5

Partially observable, stochastic, sequential, dynagoatinuous, multi-agent.

Partially observable, stochastic, sequential, dynagoatinuous, single agent (unless
there are alien life forms that are usefully modeled as ajent

. Partially observable, deterministic, sequentialistdiscrete, single agent. This can be

multi-agent and dynamic if we buy books via auction, or dyitaiffiwe purchase on a
long enough scale that book offers change.

. Fully observable, stochastic, episodic (every pointeigasate), dynamic, continuous,

multi-agent.

. Fully observable, stochastic, episodic, dynamic, ommttiis, single agent.

. Fully observable, stochastic, sequential, static,inants, single agent.

. Fully observable, deterministic, sequential, statntimuous, single agent.
. Fully observable, strategic, sequential, static, @sgrmulti-agent.

The following are just some of the many possible definitidreg tan be written:

Agent an entity that perceives and acts; or, one tteat be vieweds perceiving and
acting. Essentially any object qualifies; the key point &swway the object implements
an agent function. (Note: some authors restrict the terpréagramsthat operateon
behalf ofa human, or to programs that can cause some or all of their woden on
other machines on a network, asnmobile agents)

Agent function a function that specifies the agent’s action in responsedrygossible
percept sequence.

Agent program that program which, combined with a machine architecturgle-
ments an agent function. In our simple designs, the progekmsta new percept on
each invocation and returns an action.
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« Rationality a property of agents that choose actions that maximize ¢ixpected util-
ity, given the percepts to date.

« Autonomy a property of agents whose behavior is determined by their experience
rather than solely by their initial programming.

* Reflex agentan agent whose action depends only on the current percept.

* Model-based agentan agent whose action is derived directly from an internatet
of the current world state that is updated over time.

» Goal-based agentan agent that selects actions that it believes will achesymicitly
represented goals.

« Utility-based agent an agent that selects actions that it believes will maxarttze
expected utility of the outcome state.

« Learning agentan agent whose behavior improves over time based on itgiexpe.

2.6 Although these questions are very simple, they hint at soemg fundamental issues.
Our answers are for the simple agent designsstatic environments where nothing happens
while the agent is deliberating; the issues get even moerdsting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statementslthaot affect the output.

b. Yes; the agent function might specify that the agent print when the percept is a
Turing machine program that halts, afidse otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the ratiagaht function may not be
implementable; e.g., the agent function that always playgnaing move, if any, in a
game of chess.)

c. Yes; the agent’s behavior is fixed by the architecture andnam.

d. There are2™ agent programs, although many of these will not run at alloté@N Any
given program can devote at mosbits to storage, so its internal state can distinguish
among onh2™ past histories. Because the agent function specifies adi@sed on per-
cept histories, there will be many agent functions that oaibe implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the emwiemt is dynamic, speed-
ing up the machine may mean choosing different (perhapsmpeittions and/or acting
sooner. If the environment is static and the program paydteat&on to the passage of
elapsed time, the agent function is unchanged.

2.7

The design of goal- and utility-based agents depends ontthetugre of the task en-
vironment. The simplest such agents, for example thoseaptelns 3 and 10, compute the
agent’s entire future sequence of actions in advance baftneg at all. This strategy works
for static and deterministic environments which are eifay-known or unobservable

For fully-observable and fully-known static environmeatpolicy can be computed in
advance which gives the action to by taken in any given state.
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function GOAL-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
goal, a description of the desired goal state
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is emptythen
plan < PLAN (state,goal,model)
action <« FIRST(plan)
plan «— REST(plan)
return action

Figure S2.1 A goal-based agent.

For partially-observable environments the agent can ceengeonditional plan, which
specifies the sequence of actions to take as a function ofginat'a perception. In the ex-
treme, a conditional plan gives the agent’s response ty@agtingency, and so it is a repre-
sentation of the entire agent function.

In all cases it may be either intractable or too expensiveotopute everything out in
advance. Instead of a conditional plan, it may be better topetge a single sequence of
actions which is likely to reach the goal, then monitor theiemment to check whether the
plan is succeeding, repairing or replanning if it is not. liyrbe even better to compute only
the start of this plan before taking the first action, coritiguio plan at later time steps.

Pseudocode for simple goal-based agent is given in Figure. S30AL-ACHIEVED
tests to see whether the current state satisfies the goat,atoing nothing if it does. PAN
computes a sequence of actions to take to achieve the goisl.might return only a prefix
of the full plan, the rest will be computed after the prefix ¥@euted. This agent will act to
maintain the goal: if at any point the goal is not satisfiediit @ventually) replan to achieve
the goal again.

At this level of abstraction the utility-based agent is nataim different than the goal-
based agent, except that action may be continuously retj(titere is not necessarily a point
where the utility function is “satisfied”). Pseudocode igagi in Figure S2.2.

2.8 The file"agents/environments/vacuum.lisp” in the code repository imple-
ments the vacuum-cleaner environment. Students can eadéynd it to generate different
shaped rooms, obstacles, and so on.

2.9 Areflex agent program implementing the rational agent fianctlescribed in the chap-
ter is as follows:

(defun reflex-rational-vacuum-agent (percept)
(destructuring-bind (location status) percept
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function UTILITY-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
utility — function, a description of the agent’s utility function
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if plan is emptythen

plan <— PLAN (state,utility — function,model)

action < FIRST(plan)

plan «— REST(plan)

return action

Figure S2.2 A utility-based agent.

(cond ((eq status ’Dirty) 'Suck)
((eq location 'A) 'Right)
(t 'Left))))
For states 1, 3, 5, 7 in Figure 4.9, the performance measuee$396, 1999, 1998, 2000
respectively.

2.10

a. No; see answer to 2.4(b).

b. See answer to 2.4(b).

c. In this case, a simple reflex agent can be perfectly ratiombke agent can consist of
a table with eight entries, indexed by percept, that spac#ieaction to take for each
possible state. After the agent acts, the world is updatedtza next percept will tell
the agent what to do next. For larger environments, constigi@ table is infeasible.
Instead, the agent could run one of the optimal search #tgosi in Chapters 3 and 4
and execute the first step of the solution sequence. Agaimtamal state isequired
but it would help to be able to store the solution sequendeaalsof recomputing it for
each new percept.

2.11

a. Because the agent does not know the geography and peroailyelocation and local
dirt, and cannot remember what just happened, it will getlisfarever against a wall
when it tries to move in a direction that is blocked—that isless it randomizes.

b. One possible design cleans up dirt and otherwise movesnalyd

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept
(cond ((eq status ’Dirty) 'Suck)
(t (random-element ’(Left Right Up Down))))))
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Figure S2.3  An environment in which random motion will take a long timedaver all
the squares.

This is fairly close to what the Roomb¥ vacuum cleaner does (although the Roomba
has a bump sensor and randomizes only when it hits an obstéoeorks reasonably
well in nice, compact environments. In maze-like environtseor environments with
small connecting passages, it can take a very long time teraithe squares.

. An example is shown in Figure S2.3. Students may also wishe@sure clean-up time

for linear or square environments of different sizes, anchjgare those to the efficient
online search algorithms described in Chapter 4.

. A reflex agent with state can build a map (see Chapter 4 faildgt An online depth-

first exploration will reach every state in time linear in teige of the environment;
therefore, the agent can do much better than the simple rafient.

The question of rational behavior in unknown environmesigséomplex one but itis
worth encouraging students to think about it. We need to kawee notion of the prior
probability distribution over the class of environmentall this the initialbelief state
Any action yields a new percept that can be used to updateditisbution, moving
the agent to a new belief state. Once the environment is aigiplexplored, the belief
state collapses to a single possible environment. Theretbe problem of optimal
exploration can be viewed as a search for an optimal strategye space of possible
belief states. This is a well-defined, if horrendously iotedle, problem. Chapter 21
discusses some cases where optimal exploration is possilgher concrete example
of exploration is the Minesweeper computer game (see EBeiti22). For very small
Minesweeper environments, optimal exploration is feasdthough the belief state
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update is nontrivial to explain.

2.12 The problem appears at first to be very similar; the main dhffiee is that instead of
using the location percept to build the map, the agent haswverit” its own locations (which,
after all, are just nodes in a data structure representiagtidite space graph). When a bump
is detected, the agent assumes it remains in the same loeattbcan add a wall to its map.
For grid environments, the agent can keep track ofats) location and so can tell when it
has returned to an old state. In the general case, howeeeg igno simple way to tell if a
state is new or old.

2.13

a. Forareflex agent, this presentsamditionalchallenge, because the agent will continue
to Suck as long as the current location remains dirty. For an ageattdbnstructs a
sequential plan, ever§uck action would need to be replaced bguck until clean.”

If the dirt sensor can be wrong on each step, then the agett mignt to wait for a
few steps to get a more reliable measurement before deoidhether toSuck or move
on to a new square. Obviously, there is a trade-off becausingadoo long means
that dirt remains on the floor (incurring a penalty), but agtimmediately risks either
dirtying a clean square or ignoring a dirty square (if thesseris wrong). A rational
agent must also continue touring and checking the squareasi it missed one on a
previous tour (because of bad sensor readings). it is noteidietely obvious how the
waiting time at each square should change with each new fDuese issues can be
clarified by experimentation, which may suggest a geneeaidirthat can be verified
mathematically. This problem is a partially observable kéardecision process—see
Chapter 17. Such problems are hard in general, but someaspases may yield to
careful analysis.

b. In this case, the agent must keep touring the squares iitdsfinThe probability that
a square is dirty increases monotonically with the timeesiihgvas last cleaned, so the
rational strategy is, roughly speaking, to repeatedly eteethe shortest possible tour of
all squares. (We say “roughly speaking” because there amplications caused by the
fact that the shortest tour may visit some squares twicegmidipg on the geography.)
This problem is also a partially observable Markov decigioocess.



Solutions for Chapter 3
Solving Problems by Searching

3.1 In goal formulation, we decide which aspects of the world we iaterested in, and
which can be ignored or abstracted away. Then in problem dtation we decide how to

manipulate the important aspects (and ignore the othdngke tid problem formulation first

we would not know what to include and what to leave out. That, scan happen that there
is a cycle of iterations between goal formulation, problemmfulation, and problem solving
until one arrives at a sufficiently useful and efficient sint

3.2

a. We'll define the coordinate system so that the center ofithee is a0, 0), and the
maze itself is a square fro-1,—1) to (1,1).
Initial state: robot at coordinat@, 0), facing North.
Goal test: eithefzr| > 1 or |y| > 1 where(z, y) is the current location.
Successor function: move forwards any distadcehange direction robot it facing.
Cost function: total distance moved.

The state space is infinitely large, since the robot’s pmsits continuous.

b. The state will record the intersection the robot is cuiyeat, along with the direction
it's facing. At the end of each corridor leaving the maze wé have an exit node.
We'll assume some node corresponds to the center of the maze.

Initial state: at the center of the maze facing North.
Goal test: at an exit node.
Successor function: move to the next intersection in frdnisg if there is one; turn to
face a new direction.
Cost function: total distance moved.

There arein states, where is the number of intersections.

c. Initial state: at the center of the maze.
Goal test: at an exit node.
Successor function: move to next intersection to the N@tuth, East, or West.
Cost function: total distance moved.

We no longer need to keep track of the robot’s orientatioresi is irrelevant to

16
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predicting the outcome of our actions, and not part of thd tgs. The motor system
that executes this plan will need to keep track of the rolmtisent orientation, to know
when to rotate the robot.

d. State abstractions:

(i) Ignoring the height of the robot off the ground, whethigsitilted off the vertical.
(i) The robot can face in only four directions.
(iif) Other parts of the world ignored: possibility of otheobots in the maze, the
weather in the Caribbean.

Action abstractions:

(i) We assumed all positions we safely accessible: the robatdn't get stuck or
damaged.
(i) The robot can move as far as it wants, without having thegge its batteries.
(iii) Simplified movement system: moving forwards a certdistance, rather than con-
trolled each individual motor and watching the sensors teaeollisions.

a. State space: States are all possible city pairg). The map imotthe state space.
Successor function: The successorgiof) are all pairgz, y) such thatddjacent(z, i)
and Adjacent(y, j).
Goal: Be at(i, i) for somei.
Step cost function: The cost to go frof j) to (x, y) is max(d(i, z), d(j,y)).
b. In the best case, the friends head straight for each otlsteps of equal size, reducing
their separation by twice the time cost on each step. Heinges @dmissible.

c. Yes: e.g., a map with two nodes connected by one link. Theftigads will swap
places forever. The same will happen on any chain if they ataodd number of steps
apart. (One can see this best on the graph that represergsmtaepace, which has two
disjoint sets of nodes.) The same even holds for a grid of @®y@ shape, because
every move changes the Manhattan distance between theiemdgrby 0 or 2.

d. Yes: take any of the unsolvable maps from part (c) and addf-4oep to any one of
the nodes. If the friends start an odd number of steps apartve in which one of the
friends takes the self-loop changes the distance by 1, riexgdilhe problem solvable. If
the self-loop is not taken, the argument from (c) appliesramdolution is possible.

3.4 From http://www.cut-the-knot.com/pythagoras/fiftedstinsl, this proof applies to the
fifteen puzzle, but the same argument works for the eightlpuzz

Definition: The goal state has the numbers in a certain order, which Weneasure as
starting at the upper left corner, then proceeding leftgbt;iiand when we reach the end of a
row, going down to the leftmost square in the row below. Foraiter configuration besides
the goal, whenever a tile with a greater number on it precedile with a smaller number,
the two tiles are said to baverted.

Proposition: For a given puzzle configuration, 18t denote the sum of the total number
of inversions and the row number of the empty square. Thémod2) is invariant under any
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legal move. In other words, after a legal move an dddemains odd whereas an evah
remains even. Therefore the goal state in Figure 3.4, witmversions and empty square in
the first row, hasV = 1, and can only be reached from starting states with &gaot from
starting states with eveN.

Proof: First of all, sliding a tile horizontally changes neithéettotal number of in-
versions nor the row number of the empty square. Therefdradeconsider sliding a tile
vertically.

Let's assume, for example, that the tifeis located directly over the empty square.
Sliding it down changes the parity of the row number of the gnsguare. Now consider the
total number of inversions. The move only affects relatiesipons of tilesA, B, C, andD.

If none of theB, C, D caused an inversion relative tb(i.e., all three are larger tha#) then
after sliding one gets three (an odd number) of additiomarsions. If one of the three is
smaller thanA, then before the movB, C', and D contributed a single inversion (relative to
A) whereas after the move they’ll be contributing two invers - a change of 1, also an odd
number. Two additional cases obviously lead to the samédtrégws the change in the sum
N is always even. This is precisely what we have set out to show.

So before we solve a puzzle, we should computeNhealue of the start and goal state
and make sure they have the same parity, otherwise no soistfmossible.

3.5 The formulation puts one queen per column, with a new quegeepl only in a square
that is not attacked by any other queen. To simplify matieesl| first consider then—rooks
problem. The first rook can be placed in any square in columm dhgices), the second in
any square in column 2 except the same row that as the rookuimedl ¢(» — 1 choices), and
so on. This gives! elements of the search space.

Forn gueens, notice that a queen attacks at most three squamsgivan column, so
in column 2 there are at leagt — 3) choices, in column at leagt — 6) choices, and so on.
Thus the state space sige> n - (n — 3) - (n — 6) - - . Hence we have

S >n-n-n-(n-3)-m-3)-n—=3-(n—6)-(n—=6)-(n—6) -
>n-(n—1)-n—=2)-(n—=3)-(n—4)-n=5)-(n—6)-(n—=T7)-(n—8)----
= n!
orS > v/nl
3.6
a. Initial state: No regions colored.
Goal test: All regions colored, and no two adjacent regicagetthe same color.

Successor function: Assign a color to a region.
Cost function: Number of assignments.

b. Initial state: As described in the text.
Goal test: Monkey has bananas.
Successor function: Hop on crate; Hop off crate; Push crata bne spot to another;
Walk from one spot to another; grab bananas (if standing atekr
Cost function: Number of actions.
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c. Initial state: considering all input records.

Goal test: considering a single record, and it gives “illegput” message.

Successor function: run again on the first half of the reganas again on the second
half of the records.

Cost function: Number of runs.

Note: This is acontingency problent you need to see whether a run gives an error
message or not to decide what to do next.

. Initial state: jugs have valueg, 0, 0].

Successor function: given valués y, z|, generatél12, y, z|, [z, 8, 2], [z, y, 3] (by fill-
ing); [0,v, 2], [x,0,z2], [x,y,0] (by emptying); or for any two jugs with current values
x andy, poury into z; this changes the jug with to the minimum ofx + y and the
capacity of the jug, and decrements the jug withy by the amount gained by the first
jug.

Cost function: Number of actions.

. If we consider allz, y) points, then there are an infinite number of states, and bfpat
. (For this problem, we consider the start and goal pointsetovdrtices.) The shortest

distance between two points is a straight line, and if it is possible to travel in a
straight line because some obstacle is in the way, then thieshertest distance is a
sequence of line segments, end-to-end, that deviate frenstthight line by as little

as possible. So the first segment of this sequence must gotheratart point to a
tangent point on an obstacle — any path that gave the obstagider girth would be

longer. Because the obstacles are polygonal, the tangarts poust be at vertices of
the obstacles, and hence the entire path must go from verteertex. So now the state
space is the set of vertices, of which there are 35 in Figug#.3.

. Code not shown.
. Implementations and analysis not shown.

a. Any path, no matter how bad it appears, might lead to anrarbit large reward (nega-

tive cost). Therefore, one would need to exhaust all posgibths to be sure of finding
the best one.

. Suppose the greatest possible reward iBhen if we also know the maximum depth of

the state space (e.g. when the state space is a tree), thpatamnyithd levels remaining
can be improved by at moeat/, so any paths worse thad less than the best path can be
pruned. For state spaces with loops, this guarantee ddespt because it is possible
to go around a loop any number of times, pickinganeward each time.

. The agent should plan to go around this loop forever (unitesan find another loop

with even better reward).

. The value of a scenic loop is lessened each time one reitisdsnovel scenic sight

is a great reward, but seeing the same one for the tenth tirae hour is tedious, not
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rewarding. To accommodate this, we would have to expandt#ite space to include
a memory—a state is now represented not just by the curreatitm, but by a current
location and a bag of already-visited locations. The reviardisiting a new location
is now a (diminishing) function of the number of times it h&eh seen before.

e. Real domains with looping behavior include eating junkd@md going to class.

a. Here is one possible representation: A state is a six-tofpletegers listing the number
of missionaries, cannibals, and boats on the first side, lzewl the second side of the
river. The goal is a state with 3 missionaries and 3 cannibalthe second side. The
cost function is one per action, and the successors of aatal the states that move
1 or 2 people and 1 boat from one side to another.

b. The search space is small, so any optimal algorithm works.aR example, see the
file "search/domains/cannibals.lisp” . It suffices to eliminate moves that
circle back to the state just visited. From all but the firstl #ast states, there is only
one other choice.

c. Itis not obvious that almost all moves are either illegatewert to the previous state.
There is a feeling of a large branching factor, and no clear twgroceed.

3.10 A stateis a situation that an agent can find itself in. We distingtieb types of states:
world states (the actual concrete situations in the realdyand representational states (the
abstract descriptions of the real world that are used bygleatin deliberating about what to
do).

A state spaceis a graph whose nodes are the set of all states, and whosedmek
actions that transform one state into another.

A search treeis a tree (a graph with no undirected loops) in which the ramienis the
start state and the set of children for each node consisteedtates reachable by taking any
action.

A search nodeés a node in the search tree.

A goalis a state that the agent is trying to reach.

An action is something that the agent can choose to do.

A successor functiondescribed the agent’s options: given a state, it returng afse
(action, state) pairs, where each state is the state relachylaking the action.

Thebranching factor in a search tree is the number of actions available to thetagen

3.11 A world state is how reality is or could be. In one world statere in Arad, in another
we're in Bucharest. The world state also includes whichestwee’re on, what's currently on
the radio, and the price of tea in China. A state descript®an agent’s internal descrip-
tion of a world state. Examples afe.(Arad) and In(Bucharest). These descriptions are
necessarily approximate, recording only some aspect dfttte.

We need to distinguish between world states and state gdenos because state de-
scription are lossy abstractions of the world state, bez#us agent could be mistaken about
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how the world is, because the agent might want to imaging¢hihat aren’t true but it could
make true, and because the agent cares about the world imdeitsal representation of it.

Search nodes are generated during search, representeig shet search process knows
how to reach. They contain additional information asiderfrihe state description, such as
the sequence of actions used to reach this state. Thisdalistinis useful because we may
generate different search nodes which have the same stdtbeaause search nodes contain
more information than a state representation.

3.12 The state space is a tree of depth one, with all states suesesthe initial state.
There is no distinction between depth-first search and thefrdt search on such a tree. If
the sequence length is unbounded the root node will havetaifimany successors, so only
algorithms which test for goal nodes as we generate suasesan work.

What happens next depends on how the composite actions réed.sdf there is no
particular ordering, then a random but systematic seargotehtial solutions occurs. If they
are sorted by dictionary order, then this implements déjpsh-search. If they are sorted by
length first, then dictionary ordering, this implementsdatth-first search.

A significant disadvantage of collapsing the search sp&edtiis is if we discover that
a plan starting with the action “unplug your battery” caret & solution, there is no easy way
to ignore all other composite actions that start with thigosc This is a problem in particular
for informed search algorithms.

Discarding sequence structure is not a particularly pratapproach to search.

3.13

The graph separation property states that “every path framirtitial state to an unex-
plored state has to pass through a state in the frontier.”

At the start of the search, the frontier holds the initiatestdence, trivially, every path
from the initial state to an unexplored state includes a rindbe frontier (the initial state
itself).

Now, we assume that the property holds at the beginning ofrlaitraxy iteration of
the GRAPH-SEARCH algorithm in Figure 3.7. We assume that the iteration coteplei.e.,
the frontier is not empty and the selected leaf nads not a goal state. At the end of the
iteration,n has been removed from the frontier and its successors (#lresdy explored or in
the frontier) placed in the frontier. Consider any path frtma initial state to an unexplored
state; by the induction hypothesis such a path (at the biegjrof the iteration) includes
at least one frontier node; except wheris the only such node, the separation property
automatically holds. Hence, we focus on paths passing gfrau(and no other frontier
node). By definition, the next nod€ along the path fromn must be a successor afthat
(by the preceding sentence) is already not in the frontiemtiiérmore,n’ cannot be in the
explored set, since by assumption there is a path ftbte an unexplored node not passing
through the frontier, which would violate the separationgarty as every explored node is
connected to the initial state by explored nodes (see lemetaifor proof this is always
possible). Hencey' is not in the explored set, hence it will be added to the feanthen the
path will include a frontier node and the separation propisrtestored.

The property is violated by algorithms that move nodes from ftontier into the ex-
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plored set before all of their successors have been gededevell as by those that fail to
add some of the successors to the frontier. Note that it i;eocessary to generasdl suc-
cessors of a node at once before expanding another nodegaadgartially expanded nodes
remain in the frontier.

Lemma: Every explored node is connected to the initial dbgte path of explored
nodes.

Proof: This is true initially, since the initial state is gmtted to itself. Since we never
remove nodes from the explored region, we only need to cheek modes we add to the
explored list on an expansion. Letbe such a new explored node. This is previously on
the frontier, so it is a neighbor of a nodé previously explored (i.e., its parent)’ is, by
hypothesis is connected to the initial state by a path ofarpl nodes. This path with
appended is a path of explored nodes conneatirtg the initial state.

3.14
a. False a lucky DFS might expand exactti/nodes to reach the goal.*Aargely domi-

nates any graph-search algorithm thagisranteed to find optimal solutions
True h(n) = 0is always an admissible heuristic, since costs are noniwegat
True A* search is often used in robotics; the space can be digerkbr skeletonized.
. True depth of the solution matters for breadth-first search cost.
. False a rook can move across the board in move one, although thédttan distance

from start to finish is 8.

® 20 T

3.15

Figure S3.1  The state space for the problem defined in Ex. 3.15.

a. See Figure S3.1.

b. Breadth-first: 1234567891011
Depth-limited: 1248951011
Iterative deepening: 1;123;1245367;1248951011

c. Bidirectional search is very useful, because the onlysssar ofr in the reverse direc-
tion is | (n/2)]. This helps focus the search. The branching factor is 2 irfidheard
direction; 1 in the reverse direction.
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d. Yes; start at the goal, and apply the single reverse sumcaston until you reach 1.

e. The solution can be read off the binary numeral for the gaehiper. Write the goal
number in binary. Since we can only reach positive integthis, binary expansion
beings with a 1. From most- to least- significant bit, skigpthe initial 1, go Left to
the node2n if this bit is 0 and go Right to nod2n + 1 if it is 1. For example, suppose
the goal isl1, which is1011 in binary. The solution is therefore Left, Right, Right.

3.16

a. Initial state: one arbitrarily selected piece (say a straight piece).

Successor function for any open peg, add any piece type from remaining typesu (Y
can add to open holes as well, but that isn't necessary a®@plete tracks can be
made by adding to pegs.) For a curved piece, iadelther orientation for a fork, add
in either orientationand (if there are two holes) connectiageither hole It's a good
idea to disallow any overlapping configuration, as this ieates hopeless configura-
tions early. (Note: there is no need to consider open hotxsause in any solution these
will be filled by pieces added to open pegs.)

Goal test all pieces used in a single connected track, no open pegsles,mo over-
lapping tracks.

Step cost one per piece (actually, doesn'’t really matter).

b. All solutions are at the same depth, so depth-first searailddoe appropriate. (One
could also use depth-limited search with limit- 1, but strictly speaking it's not neces-
sary to do the work of checking the limit because states ahdep- 1 have no succes-
sors.) The space is very large, so uniform-cost and brefadthwould fail, and iterative
deepening simply does unnecessary extra work. There arg rappated states, so it
might be good to use a closed list.

¢. A solution has no open pegs or holes, so every peg is in a olidere must be equal
numbers of pegs and holes. Removing a fork violates thisgstgpThere are two other
“proofs” that are acceptable: 1) a similar argument to thHieatfthat there must be an
even number of “ends”; 2) each fork creates two tracks, amgafork can rejoin those
tracks into one, so if a fork is missing it won't work. The angent using pegs and holes
is actually more general, because it also applies to theafaséhree-way fork that has
one hole and three pegs or one peg and three holes. The “emgdshant fails here, as
does the fork/rejoin argument (which is a bit handwavy angwa

d. The maximum possible humber of open pegs is 3 (starts atdingé two-peg fork
increases it by one). Pretending each piece is unique, & gian be added to a peg,
giving at mostl2 + (2 - 16) + (2 - 2) + (2 - 2 - 2) = 56 choices per peg. The total
depth is 32 (there are 32 pieces), so an upper bouh@si& /(12! - 16! - 2! - 2!) where
the factorials deal with permutations of identical piec@sne could do a more refined
analysis to handle the fact that the branching factor skratkwe go down the tree, but
it is not pretty.

3.17 a. The algorithm expands nodes in order of increasing path thstefore the first
goal it encounters will be the goal with the cheapest cost.
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b. It will be the same as iterative deepeningjterations, in whichO(bd) nodes are
generated.

c.d/e

d. Implementation not shown.

3.18 Consider a domain in which every state has a single succesubthere is a single goal
at depthn. Then depth-first search will find the goalinsteps, whereas iterative deepening
search will takel +2 + 3 + - -- + n = O(n?) steps.

3.19 As an ordinary person (or agent) browsing the web, we can gaherate the suc-
cessors of a page by visiting it. We can then do breadth-faatch, or perhaps best-search
search where the heuristic is some function of the numberosflsvin common between the
start and goal pages; this may help keep the links on target.cB engines keep the complete
graph of the web, and may provide the user access to all (eaat some) of the pages that
link to a page; this would allow us to do bidirectional search

3.20 Code not shown, but a good start is in the code repository.arylegraph search
must be used—this is a classic grid world with many altereatths to each state. Students
will quickly find that computing the optimal solution sequeris prohibitively expensive for
moderately large worlds, because the state space far-an world hasn? - 2" states. The
completion time of the random agent grows less than expa@llgrih », so for any reasonable
exchange rate between search cost ad path cost the randatwalgeventually win.

3.21

a. When all step costs are equaln) o depth(n), so uniform-cost search reproduces
breadth-first search.

b. Breadth-first search is best-first search witth) = depth(n); depth-first search is
best-first search witlf (n) = —depth(n); uniform-cost search is best-first search with
f(n) = g(n).

c. Uniform-cost search isAsearch withh(n) = 0.

3.22 The student should find that on the 8-puzzle, RBFS expands mmies (because
it does not detect repeated states) but has lower cost per bexhuse it does not need to
maintain a queue. The number of RBFS node re-expansionst iadigh because the
presence of many tied values means that the best path chsgldem. When the heuristic is
slightly perturbed, this advantage disappears and RBFSfsgnance is much worse.

For TSP, the state space is a tree, so repeated states areissit@ On the other hand,
the heuristic is real-valued and there are essentially etbvalues, so RBFS incurs a heavy
penalty for frequent re-expansions.

3.23 The sequence of queues is as follows:
L[0+244=244]

M[70+241=311], T[111+329=440]

L[140+244=384], D[145+242=387], T[111+329=440]
D[145+242=387], T[111+329=440], M[210+241=451], T[2228=580]
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C[265+160=425], T[111+329=440], M[210+241=451], M[222.=461], T[251+329=580]
T[111+329=440], M[210+241=451], M[220+241=461], P[4QB0=503], T[251+329=580], R[411+193=604],
D[385+242=627]

M[210+241=451], M[220+241=461], L[222+244=466], P[40B0=503], T[251+329=580], A[229+366=595],
R[411+193=604], D[385+242=627]

M[220+241=461], L[222+244=466], P[403+100=503], L[2@2=524], D[285+242=527], T[251+329=580],
A[229+366=595], R[411+193=604], D[385+242=627]

L[222+244=466], P[403+100=503], L[280+244=524], D[2@82=527], L[290+244=534], D[295+242=537],
T[251+329=580], A[229+366=595], R[411+193=604], D[3@82=627]

P[403+100=503], L[280+244=524], D[285+242=527], M[2@24=533], L[290+244=534], D[295+242=537],
T[251+329=580], A[229+366=595], R[411+193=604], D[3882=627], T[333+329=662]

B[504+0=504], L[280+244=524], D[285+242=527], M[292-42%633], L[290+244=534], D[295+242=537], T[251+329=58(
A[229+366=595], R[411+193=604], D[385+242=627], T[3320=662], R[500+193=693], C[541+160=701]

Figure S3.2 A graph with an inconsistent heuristic on whiclR@H-SEARCH fails to
return the optimal solution. The successorssadre A with f =5 and B with f=7. A is
expanded first, so the path viawill be discarded becausé will already be in the closed

list.

3.24 See Figure S3.2.

3.25 Itis complete whenever < w < 2. w = 0 givesf(n) = 2g(n). This behaves exactly
like uniform-cost search—the factor of two makes no diffexein theordering of the nodes.

w = 1 gives X search.w = 2 gives f(n) = 2h(n), i.e., greedy best-first search. We also
have

Fm) = 2= w)lg(n) + 5——h(n)]

which behaves exactly like*Asearch with a heuristig®-h(n). Forw < 1, this is always
less tham.(n) and hence admissible, providéedn) is itself admissible.

3.26

a. The branching factor is 4 (number of neighbors of each lonat

b. The states at depthform a square rotated at 45 degrees to the grid. Obvioushe the
are a linear number of states along the boundary of the sgs@the answer igk.
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c. Without repeated state checking, BFS expends expongntielny nodes: counting
precisely, we get(4*t¥*+1 —1)/3) — 1.

d. There are quadratically many states within the squaredpthdr + y, so the answer is
2@ +y)(z+y+1) -1

e. True; this is the Manhattan distance metric.

f. False; all nodes in the rectangle defined (by0) and (z,y) are candidates for the
optimal path, and there are quadratically many of them,falllich may be expended
in the worst case.

g. True; removing links may induce detours, which require ensteps, sa is an under-
estimate.

h. False; nonlocal links can reduce the actual path lengitwbtie Manhattan distance.

3.27

a. n?". There aren vehicles inn? locations, so roughly (ignoring the one-per-square
constraint)(n?)" = n?" states.

b. 5™
c. Manhattan distance, i.e(n — i + 1) — x;| + |n — y;|. This is exact for a lone vehicle.
d. Only (iii) min{h4,...,h,}. The explanation is nontrivial as it requires two observa-

tions. First, let thework W in a given solution be the totalistancemoved by all
vehicles over their joint trajectories; that is, for eaclniede, add the lengths of all the
steps taken. We haw& > > h; >> n - min{hy, ..., hy,}. Second, the total work we
can get done per step & n. (Note that for every car that jumps 2, another car has to
stay put (move 0), so the total work per step is bounded.pyHence, completing all
the work requires at least- min{hy, ..., hy, } /n = min{hq, ..., h,, } Steps.

3.28 The heuristich = hy + ho (adding misplaced tiles and Manhattan distance) sometimes
overestimates. Now, suppog€n) < h*(n) + c (as given) and letG; be a goal that is
suboptimal by more thaa i.e.,g(G2) > C* + ¢. Now consider any node on a path to an
optimal goal. We have

f(n) = g(n) + h(n)

g(n)+h*(n)+c

C*+c

9(G2)

soG» will never be expanded before an optimal goal is expanded.

ININ TN

3.29 A heuristic is consistent iff, for every nodeand every successef of n generated by
any actiona,

h(n) < c(n,a,n’) + h(n')

One simple proof is by induction on the numldeof nodes on the shortest path to any goal
from n. Fork = 1, letn’ be the goal node; theh(n) < ¢(n,a,n’). For the inductive
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case, assume’ is on the shortest path steps from the goal and thatn') is admissible by
hypothesis; then

h(n) < c(n,a,n') + h(n') < c(n,a,n') + h*(n') = h*(n)
soh(n) atk + 1 steps from the goal is also admissible.
3.30 This exercise reiterates a small portion of the classic vadiHeld and Karp (1970).

a. The TSP problem is to find a minimal (total length) path tlgyloahe cities that forms
a closed loop. MST is a relaxed version of that because it fsska minimal (total
length) graph that need not be a closed loop—it can be any-dolhnected graph. As
a heuristic, MST is admissible—it is always shorter thanaurad to a closed loop.

b. The straight-line distance back to the start city is a natheak heuristic—it vastly
underestimates when there are many cities. In the latee stbg search when there are
only a few cities left it is not so bad. To say that MST domisataight-line distance
is to say that MST always gives a higher value. This is ob\Wotrae because a MST
that includes the goal node and the current node must eithitrdsstraight line between
them, or it must include two or more lines that add up to mofénig all assumes the
triangle inequality.)

c. Seé'search/domains/tsp.lisp" for a start at this. The file includes a heuristic
based on connecting each unvisited city to its nearest heigla close relative to the
MST approach.

d. See (Cormeet al, 1990, p.505) for an algorithm that runs@n E log E) time, where
E is the number of edges. The code repository currently costai somewhat less
efficient algorithm.

3.31 The misplaced-tiles heuristic is exact for the problem whartile can move from
square A to square B. As this is a relaxation of the conditivett &a tile can move from
square A to square B if B is blank, Gaschnig’s heuristic catmoless than the misplaced-
tiles heuristic. As it is also admissible (being exact foekxation of the original problem),
Gaschnig’s heuristic is therefore more accurate.

If we permute two adjacent tiles in the goal state, we havata sthere misplaced-tiles
and Manhattan both return 2, but Gaschnig’'s heuristic nstGr

To compute Gaschnig’s heuristic, repeat the following Iuh& goal state is reached:
let B be the current location of the blank; if B is occupied bg X (not the blank) in the
goal state, move X to B; otherwise, move any misplaced tiB.tS8tudents could be asked to
prove that this is the optimal solution to the relaxed proble

3.32 Students should provide results in the form of graphs andiaes showing both run-
time and number of nodes generated. (Different heuristie® lifferent computation costs.)
Runtimes may be very small for 8-puzzles, so you may wants$maghe 15-puzzle or 24-
puzzle instead. The use of pattern databases is also wqtbreg experimentally.



Solutions for Chapter 4
Beyond Classical Search

a. Local beam search with = 1 is hill-climbing search.

b. Local beam search with one initial state and no limit on thmber of states retained,
resembles breadth-first search in that it adds one compigée bf nodes before adding
the next layer. Starting from one state, the algorithm wdddessentially identical to
breadth-first search except that each layer is generatad @tice.

c. Simulated annealing with' = 0 at all times: ignoring the fact that the termination step
would be triggered immediately, the search would be idahtifirst-choice hill climb-
ing because every downward successor would be rejectedovabiability 1. (Exercise
may be modified in future printings.)

d. Simulated annealing witii® = oo at all times is a random-walk search: it always
accepts a new state.

e. Genetic algorithm with population siz& = 1: if the population size is 1, then the
two selected parents will be the same individual; crossgigds an exact copy of the
individual; then there is a small chance of mutation. Thbs, dlgorithm executes a
random walk in the space of individuals.

4.2 Despite its humble origins, this question raises many oftme issues as the scientifi-
cally important problem of protein design. There is a diszgssembly space in which pieces
are chosen to be added to the track and a continuous configusgtace determined by the
“joint angles” at every place where two pieces are linkedudive can define a state as a set of
oriented, linked pieces and the associated joint angldseinstngg —10, 10], plus a set of un-
linked pieces. The linkage and joint angles exactly deteentihe physical layout of the track;
we can allow for (and penalize) layouts in which tracks lietop of one another, or we can
disallow them. The evaluation function would include terdimshow many pieces are used,
how many loose ends there are, and (if allowed) the degregeasfap. We might include a
penalty for the amount of deviation from 0-degree joint asgl(\We could also include terms
for “interestingness” and “traversability"—for examplig,is nice to be able to drive a train
starting from any track segment to any other, ending up hmeeitlirection without having to
lift up the train.) The tricky part is the set of allowed mové3bviously we can unlink any
piece or link an unlinked piece to an open peg with eitherrdation at any allowed angle
(possibly excluding moves that create overlap). More mwolatic are moves to join a peg

28
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and hole on already-linked pieces and moves to change tHe ahg joint. Changing one
angle may force changes in others, and the changes will \epgraling on whether the other
pieces are at their joint-angle limit. In general there Ww#élno unique “minimal” solution for

a given angle change in terms of the consequent changesdoastgles, and some changes
may be impossible.

4.3 Here is one simple hill-climbing algorithm:

« Connect all the cities into an arbitrary path.
 Pick two points along the path at random.
Split the path at those points, producing three pieces.

Try all six possible ways to connect the three pieces.

Keep the best one, and reconnect the path accordingly.

Iterate the steps above until no improvement is observed fehile.

4.4 Code not shown.

4.5 See Figure S4.1 for the adapted algorithm. For states tRaBENRCH finds a solution
for it records the solution found. If it later visits that saagain it immediately returns that
solution.

When QrR-SEARCH fails to find a solution it has to be careful. Whether a statelma
solved depends on the path taken to that solution, as we dalloat cycles. So on failure
OR-SEARCH records the value ofath. If a state is which has previously failed wheath
contained any subset of its present value-8EARCH returns failure.

To avoid repeating sub-solutions we can label all new sahgtifound, record these
labels, then return the label if these states are visitethag?ost-processing can prune off
unused labels. Alternatively, we can output a direct acygtaph structure rather than a tree.

See (Bertoliet al,, 2001) for further details.

4.6

The question statement describes the required changetaih dee Figure S4.2 for the
modified algorithm. When @ SEARCH cycles back to a state gmith it returns a tokeroop
which means to loop back to the most recent time this statergahed along the path to
it. Sincepath is implicitly stored in the returned plan, there is suffidierformation for later
processing, or a modified implementation, to replace thedelabels.

The plan representation is implicitly augmented to keepktraf whether the plan is
cyclic (i.e., contains @op) so that QR-SEARCH can prefer acyclic solutions.

AND-SEARCH returns failure if all branches lead directly td@p, as in this case the
plan will always loop forever. This is the only case it needlgheck as if all branches in a
finite plan loop there must be some And-node whose childdeématediately loop.

4.7 A sequence of actions is a solution to a belief state probfeintakes every initial
physical state to a goal state. We can relax this problem dpyitieg it take onlysomeinitial
physical state to a goal state. To make this well defined,| wesjuire that it finds a solution
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function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL -STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state has previously been solvelen return RECALL-SUCCESSstate)
if state has previously failed for a subset pith then return failure
if state is onpath then
RECORD-FAILURE (state, path)
return failure
for each action in problem.ACTIONS(state) do
plan — AND-SEARCH(RESULTY(state, action), problem, [state | path])
if plan # failure then
RECORD-SUCCESYstate, [action | plan])
return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do
plan,; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
return [if s; then plan, else ifs; then plan, else. .. if s,_1 then plan,,_, elseplan,,]

Figure S4.1 AND-OR search with repeated state checking.

for the physical state with the most costly solution.k1f(s) is the optimal cost of solution
starting from the physical state then

h(S) = max h*(s)

is the heuristic estimate given by this relaxed problem.sTguristic assumes any solution
to the most difficult state the agent things possible wil/sall states.

On the sensorless vacuum cleaner problem in Figure 4.Térrectly determines the
optimal cost for all states except the central three stétesé reached biguck]|, [suck, le ft]
and[suck, right]) and the root, for whichh estimates to be 1 unit cheaper than they really
are. This means Awill expand these three central nodes, before marching ritsvthe
solution.

4.8

a. An action sequence is a solution for belief staié performing it starting in any state
s € breaches a goal state. Since any state in a subses @f b, the result isimmediate.
Any action sequence which it a solution for belief staté is also not a solution
for any superset; this is the contrapositive of what we'va proved. One cannot, in
general, say anything about arbitrary supersets, as tienasquence need not lead to
a goal on the states outside ifOne can say, for example, that if an action sequence
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function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL -STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is onpath then return loop
cyclic — plan < None
for each action in problem.ACTIONS(state) do
plan — AND-SEARCH(RESULTYstate, action), problem, [state | path])
if plan # failure then
if plan is acyclicthen return [action | plan]
cyclic — plan — [action | plan]
if cyclic — plan # None then return cyclic — plan
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
loopy «— True
for each s; in states do
plan,; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
if plan, # loop then loopy < False
if notloopy then
return [if s; then plan, else ifsy then plan, else. . .if s,_; thenplan,,_, elseplan,,]
return failure

Figure S4.2 AND-OR search with repeated state checking.

solves a belief statkand a belief stat& then it solves the union belief staie) v'.

b. On expansion of a node, do not add to the frontier any chilgebstate which is a
superset of a previously explored belief state.

c. If you keep a record of previously solved belief states, adtheck to the start of OR-
search to check whether the belief state passed in is a sobaepreviously solved
belief state, returning the previous solution in case it is.

4.9

Consider a very simple example: an initial belief stétg, S, }, actionsa andb both
leading to goal staté&' from either initial state, and

c(S1,a,G) = 3; c(S2,a,G) =5;

C(Sl,b,G) :2; C(SQ,b,G):ﬁ.
In this case, the solutioja] costs 3 or 5, the solutiojb] costs 2 or 6. Neither is “optimal” in
any obvious sense.

In some cases, thewill be an optimal solution. Let us consider just the determmist
case. For this case, we can think of the cost of a plan as a n@afmeim each initial phys-
ical state to the actual cost of executing the plan. In thengta above, the cost fdu| is
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{51:3, S2:5} and the cost fofb] is {51:2, 52:6}. We can say that plap; weakly dominates
po if, for each initial state, the cost fgr, is no higher than the cost for. (Moreover,p;
dominates if it weakly dominates iandhas a lower cost for some state.) If a pfaweakly
dominates all others, it is optimal. Notice that this defamtreduces to ordinary optimality in
the observable case where every belief state is a singléwthe preceding example shows,
however, a problem may have no optimal solution in this seAggerhaps acceptable version
of A* would be one that returns any solution that is not dominajedrwother.

To understand whether it is possible to applyadall, it helps to understand its depen-

o dence on Bellman’s (1957rinciple of optimality : An optimal policy has the property that
whatever the initial state and initial decision are, the @mng decisions must constitute an
optimal policy with regard to the state resulting from thesfidecision. It is important to
understand that this is a restriction on performance meastesigned to facilitate efficient
algorithms, not a general definition of what it means to bénogit

In particular, if we define the cost of a plan in belief-stgpace as the minimum cost
of any physical realization, we violate Bellman’s prin@pl Modifying and extending the
previous example, suppose thahndb reachSs from S; andS, from Ss, and then reacli
from there:

c(S1,a,S3) =6; c(S2,a,8;1) = 2;

c(S1,b,53) =6; c(S2,b,54) =1.¢(53,a,G) = 2; c(S4,a,G) = 2;

C(Sg,b,G) = 1; C(S4,b,G) =9.

In the belief statg S3, S4}, the minimum cost ofa] is min{2, 2} = 2 and the minimum cost
of [b] ismin{1,9} =1, so the optimal plan i®]. In the initial belief statg 51, S2}, the four
possible plans have the following costs:

[a,a] : min{8,4} = 4;[a,b] : min{7,11} = 7;[b,a] : min{8,3} = 3;[b,b] : min{7,10} = 7.
Hence, the optimal plan iiSy, S2} is [b, a], which doesiotchoosé in {S3, Sy} even though
that is the optimal plan at that point. This counterint@tivehavior is a direct consequence
of choosing the minimum of the possible path costs as th@pednce measure.

This example gives just a small taste of what might happeh winadditive perfor-
mance measures. Details of how to modify and analyzéoAgeneral path-dependent cost
functions are give by Dechter and Pearl (1985). Many aspe#ds carry over; for example,
we can still derive lower bounds on the cost of a path througiven node. For a belief state
b, the minimum value of(s) + h(s) for each state in b is a lower bound on the minimum
cost of a plan that goes through

4.10 The belief state space is shown in Figure S4.3. No solutipossible because no path
leads to a belief state all of whose elements satisfy the d¢fdk problem is fully observable,
the agent reaches a goal state by executing a sequence atiSlath is performed only in a
dirty square. This ensures deterministic behavior andyestatte is obviously solvable.

4.11

The student needs to make several design choices in angwhlimquestion. First,
how will the vertices of objects be represented? The proldttes the percept is a list of
vertex positions, but that is not precise enough. Here isgmoel choice: The agent has an
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Figure S4.3 The belief state space for the sensorless vacuum world Whdgghy’s law.

orientation (a heading in degrees). The visible vertexedisted in clockwise order, starting

straight ahead of the agent. Each vertex has a relative éhghe360 degrees) and a distance.
We also want to know if a vertex represents the left edge oftetagle, the right edge, or an

interior point. We can use the symbols L, R, or | to indicais.th

The student will need to do some basic computational gegmeatculations: intersec-
tion of a path and a set of line segments to see if the agenbwiitlp into an obstacle, and
visibility calculations to determine the percept. There afficient algorithms for doing this
on a set of line segments, but don’t worry about efficiencyedmaustive algorithm is ok. If
this seems too much, the instructor can provide an envirohgimulator and ask the student
only to program the agent.

To answer (c), the student will need some exchange rateddinty off search time with
movement time. It is probably too complex to make the sinmeasynchronous real-time;
easier to impose a penalty in points for computation.

For (d), the agent will need to maintain a set of possibletjprs. Each time the agent
moves, it may be able to eliminate some of the possibilifidse agent may consider moves
that serve to reduce uncertainty rather than just get to dla¢ g

4.12 This question is slightly ambiguous as to what the percepkisher the percept is just
the location, or it gives exactly the set of unblocked dimt (i.e., blocked directions are
illegal actions). We will assume the latter. (Exercise maynodified in future printings.)
There are 12 possible locations for internal walls, so tleee'? = 4096 possible environ-
ment configurations. A belief state designatesubsetof these as possible configurations;
for example, before seeing any percepts all 4096 configuratare possible—this is a single
belief state.

a. Online search is equivalent to offline search in beliefesigpace where each action
in a belief-state can have multiple successor beliefstatse for each percept the
agent could observe after the action. A successor bebdé-$t constructed by taking
the previous belief-state, itself a set of states, reptpeiach state in this belief-state
by the successor state under the action, and removing atessor states which are
inconsistent with the percept. This is exactly the consibadn Section 4.4.2. AD-OR
search can be used to solve this search problem. The ingii@fistate hag'0 = 1024
states in it, as we know whether two edges have walls or netygiper and right edges
have no walls) but nothing more. There afe’ possible belief states, one for each set
of environment configurations.
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(6]
NoOp
6] 6] 6] 6]
Right
(@) (@) (@) (@)
Figure S4.4 The3 x 3 maze exploration problem: the initial state, first percapt] one
selected action with its perceptual outcomes.

We can view this as a contingency problem in belief state espafter each ac-
tion and percept, the agent learns whether or not an inteva#lexists between the
current square and each neighboring square. Hence, eadfalda belief state can be
represented exactly by a list of status values (presengnabsnknown) for each wall
separately. That s, the belief state is completely dec@aiple and there are exacty?
reachable belief states. The maximum number of possiblepgatepts in each state
is 16 %), so each belief state has four actions, each with up to 1@eterministic
successors.

b. Assuming the external walls are known, there are two iratewalls and hence? =4
possible percepts.

c. The initial null action leads to four possible belief sitas shown in Figure S4.4. From
each belief state, the agent chooses a single action whidiead to up to 8 belief states
(on entering the middle square). Given the possibility ofitig to retrace its steps at
a dead end, the agent can explore the entire maze in no moreléhateps, so the
complete plan (expressed as a tree) has no moreghanodes. On the other hand,
there are jusB!'? reachable belief states, so the plan could be expressedamocisely
as a table of actions indexed by belief statpd@écy in the terminology of Chapter 17).

4.13 Hillclimbing is surprisingly effective at finding reasorialif not optimal paths for very
little computational cost, and seldom fails in two dimemnsio
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Current
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Current Goal
positio
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(@ (b)

Figure S4.5 (a) Getting stuck with a convex obstacle. (b) Getting stuitk @ nonconvex
obstacle.

a. Itis possible (see Figure S4.5(a)) but very unlikely—thstacle has to have an unusual
shape and be positioned correctly with respect to the goal.

b. With nonconvex obstacles, getting stuck is much moreyikelbe a problem (see Fig-
ure S4.5(b)).

c. Notice that this is just depth-limited search, where yooiag® a step along the best path
even if it is not a solution.

d. Setk to the maximum number of sides of any polygon and you can aweagape.
e. LRTA* always makes a move, but may move back if the old stadéd better than the

new state. But then the old state is penalized for the cogieofrtp, so eventually the
local minimum fills up and the agent escapes.

4.14

Since we can observe successor states, we always know hoackérdrck from to a
previous state. This means we can adapt iterative deepseiugh to solve this problem.
The only difference is backtracking must be explicit, fallng the action which the agent
can see leads to the previous state.

The algorithm expands the following nodes:
Depth 1:(0,0), (1,0), (0,0), (—1,0), (0,0)
Depth 2:(0,1), (0,0), (0,—-1), (0,0), (1,0), (2,0), (1,0), (0,0), (1,0), (1,1), (1,0), (1,—1)



Solutions for Chapter 5
Adversarial Search

5.1 The translation uses the model of the oppor@# (s) to fill in the opponent’s actions,
leaving our actions to be determined by the search algorittehP(s) be the state predicted
to occur after the opponent has made all their moves acaptdid M. Note that the op-
ponent may take multiple moves in a row before we get a moveyesaeed to define this
recursively. We haveP(s) = s if PLAYERs is us or TERMINAL-TESTs is true, otherwise
P(s) = P(RESULT(s,OM(s)).
The search problem is then given by:

a. Initial state: P(Sy) whereS) is the initial game state. We apply as the opponent may
play first
Actions: defined as in the game byCAIONSs.
Successor function: BSULT (s, a) = P(RESULT(s,a))
Goal test: goals are terminal states

Step cost: the cost of an action is zero unless the residtatgs’ is terminal, in which
case its cost i9/ — UTILITY (s') whereM = max, UTILITY (s). Notice that all costs
are non-negative.

2o T

Notice that the state space of the search problem consigemoé state where we are to
play and terminal states. States where the opponent is ydhplee been compiled out. One
might alternatively leave those states in but just have glsipossible action.

Any of the search algorithms of Chapter 3 can be applied. Kamgle, depth-first
search can be used to solve this problem, if all games evgnerad. This is equivalent to
using the minimax algorithm on the original gameQf\/ (s) always returns the minimax
move ins.

5.2

a. Initial state: two arbitrary 8-puzzle states. Successoction: one move on an unsolved
puzzle. (You could also have actions that change both peiztlthe same time; this is
OK but technically you have to say what happens when oneveddiut not the other.)
Goal test: both puzzles in goal state. Path cost: 1 per move.

b. Each puzzle has!/2 reachable states (remember that half the states are uat#gagh
The joint state space h&s!)? /4 states.

c. This is like backgammon; expectiminimax works.
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Figure S5.1  Pursuit-evasion solution tree.

d. Actually the statement in the question is not true (it aggpto a previous version of part
(c) in which the opponent is just trying to prevent you frommning—in that case, the
coin tosses will eventually allow you to solve one puzzlehwitt interruptions). For the
game described in (c), consider a state in which the coin baseap heads, say, and
you get to work on a puzzle that is 2 steps from the goal. Shpoldmove one step
closer? If you do, your opponent wins if he tosses heads; lug ibsses tails, you toss
tails, and he tosses heads; or any sequence where bothitess times and then he
tosses heads. So his probability of winningiseastl /2+1/8+1/32+--- = 2/3. So
it seems you're better off movingwayfrom the goal. (There’s no way to stay the same
distance from the goal.) This problem unintentionally se¢mhave the same kind of
solution as suicide tictactoe with passing.

5.3

a. See Figure S5.1; the values are just (minus) the numbeep$ stlong the path from the
root.

b. See Figure S5.1; note that there is both an upper bound awlea bound for the left
child of the root.

c. See figure.

d. The shortest-path length between the two players is a lbaend on the total capture
time (here the players take turns, so no need to divide by, tsambdhe “?” leaves have a
capture time greater than or equal to the sum of the cost fr@mdot and the shortest-
path length. Notice that this bound is derived when the Evatie/s very badly. The
true value of a node comes from best play by both players, scaneet better bounds
by assuming better play. For example, we can get a betterddoom the cost when the
Evader simply moves backwards and forwards rather thanmgyaewards the Pursuer.

e. See figure (we have used the simple bounds). Notice thattbeagght child is known
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to have a value below -6, the remaining successors need onksalered.

f. The pursuer always wins if the tree is finite. To prove th&d,the tree be rooted as
the pursuer’s current node. (l.e., pick up the tree by thaerand dangle all the other
branches down.) The evader must either be at the root, inhndase the pursuer has
won, or in some subtree. The pursuer takes the branch leadlititat subtree. This
process repeats at mastimes, wherel is the maximum depth of the original subtree,
until the pursuer either catches the evader or reaches adglaf. Since the leaf has no
subtrees, the evader must be at that node.

5.4 The basic physical state of these games is fairly easy taides@®ne important thing

to remember for Scrabble and bridge is that the physicat $¢atot accessible to all players
and so cannot be provided directly to each player by the enrient simulator. Particularly
in bridge, each player needs to maintain some best guessultipl® hypotheses) as to the
actual state of the world. We expect to be putting some of #meegimplementations online
as they become available.

5.5 Code not shown.

5.6 The most obvious change is that the space of actions is notinaons. For example,
in pool, the cueing direction, angle of elevation, speed, @oint of contact with the cue ball
are all continuous quantities.

The simplest solution is just to discretize the action sakthen apply standard meth-
ods. This might work for tennis (modelled crudely as altéingashots with speed and direc-
tion), but for games such as pool and croquet it is likely b Haiserably because small
changes in direction have large effects on action outcomste&d, one must analyze the
game to identify a discrete set of meaningful local goalshsas “potting the 4-ball” in pool
or “laying up for the next hoop” in croquet. Then, in the cumreontext, a local optimization
routine can work out the best way to achieve each local gesiliiting in a discrete set of pos-
sible choices. Typically, these games are stochastic,esbabkgammon model is appropriate
provided that we use sampled outcomes instead of summingath\aitcomes.

Whereas pool and croquet are modelled correctly as tuingagames, tennis is not.
While one player is moving to the ball, the other player is mguo anticipate the opponent’s
return. This makes tennis more like the simultaneous-agiEmes studied in Chapter 17. In
particular, it may be reasonable to derfadomizedstrategies so that the opponent cannot
anticipate where the ball will go.

5.7 Consider aviN node whose children are terminal nodes.mIfN plays suboptimally,
then the value of the node is greater than or equal to the valueuld have ifmIN played
optimally. Hence, the value of theax node that is theviN node’s parent can only be
increased. This argument can be extended by a simple ioduali the way to the rootlf

the suboptimal play bwiiN is predictable then one can do better than a minimax strategy.
For example, ifMIN always falls for a certain kind of trap and loses, then sgtthme trap
guarantees a win even if there is actually a devastatingorespformIN. This is shown in
Figure S5.2.

5.8
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MAX

MIN

1000 1000 -10 -5 -5 -5

Figure S5.2 A simple game tree showing that setting a trapsiax by playinga; is a win
if MIN falls for it, but may also be disastrous. The minimax movefisaurseas, with value
—5.

Figure S5.3 The game tree for the four-square game in Exercise 5.8. Tdrstates are
in single boxes, loop states in double boxes. Each statenistated with its minimax value
in a circle.

. () The game tree, complete with annotations of all minimalxes, is shown in Fig-
ure S5.3.

. () The “?” values are handled by assuming that an agentamithmoice between win-
ning the game and entering a “?” state will always choose fine What is, min(-1,?)
is —1 and max(+1,?) is +1. If all successors are “?”, the backevalue is “?”.

. (5) Standard minimax is depth-first and would go into an itdifoop. It can be fixed
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by comparing the current state against the stack; and iftie & repeated, then return
a “?” value. Propagation of “?” values is handled as abovehadiigh it works in this
case, it does nalwayswork because it is not clear how to compare “?” with a drawn
position; nor is it clear how to handle the comparison whemdtare wins of different
degrees (as in backgammon). Finally, in games with chandesiat is unclear how to
compute the average of a number and a “?”. Note thatribisorrect to treat repeated
states automatically as drawn positions; in this examméh (il,4) and (2,4) repeat in
the tree but they are won positions.

What is really happening is that each state has a well-deboeahitially unknown
value. These unknown values are related by the minimax equat the bottom of
164. If the game tree is acyclic, then the minimax algoritlotvess these equations by
propagating from the leaves. If the game tree has cycles,dldynamic programming
method must be used, as explained in Chapter 17. (ExercigestlLidies this problem in
particular.) These algorithms can determine whether eade mas a well-determined
value (as in this example) or is really an infinite loop in thath players prefer to stay
in the loop (or have no choice). In such a case, the rules ajdhge will need to define
the value (otherwise the game will never end). In chess,¥ample, a state that occurs
3 times (and hence is assumed to be desirable for both p)agexsiraw.

. This question is a little tricky. One approach is a proof bgtiction on the size of the

game. Clearly, the base case-3 is a loss for A and the base case-4 is a win for
A. For anyn > 4, the initial moves are the same: A and B both move one steprttswva
each other. Now, we can see that they are engaged in a subdaime © — 2 on the
squareg2,...,n — 1], exceptthat there is an extra choice of moves on squaresd

n — 1. Ignoring this for a moment, it is clear that if the - 2” is won for A, then A
gets to the square — 1 before B gets to square (by the definition of winning) and
therefore gets ta before B gets td, hence the #i” game is won for A. By the same
line of reasoning, if  — 2” is won for B then "n” is won for B. Now, the presence of
the extra moves complicates the issue, but not too mucht, &iesplayer who is slated
to win the subgam@, ..., n — 1] never moves back to his home square. If the player
slated to lose the subgame does so, then it is easy to showetimbound to lose the
game itself—the other player simply moves forward and a aoigyof sizen — 2k is
played one step closer to the loser's home square.

5.9 Fora, there are at most 9! games. (This is the number of move segaehat fill up the
board, but many wins and losses end before the board is fdth—e Figure S5.4 shows the
game tree, with the evaluation function values below thmitesl nodes and the backed-up
values to the right of the non-terminal nodes. The valuegyirtihyat the best starting move for
X is to take the center. The terminal nodes with a bold outlireethe ones that do not need
to be evaluated, assuming the optimal ordering.

a. An upper bound on the number of terminal nodesM§ one for each ordering of

squares, so an upper bound on the total number of nodeytis i!. This is not much
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1 2

Figure S5.4 Part of the game tree for tic-tac-toe, for Exercise 5.9.

bigger thanN'! itself as the factorial function grows superexponentialljhis is an
overestimate because some games will end early when a wgiposition is filled.

This count doesn't take into account transpositions. Areafgound on the number
of distinct game states B, as each square is either empty or filled by one of the two
players. Note that we can determine who is to play just frookilog at the board.

b. In this case no games terminate early, and ther&aefferent games ending in a draw.
Soignoring repeated states, we have exa@&1 7! nodes.
At the end of the game the squares are divided between thelayerp: [ N/2] to
the first player and N/2] to the second. Thus, a good lower bound on the number of
distinct states iiwj\/fﬂ), the number of distinct terminal states.

c. For a states, let X (s) be the number of winning positions containing @& andO(s)
the number of winning positions containing dgs. One evaluation function is then
FEval(s) = X(s) — O(S). Notice that empty winning positions cancel out in the eval-
uation function.
Alternatively, we might weight potential winning positigtyy how close they are to
completion.

d. Using the upper bound df! from (a), and observing that it také80/N V! instructions.
At 2GHz we have 2 billion instructions per second (roughlgang), so solve for the
largestN using at most this many instructions. For one second wé\Vget 9, for one
minute N = 11, and for one houN = 12.

5.11 See€'search/algorithms/games.lisp” for definitions of games, game-playing
agents, and game-playing environmefitgarch/algorithms/minimax.lisp” con-
tains the minimax and alpha-beta algorithms. Notice thatgame-playing environment is
essentially a generic environment with the update fundiiefined by the rules of the game.
Turn-taking is achieved by having agents do nothing unidl iheir turn to move.
See'search/domains/cognac.lisp” for the basic definitions of a simple game
(slightly more challenging than Tic-Tac-Toe). The codetfos contains only a trivial eval-
uation function. Students can use minimax and alpha-betoliee small versions of the
game to termination (probably up tox 3); they should notice that alpha-beta is far faster
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than minimax, but still cannot scale up without an evaluafimction and truncated horizon.
Providing an evaluation function is an interesting exercisrom the point of view of data
structure design, it is also interesting to look at how toespep the legal move generator by
precomputing the descriptions of rows, columns, and diatgon

Very few students will have heard of kalah, so it is a fair gssient, but the game
is boring—depth 6 lookahead and a purely material-basetli@ian function are enough
to beat most humans. Othello is interesting and about the kyel of difficulty for most
students. Chess and checkers are sometimes unfair becsueséy i small subset of the
class will be experts while the rest are beginners.

5.12 The minimax algorithm for non-zero-sum games works exaalyfor multiplayer
games, described on p.165-6; that is, the evaluation fumési a vector of values, one for
each player, and the backup step selects whichever vecdhbadighest value for the player
whose turn it is to move. The example at the end of Sectior2 §2165) shows that alpha-
beta pruning is not possible in general non-zero-sum gatresause an unexamined leaf
node might be optimal for both players.

5.13 This question is not as hard as it looks. The derivation béémads directly to a defini-
tion of & and3 values. The notation; refers to (the value of) the node at depttn the path
from the root to the leaf node;. Nodesn;; ... n;, are the siblings of nodée

a. We can writeny = max(ns, na1, . . . , N3, ), giving
ny = min(max(ns, nai, ..., N3ps ), 21, - - - , N2by)

Thenng can be similarly replaced, until we have an expression aantan; itself.
b. Interms of thd andr values, we have

ny = min(lg, max(lg, ns, ?”3), ?”2)

Again, n3 can be expanded out down tg. The most deeply nested term will be
min(l;, nj,r;).

c. If n; is a max node, then the lower bound on its value only increasets successors
are evaluated. Clearly, if it exceedisit will have no further effect om,. By extension,
if it exceedsmin(ly,l4,...,1;) it will have no effect. Thus, by keeping track of this
value we can decide when to prung This is exactly what-3 does.

d. The corresponding bound for min nodesis max(ls, s, . .., k).

5.14 The result is given in Section 6 of Knuth (1975). The exadestent (Corollary 1 of
Theorem 1) is that the algorithms examirte®/2 + b[™/2] — 1 nodes at leveln. These
are exactly the nodes reached when Min plays only optimalas@nd/or Max plays only
optimal moves. The proof is by induction .

5.15 With 32 pieces, each needing 6 bits to specify its positioroa of 64 squares, we
need 24 bytes (6 32-bit words) to store a position, so we @aa sbughly 80 million positions
in the table (ignoring pointers for hash table bucket listghis is about 1/22 of the 1800
million positions generated during a three-minute search.
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Figure S5.5 Pruning with chance nodes solution.

Generating the hash key directly from an array-based reptatson of the position
might be quite expensive. Modern programs (see, e.g., Hed@0) carry along the hash
key and modify it as each new position is generated. Suppiséakes on the order of 20
operations; then on a 2GHz machine where an evaluation #3@3 operations we can do
roughly 100 lookups per evaluation. Using a rough figure @& omllisecond for a disk seek,
we could do 1000 evaluations per lookup. Clearly, using &-isident table is of dubious
value, even if we can get some locality of reference to redaeeaumber of disk reads.

5.16

a. See Figure S5.5.

b. Given nodes 1-6, we would need to look at 7 and 8: if they weth B oo then the
values of the min node and chance node above would alsecbeand the best move
would change. Given nodes 1-7, we do not need to look at 8. iEités +oo, the min
node cannot be worth more thanl, so the chance node above cannot be worth more
than—0.5, so the best move won't change.

c. The worst case is if either of the third and fourth leaves s in which case the chance
node above is 0. The best case is where they are both 2, thehahee node has value
2. So it must lie between 0 and 2.

d. See figure.

5.18 The general strategy is to reduce a general game tree to plpt@e by induction on
the depth of the tree. The inductive step must be done for mé&x, and chance nodes, and
simply involves showing that the transformation is carfiledugh the node. Suppose that the
values of the descendants of a nodeaare. . z,,, and that the transformationds + b, where
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a is positive. We have
min(axy + b,axs + b, ..., ax, +b) = amin(ry,zo,...,2,) + b
max(axy +b,axs +b,...,ax, +b) = amin(xy,x2,...,2,) +b
pi(axy +b) + pa(axe +b) + -+ - + pp(ax, +b) = a(p1z1 + pexa+ - Pptyn) + b
Hence the problem reduces to a one-ply tree where the leavestine values from the original

tree multiplied by the linear transformation. Since> y = ax +b > ay + bif a > 0, the
best choice at the root will be the same as the best choiceiartginal tree.

5.19 This procedure will give incorrect results. Mathematigathe procedure amounts to
assuming that averaging commutes with min and max, whicleéschot. Intuitively, the

choices made by each player in the deterministic trees aedban full knowledge of future
dice rolls, and bear no necessary relationship to the mowsenwithout such knowledge.
(Notice the connection to the discussion of card games itic®eb.6.2 and to the general
problem of fully and partially observable Markov decisiomiplems in Chapter 17.) In prac-
tice, the method works reasonably well, and it might be a gexelcise to have students
compare it to the alternative of using expectiminimax widmpling (rather than summing
over) dice rolls.

5.20

a. No pruning. In a max tree, the value of the root is the valughetbest leaf. Any unseen
leaf might be the best, so we have to see them all.

b. No pruning. An unseen leaf might have a value arbitrarihier or lower than any other
leaf, which (assuming non-zero outcome probabilities) msehat there is no bound on
the value of any incompletely expanded chance or max node.

¢. No pruning. Same argument as in (a).

d. No pruning. Nonnegative values alldawer bounds on the values of chance nodes, but
a lower bound does not allow any pruning.

e. Yes. If the first successor has value 1, the root has valuel Alaremaining successors
can be pruned.

f. Yes. Suppose the first action at the root has value 0.6, andirst outcome of the
second action has probability 0.5 and value 0O; then all otlscomes of the second
action can be pruned.

g. (ii) Highest probability first. This gives the strongestulbd on the value of the node,
all other things being equal.

5.21

a. In a fully observable, turn-taking, zero-sum game betwaangerfectly rational play-
ers, it does not help the first player to know what strategystiond player is using—
that is, what move the second player will make, given thefiester’'s move.

True. The second player will play optimally, and so is petfepredictable up to ties.
Knowing which of two equally good moves the opponent will maloes not change
the value of the game to the first player.
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b. In a partially observable, turn-taking, zero-sum game lestvtwo perfectly rational

players, it does not help the first player to know what movesteond player will
make, given the first player's move.
False. In a partially observable game, knowing the secoagepk move tells the first
player additional information about the game state thatlvotherwise be available
only to the second player. For example, in Kriegspiel, kmmihe opponent’s future
move tells the first player where one of the opponent’s piégn a card game, it tells
the first player one of the opponent’s cards.

c. A perfectly rational backgammon agent never loses.

False. Backgammon is a game of chance, and the opponent msigteatly roll much
better dice. The correct statement is that élxpectedvinnings are optimal. It is sus-
pected, but not known, that when playing first the expectathings are positive even
against an optimal opponent.

5.22 One can think of chance events during a game, such as dicg ilthe same way
as hidden but preordained information (such as the ordeneotards in a deck). The key
distinctions are whether the players can influence whatmméion is revealed and whether
there is any asymmetry in the information available to edakep.

a. Expectiminimax is appropriate only for backgammon and bjmoiy. In bridge and
Scrabble, each player knows the cards/tiles he or she Eessbat not the opponents’.
In Scrabble, the benefits of a fully rational, randomizedtstyy that includes reasoning
about the opponents’ state of knowledge are probably simalin bridge the questions
of knowledge and information disclosure are central to gplag.

b. None, for the reasons described earlier.

c. Key issues include reasoning about the opponent’s bettedseffect of various actions
on those beliefs, and methods for representing them. Siakef Istates for rational
agents are probability distributions over all possibléestdincluding the belief states of
others), this is nontrivial.



Constraint Satisfaction Problems

Solutions for Chapter 6

6.1

There are 18 solutions for coloring Australia with threeazsl Start withSA which

can have any of three colors. Then moving clockwl can have either of the other two
colors, and everything else is strictly determined; thakess possibilities for the mainland,
times 3 for Tasmania yields 18.

6.2

a.

6.3

Solution A: There is a variable corresponding to each ofithpositions on the board.
Solution B: There is a variable corresponding to each knight

. Solution A: Each variable can take one of two valugs;cupied,vacant

Solution B: Each variable’s domain is the set of squares.

Solution A: every pair of squares separated by a knight'senie constrained, such that
both cannot be occupied. Furthermore, the entire set ofsguisconstrained, such that
the total number of occupied squares should:be

Solution B: every pair of knights is constrained, such thatwo knights can be on the
same square or on squares separated by a knight's moveioBdduinay be preferable
because there is no global constraint, although Solutiorag\the smaller state space
whenk is large.

. Any solution must describe @mplete-statéormulation because we are using a local

search algorithm. For simulated annealing, the successmtibn must completely
connect the space; for random-restart, the goal state neustazhable by hillclimbing
from some initial state. Two basic classes of solutions are:

Solution C: ensure no attacks at any time. Actions are to venamy knight, add a
knight in any unattacked square, or move a knight to any ackid square.

Solution D: allow attacks but try to get rid of them. Actiong&o remove any knight,
add a knight in any square, or move a knight to any square.

a. Crossword puzzle construction can be solved many ways. @mgleschoice is

depth-first search. Each successor fills in a word in the puzith one of the words in the
dictionary. It is better to go one word at a time, to minimibe humber of steps.

b. As a CSP, there are even more choices. You could have a wafimbéach box in

the crossword puzzle; in this case the value of each varialsléetter, and the constraints are
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that the letters must make words. This approach is feasilite avnost-constraining value
heuristic. Alternately, we could have each string of consige horizontal or vertical boxes
be a single variable, and the domain of the variables be warttge dictionary of the right
length. The constraints would say that two intersectingdsenust have the same letter in the
intersecting box. Solving a problem in this formulation uegs fewer steps, but the domains
are larger (assuming a big dictionary) and there are fewestcaints. Both formulations are
feasible.

6.4 a. For rectilinear floor-planning, one possibility is to haveraxiable for each of the
small rectangles, with the value of each variable being apfetconsisting of the: andy
coordinates of the upper left and lower right corners of ttec@ where the rectangle will
be located. The domain of each variable is the set of 4-tupkssare the right size for the
corresponding small rectangle and that fit within the lagangle. Constraints say that no
two rectangles can overlap; for example if the value of \@e&; is [0, 0, 5, 8], then no other
variable can take on a value that overlaps with@h@to 5, 8 rectangle.

b. For class scheduling, one possibility is to have three tbetafor each class, one with
times for values (e.g. MWF8:00, TuTh8:00, MWF9:00, ...)eamith classrooms for values
(e.g. Wheeler110, Evans330, ...) and one with instructorsdlues (e.g. Abelson, Bibel,
Canny, ...). Constraints say that only one class can be isaime classroom at the same time,
and an instructor can only teach one class at a time. Therebmayher constraints as well
(e.g. an instructor should not have two consecutive clsses

c. For Hamiltonian tour, one possibility is to have one vareatir each stop on the tour,
with binary constraints requiring neighboring cities todmnected by roads, and an AlIDiff
constraint that all variables have a different value.

6.5 The exact steps depend on certain choices you are free to; hake are the ones |
made:
a. Choose theX; variable. Its domain i§0, 1}.

b. Choose the value 1 foX3. (We can't choose 0; it wouldn’t survive forward checking,
because it would forcé™ to be 0, and the leading digit of the sum must be non-zero.)

c. Choosel”, because it has only one remaining value.

d. Choose the value 1 far.

e. Now X, andX; are tied for minimum remaining values at 2; let's chodge
f. Either value survives forward checking, let's choose 0Xer

g. Now X has the minimum remaining values.

h. Again, arbitrarily choose 0 for the value &f;.

i. The variableO must be an even number (because it is the suffi éf T' less than 5
(becaus® + O = R + 10 x 0). That makes it most constrained.

j. Arbitrarily choose 4 as the value 6.
k. R now has only 1 remaining value.
|. Choose the value 8 fak.
m. T now has only 1 remaining value.
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Choose the value 7 faf.

U must be an even number less than 9; chddse

The only value fotU that survives forward checking is 6.
The only variable left igV.

The only value left folV is 3.

s. This is a solution.

- L T o>

This is a rather easy (under-constrained) puzzle, so it issagorising that we arrive at a
solution with no backtracking (given that we are allowed $e torward checking).

6.6 The problem statement sets out the solution fairly comjylef€o express the ternary
constraint ond, B andC that A + B = C, we first introduce a new variablel B. If the
domain of A and B is the set of number®/, then the domain ofAB is the set of pairs of
numbers fromV, i.e. N x N. Now there are three binary constraints, one betwéemnd
AB saying that the value ol must be equal to the first element of the pair-valueléf; one
betweenB and AB saying that the value aB must equal the second element of the value
of AB; and finally one that says that the sum of the pair of numbeasisithe value oA B
must equal the value @f. All other ternary constraints can be handled similarly.

Now that we can reduce a ternary constraint into binary camgs, we can reduce a
4-ary constraint on variabled, B, C, D by first reducingA, B, C to binary constraints as
shown above, then adding bagkin a ternary constraint wittd B andC', and then reducing
this ternary constraint to binary by introducidgD.

By induction, we can reduce amyary constraint to arin — 1)-ary constraint. We can
stop at binary, because any unary constraint can be dropjmegly by moving the effects of
the constraint into the domain of the variable.

6.7 The “Zebra Puzzle” can be represented as a CSP by introdacivayiable for each
color, pet, drink, country, and cigarette brand (a total 5fVariables). The value of each
variable is a number from 1 to 5 indicating the house numbais & a good representation
because it easy to represent all the constraints given iprtitdem definition this way. (We
have done so in the Python implementation of the code, anohag point we may reimple-
ment this in the other languages.) Besides ease of expgeagimoblem, the other reason to
choose a representation is the efficiency of finding a saluticere we have mixed results—
on some runs, min-conflicts local search finds a solutiontigr problem in seconds, while
on other runs it fails to find a solution after minutes.

Another representation is to have five variables for eacts@pone with the domain of
colors, one with pets, and so on.

6.8
a. Ay = R.
b. H = R conflicts withA;.
c. H=aG.
d. A, =R.
e Iy =R.
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f. Ao = R conflicts withA;, A, = G conflicts withH, so A, = B.

g > =R.

h. A3 = R conflicts with A4, A3 = G conflicts with H, A3 = B conflicts with A,, so
backtrack. Conflict seti§Aq, H, A4}, SO jump toAs. Add {H, A4} to Ay’s conflict
set.

i. Ay has no more values, so backtrack. Conflict sdtds, H, A4} so jump back to4,.
Add {4, H} to Ay’s conflict set.

j. A4 = G conflicts withH, so A4 = B.

k. i =R
I. Ao = R conflicts withA;, A, = G conflicts withH, so A, = B.
m. Fh =R
n. A3 = R.
0. T = R conflicts withF; andFy, T' = G conflicts withG, soT = B.
p. Success.

6.9 The most constrained variable makes sense because it shaoseiable that is (all
other things being equal) likely to cause a failure, and itnigre efficient to fail as early
as possible (thereby pruning large parts of the search ypddes least constraining value
heuristic makes sense because it allows the most chancéstdoe assignments to avoid
conflict.

6.11 We’'ll trace through each iteration of thehile loop in AC-3 (for one possible ordering
of the arcs):

a. RemoveSA — W A, deleteG from S A.

b. RemoveSA — V, deleteR from S A, leaving onlyB.
RemoveNT — W A, deleteG from NT.
RemoveNT — S A, deleteB from NT', leaving onlyR.
RemoveN SW — S A, deleteB from NSW.
RemoveN SW — V, deleteR from N.SW, leaving onlyG.
Remove) — NT, deleteR from Q.
Remove)) — S A, deleteB from Q.
i. remove) — NSW, deleteG from @), leaving no domain fof).

TQ -~ o 20

6.12 On a tree-structured graph, no arc will be considered maase tnce, so the AC-
3 algorithm isO(ED), where E is the number of edges and is the size of the largest
domain.

6.13 The basic idea is to preprocess the constraints so thatafir ealue ofX;, we keep
track of those variableX, for which an arc fromX}, to X is satisfied by that particular value
of X;. This data structure can be computed in time proportiondheéosize of the problem
representation. Then, when a valueXfis deleted, we reduce by 1 the count of allowable
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values for eacl{ X}, X;) arc recorded under that value. This is very similar to thevéod
chaining algorithm in Chapter 7. See Mohr and Henderson@LE8 detailed proofs.

6.14

We establish arc-consistency from the bottom up becauseilivihen (after establish-
ing consistency) solve the problem from the top down. It wilays be possible to find a
solution (if one exists at all) with no backtracking becaokthe definition of arc consistency:
whatever choice we make for the value of the parent nodeg thidkbe a value for the child.

6.15

It is certainly possible to solve Sudoku problems in thisiias. However, it is not as
effective as the partial-assignment approach, and nofestigé as min-conflicts is on the N-
queens problem. Perhaps that is because there are twaediffgpes of conflicts: a conflict
with one of the numbers that defines the initial problem is thrag must be corrected, but
a conflict between two numbers that were placed elsewherfeeimid can be corrected by
replacing either of the two. A version of min-conflicts thatognizes the difference between
these two situations might do better than the naive min-msfhlgorithm.

6.16 A constraint is a restriction on the possible values of two or more vaéabl For
example, a constraint might say thét= a is not allowed in conjunction witlB3 = b.

Backtracking searchis a form of depth-first search in which there is a single repre
sentation of the state that gets updated for each succesgbthen must be restored when a
dead end is reached.

A directed arc from variabled to variable B in a CSP isarc consistentif, for every
value in the current domain of, there is some consistent value ®f

Backjumping is a way of making backtracking search more efficient, by jungfpack
more than one level when a dead end is reached.

Min-conflicts is a heuristic for use with local search on CSP problems. Teheistic
says that, when given a variable to modify, choose the vdlaedonflicts with the fewest
number of other variables.

A cycle cutsets a set of variables which when removed from the constraegly make
it acyclic (i.e., a tree). When the variables of a cycle dutse instantiated the remainder of
the CSP can be solved in linear time.

6.17 A simple algorithm for finding a cutset of no more thamodes is to enumerate all
subsets of nodes of side2, ..., k, and for each subset check whether the remaining nodes

form a tree. This algorithm takes tin(g%kl ™), which isO(n*).

Becker and Geiger (1994, http://citeseer.nj.nec.conkidzapproximation.html) give
an algorithm called MGA (modified greedy algorithm) that Sradcutset that is no more than
twice the size of the minimal cutset, using ti@¢E + V log(V')), whereE is the number of
edges and’ is the number of variables.

Whether the cycle cutset approach is practical depends omtee graph than on the
cutset-finding algorithm. That is because, for a cutsetzd giwe still have an exponential
(d°) factor before we can solve the CSP. So any graph with a largetcwill be intractable
to solve by this method, even if we could find the cutset witlefiort at all.



Solutions for Chapter 7
Logical Agents

7.1 To save space, we'll show the list of models as a table (Fi@#el) rather than a
collection of diagrams. There are eight possible combamatiof pits in the three squares,
and four possibilities for the wumpus location (includingwhere).

We can see thakk B = ay because every line wher& B is true also hasy, true.
Similarly for ag.

7.2 As human reasoners, we can see from the first two statemieatsi it is mythical, then
itis immortal; otherwise it is a mammal. So it must be eitmeniortal or a mammal, and thus
horned. That means it is also magical. However, we can’t cedumything about whether it
is mythical. To proide a formal answer, we can enumerate tssiple worlds #° = 32 of
them with 5 proposition symbols), mark those in which all #ssertions are true, and see
which conclusions hold in all of those. Or, we can let the niraeldo the work—in this case,
the Lisp code for propositional reasoning:

> (setf kb (make-prop-kb))

#S(PROP-KB SENTENCE (AND))

> (tell kb "Mythical => Immortal")

T

> (tell kb "Mythical => “Immortal © Mammal")
T

> (tell kb "Immortal | Mammal => Horned")
T

> (tell kb "Horned => Magical")

T

> (ask kb "Mythical")

NIL

> (ask kb ""Mythical™)

NIL

> (ask kb "Magical")

T

> (ask kb "Horned")

T

7.3

a. See Figure S7.2. We assume the language has built-in Boopesgatorshot, and, or,
iff .
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Model KB (6% a3
true

Py 3 true

P

P31 true

P13, P

P, P31

P3,1, P1,3 true

Pi3, P31, Popo

Wi3 true true

Wiz, P13 true true

W1’3, P272 true

Wi, Psa true true true

Wiz, P13, P22 true

Wi, Pap, P31 true

Wiz, P31, P13 true true

Wiz, Pi3, P31, P2 true

Wi 1, true

Ws1, P13 true

Ws.1, Pao

Ws.1, P31 true

Ws1, P13, Pay

W31, P22, P31

W31, P31, P13 true

W31, P13, P31, P22

W22 true

Wa2, P13 true

Wao, Pao

Waa, P31 true

Wao, P13, Pay

Wao, Poo, P31

Wa2, P31, P13 true

Waa, P13, P31, P2

Figure S7.1 A truth table constructed for Ex. 7.2. Propositions notelisas true on a
given line are assumed false, and ofilye entries are shown in the table.

b. The question is somewhat ambiguous: we can interpret fiaréial model” to mean
in all such models osomesuch models. For the former interpretation, the sentences
False N P, True V - P, andP A —~P can all be determined to be true or false in any
partial model. For the latter interpretation, we can in #ddihave sentences such as
A A P which is false in the partial mod€lA = false}.

c. A general algorithm for partial models must handle the gngatrtial model, with no
assignments. In that case, the algorithm must determindityahnd unsatisfiability,
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function PL-TRUE?(s, m) returns true or false

if s = True then return true

else ifs = False then return false

else ifSymBoL ?(s) then return LOOKUP(s, m)

elsebranch on the operator of
—: return not PL-TRUE?(ARGL(s), m)
V:return PL-TRUE?(ARGL(s), m) or PL-TRUE?(ARG2(s), m)
A:return PL-TRUE?(ARGL(s), m) and PL-TRUE?(ARG2(s), m)
= (not PL-TRUE?(ARGL1(s), m)) or PL-TRUE?(ARG2(s), m)
<! PL-TRUE?(ARGL(s), m) iff PL-TRUE?(ARG2(s), m)

Figure S7.2  Pseudocode for evaluating the truth of a sentence wrt a model

7.4

which are co-NP-complete and NP-complete respectively.

. It helps ifand andor evaluate their arguments in sequence, terminating on ¢alsee

arguments, respectively. In that case, the algorithm dirémas the desired properties:
in the partial model wher® is true and? is unknown,P Vv @ returns true, anehP A )
returns false. But the truth values Qfv —Q, Q VvV True, and@ A —(Q are not detected.
Early termination in Boolean operators will provide a venpstantial speedup. In most
languages, the Boolean operators already have the desopdrty, so you would have
to write special “dumb” versions and observe a slow-down.

In all cases, the question can be resolved easily by refetdrihe definition of entail-

ment.

a.

False |= True is true becauséulse has no models and hence entails every sentence
AND becaus€lrue is true in all models and hence is entailed by every sentence.

b. True = False is false.
c. (AANB) = (A < B)istrue because the left-hand side has exactly one modebthat

one of the two models of the right-hand side.

. A & B = AV Bis false because one of the modelsf< B has both4 and B

false, which does not satisiy vV B.

A < B[ —-AV Bistrue because the RHS i = B, one of the conjuncts in the
definition ofA < B.

.(AANB) = CE(A = C)Vv (B = C()istrue because the RHS is false only

when both disjuncts are false, i.e., whérand B are true and”' is false, in which case
the LHS is also false. This may seem counterintuitive, andlevaot hold if = is
interpreted as “causes.”

(CV(mAN—-B))=((A = C)AN(B = ()) istrue; proof by truth table enumeration,
or by application of distributivity (Fig 7.11).

. (AVB)AN(-CV-DVE)E(AV B)istrue; removing a conjunct only allows more

models.
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7.7

. (AVB)AN(-CV-DVE) = (AVB)A(—DV E) is false; removing a disjunct allows

fewer models.

. (AV B)A—=(A = B) issatisfiable; model hag and—B.

(A & B)A(—mAV B) issatisfiable; RHS is entailed by LHS so models are those of
A & B.

. (A & B) < (C does have the same number of model§As < B); half the

models of(A < B) satisfy(A < B) < C, as do half the non-models, and there
are the same numbers of models and non-models.

Remembery |= g iff in every model in whicha is true, 3 is also true. Therefore,

. acis valid if and only if True = a.

Forward: Ifalpha is valid it is true in all models, hence it is true in all models Gfue.
Backward: if True = o thena must be true in all models dfrrue, i.e., in all models,
hencex must be valid.

. For anya, False = a.

False doesn't hold in any model, so trivially holds in every model of'alse.

. a = pif and only if the sentencéx = () is valid.

Both sides are equivalent to the assertion that there is raehio which« is true and
0 is false, i.e., no model in which = ( is false.

. a = @ifand only if the sentencér < () is valid.

Both sides are equivalent to the assertion thahdg have the same truth value in every
model.

. a = ¢ if and only if the sentencéx A —3) is unsatisfiable.

As in ¢, both sides are equivalent to the assertion that there isouehin whicha is
true andg is false.

. If a =~ or 3 =« (or both) thena A 3) = 7.

True. This follows from monotonicity.

M a = (BAYy) thena = fanda = 4.

True. If 3 A~ is true in every model ofy, theng and~ are true in every model af, so

a = fanda = .

. Mfa = (B V) thena = § or a = v (or both).

False. Considef = A, v = —A.

These can be computed by counting the rows in a truth tabtectirae out true, but

each has some simple property that allows a short-cut:

a. Sentence is false only 8 andC are false, which occurs in 4 cases fbandD, leaving

12.

b. Sentence is false only 4, B, C', andD are false, which occurs in 1 case, leaving 15.
c. The last four conjuncts specify a model in which the firstjoont is false, so 0.
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7.8 A binary logical connective is defined by a truth table withotvs. Each of the four
rows may be true or false, so there &k= 16 possible truth tables, and thus 16 possible
connectives. Six of these are trivial ones that ignore ongotin inputs; they correspond to
True, False, P, Q, - P and—Q. Four of them we have already studied;Vv, = , < .
The remaining six are potentially useful. One of them is regamplication {= instead of
=), and the other five are the negationsgfy, < , = and<«. The first three of these
are sometimes calleghnd nor, andxor.

7.9 We use the truth table code in Lisp in the directtogic/prop.lisp to show each
sentence is valid. We substitu®e Q, R for «, 3,~ because of the lack of Greek letters in
ASCII. To save space in this manual, we only show the first fauth tables:

> (truth-table "P = Q <=> Q ~ P")

P Q P"Q QP (P "Q<=>(Q"P

F F F F \(true\)

T F F F T

F T F F T

T T T T T
NIL

> (truth-table "P | Q <=> Q | P")

P Q PIQ QP (P]Q <=>(Q]P)

FF F F T
TF T T T
FT T T T
T T T T T
NIL

> (truth-table "P ~ (Q " R) <=> (P ~ Q) "~ R")

P QRQ'R P"Q"R) P"Q"R P"(Q"R) <=>(P"Q"R)

4 AT AT 4m
44T A4Tm
A T T TMTT T T
fo S B e e e e R

b M e B e e B B 0 |
o B R e M B B n R

NIL

> (truth-table "P | (Q | R) <=> (P | Q) | R")

P QR QIR PIQIR PIQIR (PIQIR)<=>FP[QI|R)
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4T ATmATAT
44T T AATT
A—A4 44T T
4444447
AA A A4
4444444
A A A A

NIL

For the remaining sentences, we just show that they are satidrding to thevalidity
function:

> (validity ""P <=> P")

VALID
> (validity "P => Q <=> "Q => "P")
VALID
> (validity "P => Q <=> "P | Q")
VALID
> (validity "(P <=> Q) <=> (P => Q) ~ (Q => P)")
VALID
> (validity (P ~ Q) <=> "P | "Q")
VALID
> (validity "(P | Q) <=> "P = "Q")
VALID
> (validity "P " (Q | Ry <=> (P " Q) | (P " R)"
VALID
> (validity "P | (Q "R) <=> (P | Q) "~ (P | R)"
VALID
7.10
a. Valid.
b. Neither.
c. Neither.
d. Valid.
e. Valid.
f. Valid.
g. Valid.

7.11 Each possible world can be written as a conjunction of liggre.g. (A A B A =C).
Asserting that a possible world is not the case can be wiityemegating that, e.g=(AA B A
—C'), which can be rewritten as-A v =B Vv C). This is the form of a clause; a conjunction
of these clauses is a CNF sentence, and can list the negafiaiighe possible worlds that
would make the sentence false.

7.12 To prove the conjunction, it suffices to prove each literglesately. To prove-B, add
the negated goal SB.
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* Resolve S7 with S5, giving S&.

Resolve S7 with S6, giving S€'.

Resolve S8 with S3, giving S10:-C' VvV —B).
Resolve S9 with S10, giving S1%iB.

* Resolve S7 with S11 giving the empty clause.

To prove— A, add the negated goal SA.

* Resolve S7 with the first clause of S1, giving $8 V E).
* Resolve S8 with S4, giving S3.
» Proceed as above to derive the empty clause.

7.13

a. P = Qisequivalent to-P Vv @ by implication elimination (Figure 7.11), ane( P; A
-+ A Pp,) is equivalent ta—P; V --- V = P,,) by de Morgan’s rule, s§—P; V --- V
-P, VQ)isequivalenttd P, A --- A Pp,) = Q.

b. A clause can have positive and negative literals; let thgatine literals have the form
-P,...,~ P, and let the positive literals have the foy, . . . , Q,,, where theP;s and
Q);s are symbols. Then the clause can be writtefrd3 V- - -V -FP,,VQ1V---VQy).
By the previous argument, with = Q1 Vv --- V Q,, it is immediate that the clause is
equivalent to

(PPN APp) = @Q1V---VQy.
c. Foratoms;, ¢;, 74, s; wherep; = gy

PIAN ... Pj - . APny = 11V ...Tp,
SIN...NSpys = 1V .. Qi - VQny
PIN...Dj—1APj4+1\Pny ASIA...8ng = T1V..Tna V@1 V... @x—1VQqk+1V...Viny

7.14

a. Correct representations of “a person who is radical istalde if he/she is conservative,
but otherwise is not electable”:

() (RAE) <= C

No; this sentence asserts, among other things, that alkecaats/es are radical,
which is not what was stated.

(i) R = (F < (O)
Yes, this says that if a person is a radical then they areadexif and only if they
are conservative.

(i) R = ((C = E)V-E)
No, this is equivalent teoR vV =C Vv E VvV —E which is a tautology, true under any
assignment.

b. Horn form:
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() Yes:
(RANE) < C

(RAE) = O)A(C = (RAE))
(RAE) = O)A(C = R)A(C = E)

(ii) Yes:

R=(F<+< (C)=R= (F=0NAN(C = E)
RV ((-EVC)A(-CVE))
(-RV-EVC)A(-RV-CVE)

(i) Yes, e.qg.,True = True.

7.15

a. The graph is simply a connected chain of 5 nodes, one pahiari

b. n + 1 solutions. Once any; is true, all subsequenk’;s must be true. Hence the
solutions are falses followed by: — i trues, fori =0, ..., n.

c. The complexity isD(n?). This is somewhat tricky. Consider what part of the complete
binary tree is explored by the search. The algorithm musiiohll solution sequences,
which themselves cover a quadratic-sized portion of the. tfeiling branches are all
those trying afalse after the preceding variable is assignede. Such conflicts are
detected immediately, so they do not change the quadragic co

d. These facts are not obviously connected. Horn-form lddidarence problems need
not have tree-structured constraint graphs; the lineampdexity comes from the nature
of the constraint (implication) not the structure of theldeon.

7.16 A clause is a disjunction of literals, and its models areuhi®n of the sets of models

of each literal; and each literal satisfies half the possibtalels. (Note thaf'alse is un-
satisfiable, but it is really another name for the empty @daus\ 3-SAT clause with three
distinct variables rules out exactly 1/8 of all possible migd so five clauses can rule out
no more than 5/8 of the models. Eight clauses are neededeaautlall models. Suppose
we have variablesA, B, C. There are eight models, and we write one clause to rule out
each model. For example, the model = false, B = false,C = false} is ruled out by the
clause(—A Vv -BV =(C).

7.17

a. The negated goal isGG. Resolve witht he last two clauses to produe@ and—D.
Resolve with the second and third clauses to produdeand—B. Resolve these suc-
cessively against the first clause to produce the empty€laus

b. This can be answered with or withoit-ue and F'alse symbols; we’ll omit them for
simplicity. First, each 2-CNF clause has two places to petdls. There aren distinct
literals, so there ar@n)? syntactically distinct clauses. Now, many of these claases
semantically identical. Let us handle them in groups. Tlaee€” (2n,2) = (2n)(2n —
1)/2 = 2n% — n clauses with two different literals, if we ignore orderingll these
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clauses are semantically distinct except those that arwvaent to7rue (e.g., (A V
—A)), of which there are, so that make&n? — 2n + 1 clauses with distinct literals.
There are2n clauses with repeated literals, all distinct. So there2aré+ 1 distinct
clauses in all.

. Resolving two 2-CNF clauses cannot increase the clausgthizrefore, resolution can
generate only)(n?) distinct clauses before it must terminate.

. First, note that the number of 3-CNF clause®i%:?), so we cannot argue for nonpoly-
nomial complexity on the basis of the number of differenuskss! The key observation
is that resolving two 3-CNF clauses cartreasethe clause size to 4, and so on, so
clause size can grow 10(n), giving O(2") possible clauses.

a. A simple truth table has eight rows, and shows that the seatés true for all models

and hence valid.
. For the left-hand side we have:

(Food = Party)V (Drinks = Party)
(=Food V Party) V (—mDrinks V Party)
(=FoodV Party V ~Drinks \V Party)
(—=Food V = Drinks \V Party)

and for the right-hand side we have

(Food N\ Drinks) = Party
—(Food N\ Drinks) V Party
(=Food V =Drinks) V Party
(=Food V =Drinks \V Party)

The two sides are identical in CNF, and hence the originatesee is of the form
P = P, which is valid for anyP.

. To prove that a sentence is valid, prove that its negatiamgsatisfiable. l.e., negate
it, convert to CNF, use resolution to prove a contradictidve can use the above CNF
result for the LHS.

=[[(Food = Party)V (Drinks = Party)] = [(Food A\ Drinks) = Party]]
[(Food = Party)V (Drinks = Party)] A =[(Food A Drinks) = Party]
(=Food V =Drinks \V Party) A Food \ Drinks A = Party

Each of the three unit clauses resolves in turn against thiecfause, leaving an empty
clause.

a. Each possible world can be expressed as the conjunctioihtb&diterals that hold in

the model. The sentence is then equivalent to the disjundii@ll these conjunctions,
i.e., a DNF expression.
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b. A trivial conversion algorithm would enumerate all pos$simodels and include terms
corresponding to those in which the sentence is true; bsiighiecessarily exponential-
time. We can convert to DNF using the same algorithm as for @kigept that we
distribute A overV at the end instead of the other way round.

c. A DNF expression is satisfiable if it contains at least ommthat has no contradictory
literals. This can be checked in linear time, or even duriregdonversion process. Any
completion of that term, filling in missing literals, is a medd

d. The first steps give
(FAVB)A(=BVCO)A(-CV—A).
Converting to DNF means taking one literal from each clauseJl possible ways, to
generate the terms (8 in all). Choosing each literal cooedp to choosing the truth
value of each variable, so the process is very like enunmgrali possible models. Here,
the first term iS—A A =B A =C'), which is clearly satisfiable.

e. The problem is that the final step typically results in DNpmessions of exponential
size, so we require both exponential time AND exponentiatsp

7.20 The CNF representations are as follows:

S1:(mAVBVE)AN(—-BVA)A(—EVA).
S2:(=EV D).
S3:(=C Vv -FV -B).
S4:(—~E V B).
S5: (—\B V F)
S6: (=B Vv C).
We omit the DPLL trace, which is easy to obtain from the versiothe code repository.

7.21 Itis more likely to be solvable: adding literals to disjunetclauses makes them easier
to satisfy.

7.22

a. This is a disjunction with 28 disjuncts, each one saying tva of the neighbors are
true and the others are false. The first disjunct is

Xooa AN X120 AN Xgo AN Xg1 A—Xo1 A=Xoog A X9 AXo

The other 27 disjuncts each select two differéhy; to be true.

b. There will be(Z) disjuncts, each saying thatof the n. symbols are true and the others
false.

c. For each of the cells that have been probed, take the mguitimbem revealed by the
game and construct a sentence V\(lgi) disjuncts. Conjoin all the sentences together.
Then use DPLL to answer the question of whether this sententals X ; for the
particulari, j pair you are interested in.

d. To encode the global constraint that there &femines altogether, we can construct
a disjunct with (/) disjuncts, each of siz&/. Remembery_, 7 _yy)- So for
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a Minesweeper game with 100 cells and 20 mines, this will berenthan103”, and
thus cannot be represented in any computer. However, weegaesent the global
constraint within the DPLL algorithm itself. We add the paeter min and maxto
the DPLL function; these indicate the minimum and maximurmbaer of unassigned
symbols that must be true in the model. For an unconstrainglalgm the values 0 and
N will be used for these parameters. For a mineseeper prolilermaiuer! will be
used for botrmin andmax Within DPLL, we fail (return false) immediately rhinis
less than the number of remaining symbols, andxis less than 0. For each recursive
call to DPLL, we updatenin andmaxby subtracting one when we assign a true value
to a symbol.

e. No conclusions are invalidated by adding this capabilityDPLL and encoding the
global constraint using it.

f. Consider this string of alternating 1's and unprobed dgfidicated by a dash):
-[3[-12-[2 -1
There are two possible models: either there are mines ungey @ven-numbered

dash, or under every odd-numbered dash. Making a probehatr &ihd will determine
whether cells at the far end are empty or contain mines.

7.23 It will take time proportional to the number of pure symbolagpthe number of unit
clauses. We assume th&tB = « is false, and prove a contradictiom(KB = «) is
equivalent toK B A —~«. From this sentence the algorithm will first eliminate ak thure
symbols, then it will work on unit clauses until it choosether o or —« (both of which are
unit clauses); at that point it will immediately recognibat either choice (true or false) for
« leads to failure, which means that the original non-negatsegrtiony is entailed.

7.24 We omit the DPLL trace, which is easy to obtain from the versiothe code reposi-
tory. The behavior is very similar: the unit-clause rule iRID. ensures that all known atoms
are propagated to other clauses.

7.25

Locked"™™' & [Lock! v (Locked® A —Unlock")] .

7.26 The remaining fluents are the orientation flueriisd{ingFast etc.) andWumpusAlive.
The successor-state axioms are as follows:

FacingBast™™ < (FacingEast' A =( TurnLeft' V TurnRight'))
V  (FacingNorth' A TurnRight")
V. (FacingSouth' A TurnLeft")
WumpusAlive!™ < WumpusAlive® A —~( WumpusAhead® A HaveArrow® A Shoot!) .

The WumpusAhead fluent does not need a successor-state axiom, since it isadkfiayn-
chronously in terms of the agent location and orientatiorrfta and the wumpus location.
The definition is extraordinarily tedious, illustratingetiveakness of proposition logic. Note
also that in the second edition we described a succesgerasteom (in the form of a circuit)



62

Chapter 7. Logical Agents

for WumpusAlive that used theScream observation to infer the wumpus’s death, with no
need for describing the complicated physics of shootingchSan axiom suffices for state
estimation, but nor for planning.

7.27
The required modifications are to add definitional axiom$hag

P31oro2 & P31V Py

and to include the new literals on the list of literals whoseh values are to be inferred at
each time step.

One natural way to extend the 1-CNF representation is toestcatdditional non-literal
sentences. The sentences we choose to test can dependrendagefrom the current KB.
This can work if the number of additional sentences we neééstiois not too large.

For example, we can query the knowledge base to find out wigohres we know
have pits, which we know might have pits, and which statedbezezy (we need to do this
to compute the un-augmented 1-CNF belief state). Then, doh édreezy square, test the
sentence “one of the neighbours of this square which mighe lazbit does have a pit.” For
example, this would tes®s ; V P, » if we had perceived a breeze in square (2,1). Under the
Wumpus physics, this literal will be true iff the breezy sopiaas no known pit around it.



Solutions for Chapter 8
First-Order Logic

8.1 This question will generate a wide variety of possible sohg. The key distinction
between analogical and sentential representations isthbaanalogical representation au-
tomatically generates consequences that can be “read di€hewer suitable premises are
encoded. When you get into the details, this distinctiomdusut to be quite hard to pin
down—for example, what does “read off” mean?—but it can Istiffed by examining the
time complexity of various inferences on the “virtual irdace machine” provided by the
representation system.

a. Depending on the scale and type of the map, symbols in thelamgoiage typically
include city and town markers, road symbols (various typafthouses, historic mon-
uments, river courses, freeway intersections, etc.

b. Explicit and implicit sentences: this distinction is adléttricky, but the basic idea is that
when the map-drawer plunks a symbol down in a particulareglae says one explicit
thing (e.g. that Coit Tower is here), but the analogicalctite of the map representa-
tion means that many implicit sentences can now be derivgglidi sentences: there
is @ monument called Coit Tower at this location; Lombare&truns (approximately)
east-west; San Francisco Bay exists and has this shapeicitmsphtences: Van Ness
is longer than North Willard; Fisherman's Wharf is north betMission District; the
shortest drivable route from Coit Tower to Twin Peaks is thiéofving . . ..

c. Sentences unrepresentable in the map language: Telddithhapproximately coni-
cal and about 430 feet high (assuming the map has no topagadplotation); in 1890
there was no bridge connecting San Francisco to Marin Cofmap does not repre-
sent changing information); Interstate 680 runs eithet @awest of Walnut Creek (no
disjunctive information).

d. Sentences that are easier to express in the map languageseatence that can be
written easily in English is not going to be a good candidatetliis question. Any
linguistic abstraction from the physical structure of San Francisag. (8an Francisco
is on the end of a peninsula at the mouth of a bay) can probabbxpressed equally
easily in the predicate calculus, since that's what it wasigheed for. Facts such as
the shape of the coastline, or the path taken by a road, atekg®ssed in the map
language. Even then, one can argue that the coastline drattie onap actually consists
of lots of individual sentences, one for each dot of ink, esly if the map is drawn
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using a digital plotter. In this case, the advantage of the maeally in the ease of
inference combined with suitability for human “visual contipg” apparatus.

e. Examples of other analogical representations:

» Analog audio tape recording. Advantages: simple circcés record and repro-
duce sounds. Disadvantages: subject to errors, noisethigmicess in order to
separate sounds or remove noise etc.

» Traditional clock face. Advantages: easier to read qyjaletermination of how
much time is available requires no additional computat@isadvantages: hard to
read precisely, cannot represent small units of time (msijyea

« All kinds of graphs, bar charts, pie charts. Advantagesir@ous data compres-
sion, easy trend analysis, communicate information in a which we can in-
terpret easily. Disadvantages: imprecise, cannot reptalisjunctive or negated
information.

8.2 The knowledge base does not entait P(z). To show this, we must give a model
whereP(a) andP(b) butV x P(z) is false. Consider any model with three domain elements,
wherea andb refer to the first two elements and the relation referred taPdyolds only for
those two elements.

8.3 The sentencéx,y x =y is valid. A sentence is valid if it is true in every model. An
existentially quantified sentence is true in a model if idsalinder any extended interpretation
in which its variables are assigned to domain elements. Watg to the standard semantics
of FOL as given in the chapter, every model contains at leastdmmain element, hence,
for any model, there is an extended interpretation in whicdndy are assigned to the first

domain element. In such an interpretations y is true.

8.4 Vax,y x=y stipulates that there is exactly one object. If there are dbjects, then
there is an extended interpretation in whictandy are assigned to different objects, so the
sentence would be false. Some students may also noticerphainaatisfiable sentence also
meets the criterion, since there are no worlds in which tinkesee is true.

8.5 We will use the simplest counting method, ignoring redunidambinations. For the
constant symbols, there af¥ assignments. Each predicate of aktis mapped onto &-ary
relation, i.e., a subset of the* possiblek-element tuples; there a2é” such mappings. Each
function symbol of arityk is mapped onto &-ary function, which specifies a value for each
of the D¥ possiblek-element tuples. Including the invisible element, theear- 1 choices
for each value, so there af® + 1)P" functions. The total number of possible combinations
is therefore

A A
De. (Z 2D’“> : <Z(D+1)D’“> :
k=1 k=1
Two things to note: first, the number is finite; second, the imarn arity A is the most
crucial complexity parameter.

8.6 \Validity in first-order logic requires truth in all possibiaodels:
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a (Gzrx=z) = (Vy Jzy=2).
Valid. The LHS is valid by itself—in standard FOL, every mbtlas at least one object;
hence, the whole sentence is valid iff the RHS is valid. (@tise, we can find a model
where the LHS is true and the RHS is false.) The RHS is validubbse for every value
of y in any given model, there isa—namely, the value of itself—that is identical to
Y.
b. Vo P(z)V -P(x).
Valid. For any relation denoted b, every object: is either in the relation or not in it.
c. V& Smart(x)V (xr=1x).
Valid. In every model, every object satisfies- x, so the disjunction is satisfied regard-
less of whether: is smatrt.

8.7 This version of FOL, first studied in depth by Mostowski (195joes under the title of
free logic (Lambert, 1967). By a natural extension of the truth valweseMmpty conjunctions
(true) and empty disjunctions (false), every universalyatified sentence is true in empty
models and every existentially quantified sentence is fal$e semantics also needs to be
adjusted to handle the fact that constant symbols have ecergfin an empty model.

Examples of sentences valid in the standard semantics Ibut eee logic include
dx z=zand[Vz P(z)] = [z P(z)]. More importantly, perhaps, the equivalence of
¢oV3Iiz Yyanddxz ¢V whenx does not occur free in, which is used for putting sentences
into CNF, does not hold.

One could argue thalx x =z, which simply states that the model is nonempty, is
not naturally a valid sentence, and that it ought to be ptesstbcontemplate a universe with
no objects. However, experience has shown that free logimsdo require extra work to
rule out the empty model in many commonly occurring case®g@ichl representation and
reasoning.

8.8 The fact—Spouse(George, Laura) does not follow. We need to assert that at most one
person can be the spouse of any given person:

Vx,y,z Spouse(x,z) A Spouse(y,z) = x=y.
With this axiom, a resolution proof of Spouse( George, Laura) is straightforward.

If Spouse is a unary function symbol, then the question is wheth&souse( Laura) = George
follows from Jim # George and Spouse(Laura) = Jim. The answer is yes, it does follow.

They could not both be the value of the function applied toshme argument if they were
different objects.

8.9

a. Paris and Marseilles are both in France.

() In(Paris \ Marseilles, France).

(2) Syntactically invalid. Cannot use conjunction insidiesm.
(i) In(Paris, France) A In(Marseilles, France).

(1) Correct.
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(iii) In(Paris, France) V In(Marseilles, France).
(3) Incorrect. Disjunction does not express “both.”

. There is a country that borders both Iraq and Pakistan.

(i) 3¢ Country(c) A Border(c, Iraq) N\ Border(c, Pakistan).
(1) Correct.
(i) 3¢ Country(c) = [Border(c, Iraq) A Border(c, Pakistan)].
(3) Incorrect. Use of implication in existential.
(i) e Country(c)] = [Border(c,Iraq) N\ Border(c, Pakistan)].
(2) Syntactically invalid. Variable used outside the scope of its quantifier.
(iv) 3¢ Border(Country(c), Iraq N\ Pakistan).
(2) Syntactically invalid. Cannot use conjunction insidiesm.

. All countries that border Ecuador are in South America.

(i) Ye Country(c) A Border(c, Ecuador) = In(c, SouthAmerica).

(1) Correct.

(i) Ye Country(c) = [Border(c, Ecuador) = In(c, SouthAmerica)].
(1) Correct. Equivalent to (i).

(i) Ve [Country(c) = Border(c, Ecuador)] = In(c, SouthAmerica).
(3) Incorrect. The implication in the LHS is effectively amplication in an exis-
tential; in particular, it sanctions the RHS for all non-atries.

(iv) Ve Country(c) A Border(c, Ecuador) A In(c, SouthAmerica).
(3) Incorrect. Uses conjunction as main connective of aem& quantifier.

. No region in South America borders any region in Europe.

() ~[Fe, d In(c, SouthAmerica) A In(d, Europe) A\ Borders(c,d)].

(1) Correct.

(i) Ye,d [In(c, SouthAmerica) A In(d, Europe)] = —Borders(c,d)].
(1) Correct.

(i) Ve In(c, SouthAmerica) = 3d In(d, Europe) N\ ~Borders(c,d).
(3) Incorrect. This says there is some country in South Acaetthat borders every
country in Europe!

(iv) Ye In(c, SouthAmerica) = Yd In(d, Europe) = —Borders(c,d).
(1) Correct.

. No two adjacent countries have the same map color.

() Va,y —Country(z) VvV —Country(y) V = Borders(z,y) V
—(MapColor(x) = MapColor(y)).
(1) Correct.
(i) Y,y (Country(xz) A Country(y) A Borders(x,y) AN —(z =y)) =
—(MapColor(z) = MapColor(y)).
(1) Correct. The inequality is unnecessary because no gohatders itself.
(iii)y Ya,y Country(z) A Country(y) A Borders(x,y) A
—(MapColor(z) = MapColor(y)).
(3) Incorrect. Uses conjunction as main connective of aeamal quantifier.
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(iv) Y,y (Country(z) A Country(y) A Borders(x,y)) = MapColor(z # y).
(2) Syntactically invalid. Cannot use inequality insidesent.

e}
[EEN
o

O(E, S)V O(E, L).
O(J,A) Ndp p# ANO(J,p).

Vp O(p,S) = O(p, D).

—-3p C(J,p) NO(p, L).

dp B(p, E) A O(p, L).

dp O(p,L) AV q C(g,p) = O(q, D).
g Vp O(p,S) = 3q O(q, L) NC(p,q).

-~ 0 20 T o

8.11
a. People who speak the same language understand each other.
b. Suppose that an extended interpretation with> A andy — B satisfy
SpeaksLanguage (x,1) N\ SpeaksLanguage (y,1)
for somel. Then from the second sentence we can concliudéerstands(A, B). The
extended interpretation with — B andy — A also must satisfy
SpeaksLanguage (x,1) N\ SpeaksLanguage(y,1) ,
allowing us to conclude/nderstands(B, A). Hence, whenever the second sentence
holds, the first holds.

c. LetUnderstands(x,y) mean that: understandg, and letFriend(z,y) mean that:
is a friend ofy.

(i) Itis not completely clear if the English sentence is refgy to mutual understand-
ing and mutual friendship, but let us assume that is whaténated:
Vx,y Understands(x,y)\Understands(y,z) = (Friend(x,y)AFriend(y, z)).
(i) Y,y,z Friend(z,y) A\ Friend(y,z) = Friend(z, z).

8.12 This exercise requires a rewriting similar to the Clark costipn of the two Horn
clauses:
Vn NatNum(n) < [n=0V 3Im NatNum(m)An=S(m).

8.13
a. The two implication sentences are

Vs Breezy(s) = 3r Adjacent(r,s) A Pit(r)
Vs —Breezy(s) = —3r Adjacent(r,s) A Pit(r) .

The converse of the second sentence is
Vs 3r Adjacent(r,s) A\ Pit(r) = Breezy(s)

which, combined with the first sentence, immediately gives
Vs Breezy(s) < Ir Adjacent(r,s) A Pit(r) .
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b. To say that a pit causes all adjacent squares to be breezy:
Vs Pit(s) = [Vr Adjacent(r,s) = Breezy(r)] .

This axiom allows for breezes to occur spontaneously withdjacent pits. It would be
incorrect to say that a non-pit causes all adjacent squarles hon-breezy, since there
might be pits in other squares causing one of the adjacemrsg|tio be breezy. But if
all adjacent squares have no pits, a square is non-breezy:

Vs [Vr Adjacent(r,s) = —Pit(r)] = —Breezy(s) .

8.14 Make sure you write definitions witks>. If you use=-, you are only imposing con-
straints, not writing a real definition. Note that for aunt&laincles, we include the relations
whom the OED says are more strictly defined as aunts-in-ladvientles-in-law, since the
latter terms are not in common use.

Grandchild(c,a) < 3b Child(c,b) A Child(b,a)

Greatgrandparent(a,d) < 3b,c Child(d,c) A Child(c,b) A Child(b,a)

Ancestor(a,z) < Child(x,a)V 3b Child(b,a) N Ancestor (b, )

Brother(z,y) < Male(x) A Sibling(x,y)

Sister(x,y) < Female(x) A Sibling(z,y)

Daughter(d,p) < Female(d) A Child(d, p)

Son(s,p) < Male(s) A Child(s,p)

FirstCousin(c,d) < Ip1,ps Child(c,p1) A Child(d,ps) A Sibling(p1, p2)

BrotherInLaw(b,z) < 3Im Spouse(x,m) A Brother(b,m)

SisterInLaw(s,z) < Im Spouse(x,m) A Sister(s,m)

Aunt(a,c) < Ip Child(c,p) A [Sister(a,p) V SisterInLaw(a,p)]

Uncle(u,c) < Ip Child(c,p) A [Brother(a,p) V BrotherInLaw(a,p)]

There are several equivalent ways to definerah cousinn times removed. One way is
to look at the distance of each person to the nearest comnmuastan Definéistance(c, a)
as follows:

Distance(c,c) =0

Child(e,b) A Distance(b,a) = k = Distance(c,a)=k+ 1.
Thus, the distance to one’s grandparent is 2, great-graadgarent is 4, and so on. Now we
have

MthCousinNTimesRemoved(c,d,m,n) <

Ja Distance(c,a)=m + 1 A Distance(d,a)=m +n+1.

The facts in the family tree are simple: each arrow represemb instances of hild
(e.g., Child(William, Diana) and Child(William,Charles)), each name represents a
sex proposition (e.g.Male(William) or Female(Diana)), each “bowtie” symbol indi-
cates aSpouse proposition (e.g.,Spouse(Charles, Diana)). Making the queries of the
logical reasoning system is just a way of debugging the difis.

8.15 Although these axioms are sufficient to prove set memberstien = is in fact a
member of a given set, they have nothing to say about case® whe not a member. For
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example, itis not possible to prove thais not a member of the empty set. These axioms may
therefore be suitable for a logical system, such as Profag uses negation-as-failure.

8.16 Here we translatéist? to mean “proper list” in Lisp terminology, i.e., a cons stiwe
with Nil as the “rightmost” atom.

List?(Nil)

Va,l List?(l) < List?(Cons(z,l))

Vax,y First(Cons(z,y))=x

Va,y Rest(Cons(z,y))=y

Vo Append(Nil,z)=x

Vv, z,y,z List?(x) = (Append(xz,y)=z < Append(Cons(v,z),y)=Cons(v,z))

Vo —Find(x, Nil)

Vo List?(z) = (Find(x,Cons(y,z)) < (x=yV Find(x, z))

8.17 There are several problems with the proposed definitionlidiva one to prove, say,
Adjacent([1,1],[1,2]) but not Adjacent([1,2],[1,1]); so we need an additional symmetry
axiom. It does not allow one to prove thatjjacent([1,1],[1,3]) is false, so it needs to be
written as

VSl,SQ < ...

Finally, it does not work as the boundaries of the world, smeextra conditions must be
added.

8.18 We need the following sentences:

Vs1 Smelly(s1) < Jso Adjacent(sy, sz) A In(Wumpus, s2)
ds1 In(Wumpus, s1) AV sa (s1 # s2) = —In(Wumpus, s2) .

8.19

. dx Parent(Joan,x) A Female(zx).

. 3*x Parent(Joan,z) A Female(x).

. dx Parent(Joan,x) N Female(z) N [Vy Parent(Joan,y) = y=ux].
(This is sometimes abbreviated'¢male(i(x) Parent(Joan, x))".)

d. 3¢ Parent(Joan,c) A Parent(Kevin, c).

de¢ Parent(Joan,c) A Parent(Kevin,c) AN d,p [Parent(Joan,d) A Parent(p,d)]
= [p=Joan V p= Kevin|

O T o

8.20
a Vx Fven(z) & Jy z=y+y.
b. V& Prime(x) < Vy,z x=yxz = y=1VvVz=1
c. Vo Even(x) = Jy,z Prime(y) A Prime(z) Nx=y + z.

8.21 If we have WA = red and ) = red then we could deduc®A = @, which is undesir-
able to both Western Australians and Queenslanders.
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8.22
Vk Key(k) = [3to Before(Now,ty) AVt Before(ty,t) = Lost(k,t)]
V' s1,s2 Sock(s1) A Sock(s2) A Pair(sy, s2) =
[3t1 Before(Now,t;) ANVt Before(ti,t) = Lost(s1,t)]V
[ta Before(Now,ta) ANVt Before(ta,t) = Lost(sa,t)] .
Notice that the disjunction allows for both socks to be l@s,the English sentence im-
plies.

8.23
a. “No two people have the same social security number.”
—3Jz,y,n Person(z) A Person(y) = [HasSS#(x,n) A HasSS#(y,n)].

This uses = with 3. It also says that no person has a social security numbeubeca
it doesn't restrict itself to the cases where@ndy are not equal. Correct version:

—3xz,y,n Person(z) A Person(y) A —(x = y) A [HasSS#(x,n) N HasSS#(y,n)]
b. “John’s social security number is the same as Mary’s.”
An HasSS#(John,n) A HasSS#(Mary,n).

This is OK.
c. “Everyone’s social security number has nine digits.”

Va,n Person(xz) = [HasSS#(x,n) A Digits(n,9)].
This says that everyone has every numbérsSS+#(x, n) should be in the premise:
Vx,n Person(x) AN HasSS#(x,n) = Digits(n,9)

d. Here SS#(x) denotes the social security numberzofUsing a function enforces the
rule that everyone has just one.

—3xz,y Person(z) A Person(y) = [SS#(x) = SS#(y)]
SS#(John) = SS#(Mary)
V& Person(x) = Digits(SS#(x),9)

8.24 In this exercise, it is best not to worry about details of eeand larger concerns with
consistent ontologies and so on. The main point is to make stuidents understand con-
nectives and quantifiers and the use of predicates, fursstcamstants, and equality. Let the
basic vocabulary be as follows:

Takes(x,c, s): studentr takes course in semestes;

Passes(x, c, s): studentz passes coursein semestes;

Score(x, ¢, s): the score obtained by studentn coursec in semestes;

x >y x is greater thamy;

F andG: specific French and Greek courses (one could also inteltpese sentences as re-
ferring to any such course, in which case one could use a predig€atgect(c, f) meaning
that the subject of courseis field f;

Buys(z,y, z): x buysy from z (using a binary predicate with unspecified seller is OK but
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less felicitous);
Sells(x,y, z): z sellsy to z;
Shaves(x,y): personz shaves person
Born(z,c): personz is born in countryc;
Parent(zx,y): x is a parent ofy;
Citizen(x,c,r): x is a citizen of country: for reason;
Resident(x, c): x is a resident of country;
Fools(x,y,t): personz fools persory at timet;
Student(x), Person(x), Man(z), Barber(x), Expensive(x), Agent(x), Insured(x),
Smart(x), Politician(z): predicates satisfied by members of the corresponding @adsg
a. Some students took French in spring 2001.
Jx Student(x) A Takes(z, F, Spring2001).
b. Every student who takes French passes it.
Vaz,s Student(xz) N Takes(z, F,s) = Passes(x,F,s).
c. Only one student took Greek in spring 2001.
Jx Student(x)ATakes(x, G, Spring2001)A\Vy y # x = —Takes(y, G, Spring2001).
d. The best score in Greek is always higher than the best stcénench.
Vs Jx Vy Score(x,G,s) > Score(y, F, s).
e. Every person who buys a policy is smart.
Vx Person(x) A (Jy,z Policy(y) N Buys(z,y,z)) = Smart(x).
f. No person buys an expensive policy.
Vaz,y,z Person(z) A Policy(y) A Expensive(y) = —Buys(z,y,2).
g. There is an agent who sells policies only to people who arénsared.
Jx Agent(x) AVy,z Policy(y) A Sells(z,y,z) = (Person(z) A ~Insured(z)).
h. There is a barber who shaves all men in town who do not shamdélves.
dx Barber(z) A\Vy Man(y) A ~Shaves(y,y) = Shaves(z,y).
i. A person born in the UK, each of whose parents is a UK citizem OK resident, is a
UK citizen by birth.
Vz Person(x)\Born(z,UK)A\(Vy Parent(y,x) = ((Ir Citizen(y,UK,r))V
Resident(y,UK))) = Citizen(x, UK, Birth).
j- A person born outside the UK, one of whose parents is a UKetitby birth, is a UK
citizen by descent.

Vx Person(x) AN —Born(x,UK) A (3y Parent(y,x) A Citizen(y, UK, Birth))
= Clitizen(x,UK, Descent).
k. Politicians can fool some of the people all of the time, d®ytcan fool all of the people
some of the time, but they can’t fool all of the people all af thme.

Vx Politician(x) =
(y VYt Person(y) A Fools(x,y,t)) A
(3t Yy Person(y) = Fools(x,y,t)) A
~(Vt Yy Person(y) = Fools(x,y,t))
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[. All Greeks speak the same language.

Va,y,l Person(z)A[3r Citizen(x, Greece,r)|] A Person(y) A [3r Citizen(y, Greece,r)]
A Speaks(x,l) = Speaks(y,l)

8.25 This is a very educational exercise but also highly nordtiviOnce students have
learned about resolution, ask them to do the proof too. Introases, they will discover
missing axioms. Our basic predicates &feard(x,e,t) (x heard about event at timet);
Occurred(e,t) (evente occurred at time); Alive(x,t) (x is alive at time).

It Heard(W, DeathOf(N),t)

Vz,e,t Heard(xz,e t) = Alive(z,t)

Vx,e ty Heard(xz,e,ta) = It Occurred(e,t1) ANty < to

Vt1 Occurred(DeathOf(x),t1) = Vi t1 <ty = —Alive(x,ts)
Vi, to —|(t2 < tl) = ((tl < tg) V (tl = tg))

Vi, ta,t3 (tl < tg) VAN ((tg < tg) vV (tg = tg)) = (tl < tg)

Vi, to,t3 ((tl < tg) V (tl = tg)) VAN (tg < t3) = (tl < tg)

8.26 There are three stages to go through. In the first stage, weeditie concepts of one-
bit andn-bit addition. Then, we specify one-bit amdbit adder circuits. Finally, we verify
that then-bit adder circuit does-bit addition.

» One-bit addition is easy. Letdd; be a function of three one-bit arguments (the third
is the carry bit). The result of the addition is a list of biepresenting a 2-bit binary
number, least significant digit first:

* n-bit addition builds on one-bit addition. Letdd, (z1,z2,b) be a function that takes
two lists of binary digits of length. (least significant digit first) and a carry bit (initially
0), and constructs a list of length+ 1 that represents their sum. (It will always be
exactlyn + 1 bits long, even when the leading bit is 0—the leading bit esdkerflow
bit.)

Addn([], ], 0) = [b]
Addl(bl, bg, b) = [bg, b4] = Addn([b1|x1], [b2|$2], b) = [b3|Addn(l’1,l’2, b4)]

* The next step is to define the structure of a one-bit addeuitjras given in the text.
Let Add,Circuit(c) be true of any circuit that has the appropriate components an
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connections:
Ve AddyCircuit(c) <
Jx1,x9,a1,a2,01 Type(xy)=Type(xs)=XOR
A Type(ar) =Type(az) = AND A Type(o1) =OR
A Connected(Out(1,z1), In(1,x2)) A Connected(In(1
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A Connected(Out(1, 1), In(2,a2)) A Connected(In(1,c), In(1,a1))
,In(1,01)) A Connected(In(2,c),In(2,z1))
A Connected(Out(1,a1),In(2,01)) A Connected(In(2,c), In(2,a1))

(

(Out(1,21)
A Connected(Out(1, az)

(Out(1,a1)
A Connected(Out(1,z2), Out(1,c)) A Connected(In(3,c), In(2,z2))
A Connected(Out(1,01), Out(2,c)) A Connected(In(3,¢c), In(1,asz))

Notice that this allows the circuit to have additional ga#esl connections, but they
won'’t stop it from doing addition.

Now we define what we mean by anbit adder circuit, following the design of Figure
8.6. We will need to be careful, becauserabit adder is not just amn — 1-bit adder
plus a one-bit adder; we have to connect the overflow bit ofithe1-bit adder to the
carry-bit input of the one-bit adder. We begin with the bagse; where, = 0:

Ve Add,Circuit(c,0) <

Signal(Out(1,¢)) =0
Now, for the recursive case we specify that the first conrneet‘overflow” output of
then — 1-bit circuit as the carry bit for the last bit:

Ve,n n>0 = [Add,Circuit(c,n) <
deo,d Add,Circuit(ca,n — 1) A AddyCircuit(d)
AVYm (m>0)A(m<2n—1) = In(m,c)=1In(m,cz)
AYm (m>0)A(m<n) = AOut(m,c)=0ut(m,cs)
A Connected(Out(n, cz), In(3,d))
A Connected(In(2n — 1,¢),In(1,d)) A Connected(In(2n,c), In(2,d))
A Connected(Out(1,d), Out(n,c)) A Connected(Out(2,d), Out(n + 1,c))

Now, to verify that a one-bit addeircuit actually adds correctly, we ask whether, given
any setting of the inputs, the outputs equal the sum of thetép

Ve AddyCircuit(c) =
Viy,ia,13 Signal(In(1,c)) =11 A Signal(In(2,c)) =iz A Signal(In(3,c)) =3
= Addy (’il , 19, ig) = [Out(l, C), Out(2, C)]
If this sentence is entailed by the KB, then every circuitwiite Add; Circuit design
is in fact an adder. The query for thebit can be written as

Ve,n Add,Circuit(c,n) =
V1, xe,y InterleavedInputBits(xz1,xs,c) A Output Bits(y, c)
= Addn(:pla T2, y)
where InterleavedInput Bits and Output Bits are defined appropriately to map bit

sequences to the actual terminals of the circiiote this logical formulation has not
been tested in a theorem prover and we hesitate to vouclsfooitectness.]
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8.27 The answers here will vary by country. The two key rules for p&sports are given
above.

8.28
a W(G,T).
b. -W(G, E).
W (G, T)V W (M,T).
ds W(J,s).
dz C(z,R)NO(J,x).
Vs S(M,s,R) = W(M,s).
. —[3s W(G,s)AIp S(p,s, R)|.
Vs W(G,s) = 3Ap,a S(p,s,a).
.da Vs W(J,s) = 3p S(p,s,a).
. 3d,a,s C(d,a) NO(J,d) N S(B,T,a).
.Ya [3s S(M,s,a)] = 3d C(d,a) NO(J,d).
.Ya [Vs,p S(p,s,a) = S(B,s,a)] = 3d C(d,a) NO(J,d).

— X —~7Q -~ 0 20



Solutions for Chapter 9
Inference in First-Order Logic

9.1 We want to show that any sentence of the féfm « entails any universal instantiation
of the sentence. The sentente « asserts thad is true in all possible extended interpreta-
tions. For any model specifying the referent of ground tetrthe truth of &BsST({v/g}, @)
must be identical to the truth value of some extended ing¢gytion in whichw is assigned to
an object, and in all such interpretationss true.

El states: for any sentenee variablev, and constant symbdi that does not appear
elsewhere in the knowledge base,

dv «

SussT({v/k},a)
If the knowledge base with the original existentially quied sentence i€ B and the result
of Elis K B/, then we need to prove thatB is satisfiable iffK B’ is satisfiable. Forward: if
K B is satisfiable, it has a modéf for which an extended interpretation assigningp some
objecto rendersx true. Hence, we can construct a modé! that satisfied< B’ by assigning
k to refer too; sincek does not appear elsewhere, the truth values of all otheesess are
unaffected. Backward: ik B’ is satisfiable, it has a modéll’ with an assignment fok
to some objecb. Hence, we can construct a modeél that satisfied< B with an extended
interpretation assigningto o; sincek does not appear elsewhere, removing it from the model
leaves the truth values of all other sentences are unaffecte

9.2 For any sentence containing a ground term and for any variabler not occuring in

o, we have
«

Jv SuBsST*({g/v}, )
where $)BST" is a function that substitutes any or all of the occurrendegwith v. Notice
that substituting just one occurrence and applying the mutiple times is not the same,
because it results in a weaker conclusion. For example, a) should entaiBx P(z,x)
rather than the weaketz,y P(z,vy).

9.3 Both b and c are sound conclusions; a is unsound becausmduicts the previously-
used symboEverest Note that ¢ does not imply that there are two mountains als aigy
Everest, because nowhere is it stated BextNeviss different fromKilimanjaro (or Everest
for that matter).

9.4 Thisis an easy exercise to check that the student undesstanification.

75
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a
b.
C.
d.

9.5

a.

o)

™ QL 0o T

9.7

{z/A,y/B,z/B} (or some permutation of this).

No unifier ¢ cannot bind to bot and B).

{y/John,z/John}.

No unifier (because the occurs-check prevents unificationvath Father(y)).

For the sentencEmploys(Mother(John), Father (Richard)), the page isn’'t wide enough
to draw the diagram as in Figure 9.2, so we will draw it withentation denoting chil-
dren nodes:

[1] Employs(x, y)
[2] Employs(x, Father(z))
[3] Employs(x, Father(Richard))
[4] Employs(Mother(w), Father(Richard))
[5] Employs(Mother(John), Father(Richard))
[6] Employs(Mother(w), Father(z))
[4] ..
[7] Employs(Mother(John), Father(z))
5] ..
[8] Employs(Mother(w), y)
[9] Employs(Mother(John), y)
[10] Employs(Mother(John), Father(z)
5] ..
6] ...

. For the sentencEmploys(I1BM ,y), the lattice contain&mploys(z,y) and Employs(y, y).

We use a very simple ontology to make the examples easier:

. Horse(x) = Mammal(x)

Cow(z) = Mammal(z)
Pig(x) = Mammal(z).

. Offspring(x,y) A Horse(y) = Horse(z).
. Horse(Bluebeard).

. Parent(Bluebeard, Charlie).

. Offspring(z,y) = Parent(y,x)

Parent(x,y) = Offspring(y,x).
(Note we couldn’t daOffspring(x,y) < Parent(y,z)because thatis notin the form
expected by Generalized Modus Ponens.)

. Mammal(x) = Parent(G(x),x) (hereG is a Skolem function).
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a. Let P(z,y) be the relation # is less thany” over the integers. TheMz 3y P(x,y)
is true butdz P(z, ) is false.

b. Converting the premise to clausal form givese, Sk0(x)) and converting the negated
goal to clausal form gives:P(q, q). If the two formulas can be unified, then these
resolve to the null clause.

c. If the premise is represented &z, Sk0) and the negated goal has been correctly
converted to the clauseP(q, q) then these can be resolved to the null clause under the
substitution{q/Sk0, z/Sk0}.

d. Suppose you are given the premise Cat(z) and you wish to prov€'at(Socrates).
Converting the premise to clausal form gives the clatise(Sk1). If this unifies with
Cat(Socrates) then you can resolve this with the negated geélat(Socrates) to
give the null clause.

9.8 Consider a 3-SAT problem of the form
(1,1 Va1 Vxgy) A(mx12V 222V x32) V...

We want to rewrite this as a single definite clause of the form
ANBANCNA... = Z,

along with a few ground clauses. We can do that with the defolduse
OneOf(x11,22.1,Not(xzz1)) A OneO f(Not(x12), x22,232) A... = Solved .

The key is that any solution to the definite clause has to mshgysame value to each occur-
rence of any given variable, even if the variable is negatesbme of the SAT clauses but not
others. We also need to defingeO f. This can be done concisely as follows:

OneOf(True,x,y)
OneO f(z, True,y)
OneOf(x,y, True)
OneO f(Not(False),z,y)
OneO f(x, Not(False),y)
OneOf(xz,y, Not(False))

9.9 This is quite tricky but students should be able to manadeelf theck each step care-
fully.

a. (Note: At each resolution, we rename the variables in the.ru

Goal G0:7 <3+9 Resolve with (8}x1/7,21/3 + 9}.
Goal G1:7 <yl Resolve with (4Xx2/7,y1/7 4+ 0}. Succeeds.
Goal G2:7+0 < 3+ 9. Resolve with (8Xx3/7 4+ 0,23/3 + 9}
Goal G3:7+ 0 < y3 Resolve with (6Xx4/7,y4/0,y3/0 + 7} Succeeds.
Goal G4:0+7<3+9 Resolve with (7{w5/0,25/7,y5/3, 25/9}.
Goal G5:0 < 3. Resolve with (1). Succeeds.

Goal G6:7 < 9. Resolve with (2). Succeeds.
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G4 succeeds
G2 succeeds.
GO succeeds.

b. From (1),(2), (7{w/0,x/7,y/3,2/9} infer
90+7<3+09.
From (9), (6), (8{x1/0,y1/7,22/0 + 7,42/7 + 0, 22/3 + 9} infer
(10)7+0<3+09.
(z1,y1 are renamed variables in (62, y2, z2 are renamed variables in (8).)
From (4), (10), (8Xx3/7,x4/7,y4/7 + 0,24/3 + 9} infer
11)7<3+09.
(z3 is a renamed variable in (4)4, y4, z4 are renamed variables in (8).)

9.10 Surprisingly, the hard part to represent is “who is that rhaffe want to ask “what
relationship does that man have to some known person,” hwe ifepresent relations with
predicates (e.g.Parent(x,y)) then we cannot make the relationship be a variable in first-
order logic. So instead we need to reify relationships. Weuse Rel(r, z, y) to say that the
family relationshipr holds between people andy. Let Me denote me and/rX denote
“that man.” We will also need the Skolem constahts/ for the father ofM e and F X for

the father ofMr X. The facts of the case (put into implicative normal form). are

(1) Rel(Sibling, Me,z) = False

(2) Male(MrX)

(3) Rel(Father, FX, MrX)

(4) Rel(Father, FM, Me)

(5) Rel(Son, FX,FM)

We want to be able to show thafe is the only son of my father, and therefore thdt is
father of M r X, who is male, and therefore that “that man” is my son. Theveeledefinitions
from the family domain are:

) Rel(Parent,x,y) N Male(z) < Rel(Father,z,y)

) Rel(Son,z,y) < Rel(Parent,y,z) A Male(x)

) Rel(Sibling,x,y) < x #yA3Ip Rel(Parent,p,x) A Rel(Parent,p,y)
) Rel(

6
7
8
9) Rel(Father,z1,y) A Rel(Father,za,y) = 1 = 22

(
(
(
(
and the query we want is:

(Q) Rel(r, MrX,y)

We want to be able to get back the ansfefSon,y/Me}. Translating 1-9 and) into INF



79

(and negating) and including the definition of) we get:

6a) Rel(Parent,x,y) N Male(x) = Rel(Father,x,y)
6b) Rel(Father,z,y) = Male(z)

6¢) Rel(Father,x,y) = Rel(Parent,z,y)
Rel(Son,z,y) = Rel(Parent,y,x)
Rel(Son,z,y) = Male(x))

Rel(Parent,y,x) N Male(x) = Rel(Son,x,y)
Rel(Sibling,z,y) = x #y

Rel(Sibling, z,y) = Rel(Parent, P(z,y),x)
Rel(Sibling,x,y) = Rel(Parent, P(x,y),y)
d) Rel(Parent, P(x,y),x) N\ Rel(Parent, P

9) Rel(Father,z1,y) A Rel(Father,zs,y) = =
N)True = x=yVa#y

NYx=yANx#y = False

(Q") Rel(r,MrX,y) = False

w\g/\/\_z
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z,y),y) Nx #y = Rel(Sibling,z,y)
1 T

Note that (1) is non-Horn, so we will need resolution to be e ©f getting a solution. It
turns out we also need demodulation to deal with equalitye fiitlowing lists the steps of

the proof, with the resolvents of each step in parentheses:

(10) Rel(Parent, FM, Me)

Rel(Parent, FM, FX)

Rel(Parent, FM,y) N Me # y = Rel(Sibling, Me,y)
Rel(Parent, FM,y) N Me #y = False

N N N

Rel(Father, Me, MrX)
Rel(Parent, Me, MrX)
Rel(Son, MrX, Me)

)
)
)
)
) Me=FX
)
)
)
) False {r/Son,y/Me}

(4,6¢)
(5,7a)
(10, 8d)
(12,1)
(13,11)
(14, N)

(15,3, demodulation)
(16, 6¢)

(17,2,7¢)

(15.Q)

9.11 We will give the average-case time complexity for each gisetyeme combination
in the following table. (An entry of the form1* »n” means that it iSO(1) to find the first
solution to the query, bub(n) to find them all.) We make the following assumptions: hash
tables giveO(1) access; there are people in the data base; there &én) people of any
specified age; every person has one mother; theré/gpeople in Houston and people in
Tiny Town; T is much less than; in Q4, the second conjunct is evaluated first.

Ql Q2 | Q3| Q4
S1 1 |1; H|l;n|T;T
S2[1 |n;n|l;n| n;n
S3| n |n; nl|l; n|n? n?
S4 1 |n;n|l;n| n;n
S5/ 1|, H|L;n|T; T
Anything that isO(1) can be considered “efficient,” as perhaps can anytlix@'). Note
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that S1 and S5 dominate the other schemes for this set ofegueiso note that indexing on
predicates plays no role in this table (except in combimatiith an argument), because there
are only 3 predicates (which 3(1)). It would make a difference in terms of the constant
factor.

9.12 This would work if there were no recursive rules in the knadge base. But suppose
the knowledge base contains the sentences:

Member(x, [x|r])

Member(x,r) = Member(z,[y|r])
Now take the queny\/ember(3,[1,2,3]), with a backward chaining system. We unify the
query with the consequent of the implication to get the stigin 6 = {x/3,y/1,7/[2, 3]}.
We then substitute this in to the left-hand side to @étmber(3,[2,3]) and try to back
chain on that with the substitutich When we then try to apply the implication again, we
get a failure becausg cannot be both and2. In other words, the failure to standardize
apart causes failure in some cases where recursive rulelsl \nesult in a solution if we did
standardize apart.

9.13 This questions deals with the subject of looping in backwardining proofs. A loop
is bound to occur whenever a subgoal arises that is a suimstiinstance of one of the goals
on the stack. Not all loops can be caught this way, of coutbereise we would have a way
to solve the halting problem.

a. The proof tree is shown in Figure S9.1. The branch Wiiffspring (Bluebeard,y) and
Parent(y, Bluebeard) repeats indefinitely, so the rest of the proof is never redche

b. We get an infinite loop because of ride Offspring(x,y) A Horse(y) = Horse(x).
The specific loop appearing in the figure arises because ofrtiezing of the clauses—
it would be better to ordeH orse(Bluebeard) before the rule fronl. However, a loop
will occur no matter which way the rules are ordered if theotieen-prover is asked for
all solutions.

c. One should be able to prove that both Bluebeard and Chadikases.

d. Smith et al. (1986) recommend the following method. Whenever a “loopiggal
occurs (one that is a substitution instance of a supergagideniup the stack), sus-
pend the attempt to prove that subgoal. Continue with akolitanches of the proof
for the supergoal, gathering up the solutions. Then useetkolutions (suitably in-
stantiated if necessary) as solutions for the suspendegbaylrontinuing that branch
of the proof to find additional solutions if any. In the prodfosvn in the figure, the
Offspring(Bluebeard, y) is a repeated goal and would be suspended. Since no other
way to prove it exists, that branch will terminate with fagu In this case, Smith’s
method is sufficient to allow the theorem-prover to find bailutons.

9.14 Here is a goal tree:

goals = [Criminal(West)]
goals = [American(West), Weapon(y), Sells(West, y, z), Hos tile(2)]
goals = [Weapon(y), Sells(West, y, z), Hostile(z)]
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| Horse(BIuebeard}

Offspring(h,y)

Parent(y,h) | Offspring(Bluebeard.y)|

Yes, {y/Bluebeard,
h/Charlie}

| Parent(y,Bluebeard)|

| Offspring(BIuebeard,y)|

Figure S9.1  Partial proof tree for finding horses.

goals = [Missle(y), Sells(West, y, z), Hostile(z)]
goals = [Sells(West, M1, z), Hostile(z)]
goals = [Missle(M1), Owns(Nono, M1), Hostile(Nono)]
goals = [Owns(Nono, M1), Hostile(Nono)]
goals = [Hostile(Nono)]
goals = ]

9.15

a. In the following, an indented line is a step deeper in theoptaee, while two lines at
the same indentation represent two alternative ways toepitoy goal that is unindented
above it.P1 andP2 refer to the first and second clauses of the definition resmhget
We show each goal as it is generated and the result of unify/ingh the head of each

clause.
P(A, [2,1,3]) goal
P(2, [2|[1,3]]) unify with head of P1
=> solution, with A = 2
P(A, [2][1,3]]) unify with head of P2
P(A, [1,3]) subgoal
P(1, [1,3]) unify with head of P1
=> solution, with A = 1
P(A, [1][3]D) unify with head of P2
P(A, [3]) subgoal
P(3, 3/ unify with head of P1

=> solution, with A = 3
P(A, [3I0D unify with head of P2
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PA, ) subgoal (fails)
P2, [1,A3]) goal
P2, [1][A,3]]) unify with head of P2
P2, [A3]) subgoal
P2, [2,3]) unify with head of P1
=> solution, with A = 2
P2, [AI[3]D) unify with head of P2
P2, [3]) subgoal
P(2, [3]D) unify with head of P2
P2, ) subgoal

b.

P could better be calleMember; it succeeds when the first argument is an element of
the list that is the second argument.

9.16 The different versions afort illustrate the distinction between logical and procedu-
ral semantics in Prolog.

a.

sorted([]).
sorted([X]).
sorted([X,Y|L]) :- X<Y, sorted([Y|L]).

- perm((],[))-

perm([X|L],M) :-
delete(X,M,M1),
perm(L,M1).

delete(X,[X|L],L). %% deleting an X from [X|L] yields L
delete(X,[Y|L],[YIM]) :- delete(X,L,M).

member(X,[X|L]).
member(X,[_[L]) :- member(X,L).
sort(L,M) :- perm(L,M), sorted(M).

This is about as close to an executable formal specificatigoring as you can
get—it says the absolute minimum about what sort means:dierdor Mto be a sort of
L, it must have the same elementd.asnd they must be in order.

. Unfortunately, this doesn't fare as well as a program aésdas a specification. It

is a generate-and-test soperm generates candidate permutations one at a time, and
sorted tests them. In the worst case (when there is only one sortedutation, and

itis the last one generated), this will takén!) generations. Since eaperm is O(n?)

and eactsorted is O(n), the wholesort is O(n!n?) in the worst case.

Here’s a simple insertion sort, which¥(n?):

isort([1,1)-
isort([X|L],M) :- isort(L,M1), insert(X,M1,M).

insert(X,[1,[X]).
insert(X,[Y|L],DX,Y|L]) :- X=<Y.
insert(X,[Y|LL[YIM]) :- Y<X, insert(X,L,M).

9.17 This exercise illustrates the power of pattern-matchinigictvis built into Prolog.
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a. The code for simplification looks straightforward, butdsguts may have trouble finding
the middle way between undersimplifying and looping inéhit
simplify(X,X) :- primitive(X).
simplify(X,Y) :- evaluable(X), Y is X.
simplify(Op(X)) :- simplify(X,X1), simplify_exp(Op(X1) ).
simplify(Op(X,Y)) :- simplify(X,X1), simplify(Y,Y1), si mplify_exp(Op(X1,Y1)).

simplify_exp(X,Y) :- rewrite(X,X1), simplify(X1,Y).
simplify_exp(X,X).

primitive(X) :- atom(X).
b. Here are afew representative rewrite rules drawn from xitensive list in Norvig (1992).

Rewrite(X+0,X).

Rewrite(0+X,X).

Rewrite(X+X,2  * X).

Rewrite(X *X,X"2).
Rewrite(X"0,1).

Rewrite(0°X,0).

Rewrite(X *N,N*X) :- number(N).
Rewrite(In(e”X),X).

Rewrite(X"Y * X"Z X (Y+2)).
Rewrite(sin(X)"2+cos(X)"2,1).

c. Here are the rules for differentiation, usidgY,X) to represent the derivative of ex-
pressionY with respect to variabli.

Rewrite(d(X,X),1).

Rewrite(d(U,X),0) :- atom(U), U /= X.
Rewrite(d(U+V,X),d(U,X)+d(V,X)).
Rewrite(d(U-V,X),d(U,X)-d(V,X)).

Rewrite(d(U *V,X),V *d(U,X)+U *d(V,X)).
Rewrite(d(U/V,X),(V *d(U,X)-U *=d(V,X))/(V"2)).
Rewrite(d(U"N,X),N * U (N-1) *d(U,X)) :- number(N).
Rewrite(d(log(U),X),d(U,X)/U).

Rewrite(d(sin(U),X),cos(U) *d(U,X)).
Rewrite(d(cos(U),X),-sin(U) *d(U,X)).
Rewrite(d(e"U,X),d(U,X) *e"U).

9.18 Once you understand how Prolog works, the answer is easy:
solve(X,[X]) :- goal(X).
solve(X,[X|P]) :- successor(X,Y), solve(Y,P).
We could render this in English as “Given a start state, iSiigoal state, then the path
consisting of just the start state is a solution. Otherwiise, some successor state such that
there is a path from the successor to the goal; then a soligtitve start state followed by that
path.”

Notice thatsolve can not only be used to find a pd®that is a solution, it can also be
used to verify that a given path is a solution.

If you want to add heuristics (or even breadth-first searghl, need an explicit queue.
The algorithms become quite similar to the versions writtehisp or Python or Java or in
pseudo-code in the book.
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9.19
a. Results from forward chaining:

(i) Ancestor(Mother(y), John): Yes,{y/John} (immediate).
(i) Ancestor(Mother(Mother(y)), John): Yes,{y/John} (second iteration).
(iii)y Ancestor(Mother(Mother(Mother(y))), Mother(y)): Yes,{} (second itera-
tion).
(iv) Ancestor(Mother(John), Mother(Mother(John))): Does not terminate.

b. Although resolution is complete, it cannot prove this hesesit does not follow. Nothing
in the axioms rules out the possibility of everything beihg aancestor of everything
else.

c. Same answer.

9.20

a. dp Vq S(p.q) & —5(¢.9).
b. There are two clauses, corresponding to the two directidtise implication.
C1:-S(Skl,q) v =S(q, q).
C2: S(Skl,q) Vv S(q,q).
c. Applying factoring to C1, using the substitutigiiSk1 gives:
C3: —~S(Skl1, Sk1).
Applying factoring to C2, using the substitutigriSk1 gives:
C4: S(Sk1, Sk1).
Resolving C3 with C4 gives the null clause.

9.21 This question tests both the student’s understanding ofutsn and their ability to
think at a high level about relations among sets of senteri®esall that resolution allows one
to show that' B = « by proving that B A -« is inconsistent. Suppose that in general the
resolution system is called usings&(K B, a). Now we want to show that a given sentence,
say( is valid or unsatisfiable.

A sentences is valid if it can be shown to be true without additional infaation. We
check this by calling Ak(K By, 3) where K By is the empty knowledge base.

A sentences that is unsatisfiable is inconsistent by itself. So if we gntpe knowl-
edge base again and calBA(K By, —3) the resolution system will attempt to derive a con-
tradiction starting from——gG. If it can do so, then it must be that—3, and hences, is
inconsistent.

9.22 There are two ways to do this: one literal in one clause thabisplementary to two
different literals in the other, such as

P(x) —P(a)V —P(b)
or two complementary pairs of literals, such as

P(2) v Q(z) —P(a)V-Q(b).
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Note that this does not work in propositional logic: in thesfficase, the two literals in the
second clause would have to be identical; in the second tesesmaining unresolved com-
plementary pair after resolution would render the resuéiddlogy.

9.23 This is a form of inference used to show that Aristotle’s @gikms could not capture
all sound inferences.

a. Vx Horse(x) = Animal(x)
Va,h Horse(x) N HeadOf(h,x) = 3y Animal(y) N HeadO f(h,y)
b. A. —=Horse(zx)V Animal(x)
B. Horse(G)
C. HeadOf(H, Q)
D. = Animal(y) vV —HeadO f(H,y)
(Here A. comes from the first sentenceanwhile the others come from the secord.
andG are Skolem constants.)
c. ResolveD andC to yield —Animal(G). Resolve this withA to give —~Horse(G).
Resolve this withB to obtain a contradiction.

9.24 This exercise tests the students’ understanding of modelsnaplication.

a. (A) translates to “For every natural number there is sonmemohatural number that is
smaller than or equal to it.” (B) translates to “There is atipatar natural number that
is smaller than or equal to any natural number.”

b. Yes, (A) is true under this interpretation. You can alwaigk phe number itself for the
“some other” number.

c. Yes, (B) is true under this interpretation. You can pick © tlee “particular natural
number.”

d. No, (A) does not logically entail (B).

e. Yes, (B) logically entails (A).

f. We want to try to prove via resolution that (A) entails (Bd. do this, we set our knowl-
edge base to consist of (A) and the negation of (B), which wicail (-B), and try to
derive a contradiction. First we have to convert (A) and ¢@ganonical form. For (-B),
this involves moving the- in past the two quantifiers. For both sentences, it involves
introducing a Skolem function:

(A) x> Fi(z)

(-B) ~F2(y) > y
Now we can try to resolve these two together, but the occweslclules out the unifica-
tion. It looks like the substitution should Be/ F5(y), y/Fi(x)}, but that is equivalent
to {z/Fs(y), y/Fi1(F2(y))}, which fails becausg is bound to an expression contain-
ing y. So the resolution fails, there are no other resolutionsstepry, and therefore (B)
does not follow from (A).

g. To prove that (B) entails (A), we start with a knowledge basataining (B) and the
negation of (A), which we will call (-A):

(-A) ~F1 >y
B)z > Fy
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This time the resolution goes through, with the substitufje/F;, y/F>}, thereby
yielding False, and proving that (B) entails (A).

9.25 One way of seeing this is that resolution allows reasoningdses, by which we can
prove C' by proving that eitherd or B is true, without knowing which one. If the query
contains a variable, we cannot prove that gaticular instantiation gives a fact that is
entailed. With definite clauses, we always have a singlenabfainference, for which we can
follow the chain and instantiate variables; the solutioaligays a single MGU.

9.26 Not exactly. Part of the definition of algorithm is that it mmsrminate. Since there
can be an infinite number of consequences of a set of senfamece@dgorithm can generate
them all. Another way to see that the answer is no is to remethbeentailment for FOL is
semidecidable. If there were an algorithm that generateséh of consequences of a set of
sentences, then when given the task of decidinghfis entailed byS, one could just check
if B isinthe generated set. But we know that this is not posdibégefore generating the set
of sentences is impossible.

If we relax the definition of “algorithm” to allow for prograsithatenumeratehe con-
sequences, in the same sense that a program can enumernagtutad numbers by printing
them out in order, the answer is yes. For example, we can enatenthem in order of the
deepest allowable nesting of terms in the proof.



Solutions for Chapter 10
Classical Planning

10.1 Both problem solver and planner are concerned with gettingnfa start state to a
goal using a set of defined operations or actions, typically deterministic, discrete, observ-
able environment. In planning, however, we open up the sgmtation of states, goals, and
plans, which allows for a wider variety of algorithms thatdmpose the search space, search
forwards or backwards, and use automated generation oistiedtnctions.

10.2 This is an easy exercise, the point of which is to understaat“applicable” means
satisfying the preconditions, and that a concrete actigtairce is one with the variables
replaced by constants. The applicable actions are:

Fly
Fly
Fly
Fly

Py, JFK , SFO)
P, JFK, JFK)
Py, SFO, JFK)
Py, SFO, SFO)

P

A minor point of this is that the action of flying nowhere—froome airport to itself—is
allowable by the definition ofy, and is applicable (if not useful).

10.3 This exercise is intended as a fairly easy exercise in dgagria domain.

a. The initial state is:

At(Monkey, A) N At(Bananas, B) A\ At(Box,C) A
Height(Monkey, Low) A Height(Box, Low) A\ Height(Bananas, High) A
Pushable(Box) N\ Climbable(Box)
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b. The actions are:

Action(ACTION:Go(x,y), PRECOND: At(Monkey, x),
EFFECT At(Monkey,y) N ~(At(Monkey,x)))
Action(ACTION: Push(b, x,y), PRECOND: At(Monkey, x) A Pushable(b),
EFFECT At(b, y) N At(Monkey,y) A —At(b, z) N ~At(Monkey,x))
Action(ACTION:ClimbUp(b),
PRECOND: At(Monkey, ) A At(b, z) A Climbable(b),
EFFECT.On(Monkey,b) A ~Height(Monkey, High))
Action(ACTION:Grasp(b),
PRECOND: Height(Monkey, h) A Height(b, h)
N At(Monkey,x) N At(b, z),
EFFECT. Have(Monkey, b))
Action(ACTION:ClimbDown(b),
PRECOND.On(Monkey,b) A Height(Monkey, High),
EFFECT.—~On(Monkey,b) A ~Height(Monkey, High)
N Height(Monkey, Low)
Action(ACTION:UnGrasp(b), PRECOND: Have(Monkey, b),
EFFECT.~Have(Monkey,b))

c¢. In situation calculus, the goal is a stateuch that:
Have(Monkey, Bananas,s) A (3x At(Box,z,s0) N At(Boz,z,s))

In STRIPS we can only talk about the goal state; there is no way of ssring the fact
that there must be some relation (such as equality of latati@n object) between two
states within the plan. So there is no way to represent thas go

d. Actually, we did include thé®ushable precondition in the solution above.

10.4 The actions are quite similar to the monkey and bananasegmeblyou should proba-
bly assign only one of these two problems. The actions are:

Action(ACTION:Go(z,y), PRECOND. At(Shakey, x) A In(z,r) A In(y,r),
EFFeCT At(Shakey,y) N —~(At(Shakey, x)))
Action(ACTION: Push(b, z,y), PRECOND: At(Shakey, x) A Pushable(b),
EFFECT At(b,y) A At(Shakey,y) N —At(b,x) N ~At(Shakey, x))
Action(ACTION:ClimbUp(b), PRECOND. At(Shakey, x) A At(b, z) A Climbable(b),
EFFECT.On(Shakey,b) A —On(Shakey, Floor))
Action(ACTION:ClimbDown(b), PRECOND:On(Shakey, b),
EFFECT.On(Shakey, Floor) N ~On(Shakey, b))
Action(ACTION: TurnOn(l), PRECOND:On(Shakey,b) A At(Shakey,x) N At(l, x),
EFFECT. TurnedOn(l))
Action(ACTION:TurnO f f(1), PRECOND:On(Shakey,b) A At(Shakey, z) N At(l, x),
EFFECT —TurnedOn(l))
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The initial state is:

In(Switchy, Roomy) A In(Doory, Roomy) A In

) ( ) Doory, Corridor
In(Switchy, Rooms) A In(Doory, Rooms) A In

) ( )

) )

Doors, Corridor
Doors, Corridor
Doory, Corridor

(
In(Switchy, Rooms) A In(Doors, Rooms) A In
In(Switchy, Roomy) A In(Doory, Roomy) A In
In(Shakey, Rooms) A\ At(Shakey, Xg)
In(Box1, Roomy) A In(Boxy, Roomy) A In(Boxs, Room1) A In(Boxy, Roomy)
Climbable(Box1) A Climbable(Boxz) A Climbable( Boxs) A Climbable(Boxy)
Pushable(Box1) N Pushable(Boxa) A Pushable(Boxs) A Pushable(Boxy)
At(Box1,X1) N\ At(Boxa, X2) N At(Boxs, X3) A At(Boxy, X4)
TurnwdOn(Switchy) A TurnedOn(Switchy)

A plan to achieve the goal is:

Go(Xg, Doors)

Go(Doors, Doory)
Go(Doory, X2)

Push(Boxa, Xo, Doory)
Push(Boxs, Doory, Doors)
Push(Boxa, Doory, Switchs)

)
)
)
)

e e R N

10.5 One representation is as follows. We have the predicates:

a. HeadAt(c): tape head at cell locatiaon true for exactly one cell.

. State(s): machine state is, true for exactly one cell.

ValueOf (¢, v): cell ¢'s value isv.

d. LeftOf (c1,c2): cell ¢y is one step left from celt,.

. TransitionLeft(s1,v1, $2,v2): the machine in state; upon reading a cell with value
v1 may write valuev, to the cell, change state tg, and transition to the left.

f. TransitionRight(s1,v1, s2,v2): the machine in state; upon reading a cell with value

v1 may write valuev, to the cell, change state tg, and transition to the right.

o T

(0]

The predicatedfeadAt, State, and ValueOf are fluents, the rest are constant descrip-
tions of the machine and its tape. Two actions are required:

Action(RunLeft(s1,c1,v1,, S2,C2,02),
PRECOND: State(s1) A HeadAt(c1) A ValueOf (¢1,v1)
; A TransitionLeft(s1, v1, S2,v2) A LeftOf (ca,¢1)
EFFECT. —State(s1) A State(s2) A ~HeadAt(c1) N HeadAt(cz)
A= ValueOf (¢1,v1) A ValueOf (c1,v9))

Action(RunRight(s1,c1,v1,, S2,C2,V2),
PRECOND: State(s1) A HeadAt(c1) A ValueOf (¢1,v1)
; A TransitionRight(s1,v1, s2,v2) A LeftOf (¢1, c2)
EFFECT.—State(s1) A State(sa) A —~HeadAt(c1) A HeadAt(co)
A= ValueOf (c1,v1) A ValueOf (¢1,v2))
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The goal will typically be to reach a fixed accept state. A devgxample problem is:

Init(HeadAt(Cy) A State(S1) A ValueOf (Cy, 1) A ValueOf (Cy,1)
A ValueOf (Ca,1) A ValueOf (Cs,0) A LeftOf (Co, C1) A LeftOf (Cy, Ca)
NLeftOf (Cq, C3) A TransitionLeft(S1,1,51,0) A TransitionLeft(S1,0, Saccept, 0)
Goal(State(Saccept))
Note that the number of literals in a state is linear in the banof cells, which means a
polynomial space machine require polynomial state to sk

10.6 Goals and preconditions can only be positive literals. Segative effect can only
make it harder to achieve a goal (or a precondition to an a¢tiat achieves the goal). There-
fore, eliminating all negative effects only makes a problessier. This wouldhot be true if
negative preconditions and goals were allowed.
10.7 The initial state is:

On(B,Table) AN On(C, A) A On(A, Table) A Clear(B) A Clear(C)
The goal is:

On(A,B) AN On(B,C)

First we'll explain why it is an anomaly for a noninterleaveldnner. There are two subgoals;
suppose we decide to work @mn (A, B) first. We can cleaC off of A and then moved
on to B. But then there is no way to achie¢ (B, C') without undoing the work we have
done. Similarly, if we work on the subgoéin(B, C) first we can immediately achieve it in
one step, but then we have to undo it to gedn B.

Now we’ll show how things work out with an interleaved plansech as POP. Since
On(A, B) isn't true in the initial state, there is only one way to aekiét: Move(A, z, B),
for somezx. Similarly, we also need afove(B,2’,C) step, for somer’. Now let’s look
at the Move(A, z, B) step. We need to achieve its preconditiOtear(A). We could do
that either withMove(b, A,y) or with MoveT oTable(b, A). Let's assume we choose the
latter. Now if we bindb to C, then all of the preconditions for the stépoveT 0T able(C, A)
are true in the initial state, and we can add causal links émthWe then notice that there
is a threat: theMove(B,2’,C) step threatens th€lear(C') condition that is required by
the MoveToTable step. We can resolve the threat by orderibpve(B, 2’, C) after the
MoveToTable step. Finally, notice that all the preconditions fatove(B, z’, C') are true in
the initial state. Thus, we have a complete plan with all trecpnditions satisfied. It turns
out there is a well-ordering of the three steps:

MoveToTable(C, A)
Move(B, Table,C)
Move(A, Table, B)

10.8 Briefly, the reason is the same as for forward search: in tiserade of function sym-
bols, a PDDL state space is finite. Hence any complete selyatithm will be complete for
PDDL planning, whether forward or backward.

10.9 The drawing is actually rather complex, and doesn't fit welltbis page. Some key
things to watch out for: (1) Botl#ly and Load actions are possible at levdl; the planes
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can still fly when empty. (2) Negative effects appeafin and are mutex with their positive
counterparts.

10.10

a. Literals are persistent, so if it does not appear in the fmadl, it never will and never
did, and thus cannot be achieved.

b. In a serial planning graph, only one action can occur pee titep. The level cost (the
level at which a literal first appears) thus represents thermim number of actions in
a plan that might possibly achieve the literal.

10.11 The nature of the relaxed problem is described on p.382.

10.12

a. It is feasible to use bidirectional search, because it Bsipbe to invert the actions.
However, most of those who have tried have concluded tharéadional search is
generally not efficient, because the forward and backwaadckes tend to miss each
other. This is due to the large state space. A few planneck, sl RoODIGY (Fink and
Blythe, 1998) have used bidirectional search.

b. Again, this is feasible but not popular. RBDIGY is in fact (in part) a partial-order
planner: in the forward direction it keeps a total-ordemplaquivalent to a state-based
planner), and in the backward direction it maintains a seaetured partial-order plan.

c. An action A can be added if all the preconditions dfhave been achieved by other
steps in the plan. Whea is added, ordering constraints and causal links are alsedcadd
to make sure thatl appears after all the actions that enabled it and that a pd#tan
is not disestablished beforgé can be executed. The algorithm does search forward, but
itis not the same as forward state-space search becausecijglore actions in parallel
when they don’t conflict. For example, 4f has three preconditions that can be satisfied
by the non-conflicting action®, C, and D, then the solution plan can be represented
as a single partial-order plan, while a state-space planoatd have to consider ajl!
permutations o3, C', andD.

10.13 A forward state-space planner maintains a partial planithatstrict linear sequence
of actions; the plan refinement operator is to add an appécattion to the end of the se-
quence, updating literals according to the action’s effect

A backward state-space planner maintains a partial plangtereversed sequence of
actions; the refinement operator is to add an action to thanbieg of the sequence as long
as the action’s effects are compatible with the state atd¢igenning of the sequence.

10.14
a. We can illustrate the basic idea using the axiom given. Ss@pghatShoot! is true
but HaveArrow® is false. Then the RHS of the axiom is false, BoveArrow'™! is
false, as we would hope. More generally, if an action preitmnrdis violated, then
both ActionCausesF* and ActionCausesNotF! are false, so the generic successor-
state axiom reduces to

F'' o False v (F' A True) .
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which is the same as sayidgt! < F, i.e., nothing happens.

b. Yes, the plan plus the axioms will entail goal satisfactithre axioms will copy every
fluent across an illegal action and the rest of the plan willlwbrk. Note that goal
entailment is trivially achieved if we add precondition @xis, because then the plan is
logically inconsistent with the axioms and every sentesentailed by a contradiction.
Precondition axioms are a way poeventillegal actions in satisfiability-based planning
methods.

c. No. As written in Section 10.4.2, the sucessor-state agipraclude proving anything
about the outcome of a plan with illegal actions. WHesss(a, s) is false, the axioms
say nothing about the situation resulting from the action.

10.15 The main point here is that writing each successor-statenaxiorrectly requires
knowingall the actions that might add or delete a given fluent; writingTR S axiom, on
the other hand, requires knowiidj the fluents that a given action might add or delete.

Poss(Fly(p, from,to),s) <

a At(p, from, s) A Plane(p) A Airport(from) A Airport(to) .
Poss(a,s) =
b (At(p, to, Result(a, s)) <

(3 from a= Fly(p, from,to)) V
(At(p, to,s) N =T new new # to N a= Fly(p, to, new))) .
¢. We must add the possibility axiom for the new action:

Poss(Teleport(p, from, to),s) <
At(p, from,s) A = Warped(p, s) A Plane(p) N\ Airport(from) A Airport(to) .
The successor-state axiom for location must be revised:
Poss(a,s) =
(At(p, to, Result(a,s)) <
(3 from a= Fly(p, from,to)) V
(3 from a= Teleport(p, from, to)) V
(At(p, to,s) N —=Inew new # to A
(a= Fly(p, to, new) V a = Teleport(p, to, new)))) .

Finally, we must add a successor-state axiomiarrped:
Poss(a,s) =
(Warped (p, Result(a, s)) <
(I from,to a= Teleport(p, from,to)) V Warped(p,s)) .

d. The basic procedure is essentially given in the descriptib classical planning as
Boolean satisfiability in 10.4.1, except that there is nougding step, the precondi-
tion axioms become definitions ¢foss for each action, and the successor-state axioms
use the structure given in 10.4.2 with existential quamgffer all free variables in the
actions, as shown in the examples above.

10.16
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a. Yes, this will find a plan whenever the normal SAIAN finds a plan no longer than

b.

Tmaa:-
This will not cause SATPAN to return an incorrect solution, but it might lead to plans
that, for example, achieve and unachieve the goal severakti

There is no simple and clear way to induceM SAT to find short solutions, because
it has no notion of the length of a plan—the fact that the grobls a planning problem

is part of the encoding, not part of Wk SAT. But if we are willing to do some rather
brutal surgery on WLK SAT, we can achieve shorter solutions by identifying the-var
ables that represent actions and (1) tending to randomiiialime the action variables

(particularly the later ones) to false, and (1) preferriagandomly flip an earlier action

variable rather than a later one.
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Planning and Acting in the Real
World

11.1 The simplest extension allows for maintenance goals thigt inahe initial state and
must remain true throughout the execution of the plan. Safedls (do no harm) are typically
of this form. This extends classical planning problems toval maintenance goal. A plan
solves the problem if the final state satisfies the regulaisgaad all visited states satisfy the
maintenance goal.

The life-support example cannot, however, be solved by tefplan. An extension to
infinite plans can capture this, where an infinite plan solvetanning problem if the goal is
eventually satisfied by the plan, i.e., there is a point aiteich the goal is continuously true.
Infinite solutions can be described finitely with loops.

For the chandelier example we can allow NoOp actions whichadbing except model
the passing of physics. The idea is that a solution will haviaite prefix with an infinite
tail (i.e., a loop) of NoOps. This will allow the problem spfézation to capture the insta-
bility of a thrown chandelier, as after a certain number pfdisteps it would no longer be
suspended.

11.2 We first need to specify the primitive actions: for movemerm mave Forward (t),
TurnLeft(t), and TurnRight (t) wheret is a truck, and for package delivery we haue:d (p, t)
and Unload (p, t) wherep is a package ands a truck. These can be given PDDL descriptions
in the usual way.

The hierarchy can be built in a number of ways, but one is taheselLA Nagivate(t, [z, y])
to take a trucki to coordinategz, y|, and Deliver(t, p) to deliver package to its destina-
tion with truck¢. We assume the fluentt (o, [z, y]) for trucks and packagesrecords their
current positionz, y], the predicateDestination(p, [z',y']) gives the package’s destination.

This hierarchy (Figure S11.1) encodes the knowledge tliaks can only carry one
package at a time, that we need only drop packages off atdbsimations not intermediate
points, and that we can serialize deliveries (in realityclks would move in parallel, but we
have no representation for parallel actions here). Fronghdrilevel, the hierarchy says that
the planner needs only to choose which trucks deliver whatkages in what order, and
trucks should navigate given their destinations.

11.3 To simplify the problem, we assume that at most one refinefeahigh-level action
will be applicable at a given time (not much of a restrictiamce there is a unique solution).
The algorithm shown below maintains at each point the netgmditions and effects
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Refinement(Deliver(t, p),
PRECOND: Truck(t) A Package(p) N At(p, [z,y]) A Destination(p, [z’,y'])
STEPS [Navigate(t, [x,y]), Load(p,t), Navigate(t, [',y']), Unload(p,t)])
Refinement(Navigate (¢, [z,y]),
PRECOND: Truck(t) A At(t, [z,y])
STEPS [])
Refinement(Navigate(t, [z,y]),
PRECOND: Truck(t)
STEPS [Forward(t), Navigate(t, [z,y])] )
Refinement(Navigate (¢, [z,y]),
PRECOND: Truck(t)
STEPS [TurnLeft(t), Navigate(t, [x,y])] )
Refinement(Navigate(t, [z,y]),
PRECOND: Truck(t)
STEPS [TurnRight(t), Navigate(t, [z, y])] )

Figure S11.1 Truck hierarchy.

of the prefix ofh processed so far. This includes both preconditions andtsft# primitive
actions, and preconditions of refinements. Note that aayalitnot in effect is untouched by
the prefix currently processed.

net_preconditions <- {}
net_effects <- {}
remaining <- [h]

while remaining not empty:
a <- pop remaining

if a is primitive:

add to net_preconditions any precondition of a not in effect s
add to net_effects the effects of action a, first removing an y
complementary literals
else:
r <- the unique refinement whose preconditions do not includ e
literals negated in net_effect or net_preconditions
add to net_preconditions any preconditions of r not in effec t

prepend to remaining the sequence of actions in r

11.4 We cannot draw any conclusions. Just knowing that the ogticnieachable set is
a superset of the goal is no more help than knowing only thattérsects the goal: the
optimistic reachable set only guarantees that we cannohr&ates outside of it, not that we
can reach any of the states inside it. Similarly, the pessimieachable set only says we can
definitely reach state inside of it, not that we cannot redates outside of it.

11.5 To simplify, we don't model HLA precondition tests. (Comipay the preconditions
to the optimistic and pessimistic descriptions can sormegichetermine if preconditions are
definitely or definitely not satisfied, respectively, but niegyinconclusive.)
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The operation to propagate 1-CNF descriptions throughrgesmns is the same for
optimistic and pessimistic descriptions, and is as foltows

state <- initial state

for each HLA h in order:
for each literal in the description of h:
choose case depending on form of literal:

+l: state <- state - {-I} + {}}
-I: state <- state - {I} + {-I}
poss add I state <- state + {l}
poss del I state <- state + {-I}

poss add del |: state <- state + {I,-I}

description <- conjunction of all literals which are
not part of a complementary pair in state

11.6 The natural nondeterministic generalization af®aTION, USE, and GONSUME rep-
resents each as amterval of possible values rather than a single value. Algorithnas work
with quantities can all be modified relatively easily to mgaantervals over quantities—for
example, by representing them as inequalities for the Iamerupper bounds. Thus, if the
agent starts with 10 screws and the first action in a plan ¢oasi2—4 screws, then a second
action requiring 5 screws is still executable.

When it comes to conditional effects, however, the fieldstrivestreated differently.
The UsE field refers to a constraint holdinduring the action, rather thaafter it is done.
Thus, it has to remain a separate field, since it is not treatdte same way as an effect. The
DURATION and GoNsUME fields both describe effects (on the clock and on the quaotity
resource); thus, they can be folded into the conditiona@atfflescription for the action.

11.7 We need one actiom ssign, which assigns the value in the source register (or variable
if you prefer, but the term “register” makes it clearer that are dealing with a physical
location) s to the destination registeir:
Action(ACTION: Assign(dr, sr),
PRECOND: Register(dr) A Register(sr) A Value(dr, dv) A Value(sr, sv),
EFFeCT. Value(dr, sv) A =V alue(dr, dv))

Now suppose we start in an initial state witlagister(R1)ARegister(Ra) AV alue(Ry, Vi)A
Value(Rs,V5) and we have the godalue( Ry, Va) A Value(Rg, V7). Unfortunately, there
is no way to solve this as is. We either need to add an exgtieitister(R3) condition to the
initial state, or we need a way to create new registers. Tdwaltldoe done with an action for
allocating a new register:

Action(ACTION: Allocate(r),

EFFECT. Register(r))

Then the following sequence of steps constitues a valid plan

Allocate(R3)

Assign(Rs, Ry)
Assign(Rq, Rs)
Assign(Ra, Ry)
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11.8 Flip can be described using conditional effects:

Action(Flip,
EFFeECTwhen L: =L Awhen—L: L) .

To see that a 1-CNF belief state representation stays 1-Gi&F Eip, observe that
there are three cases. lIfis true in the belief state, then it is false aftélip; conversely if it
is false. Finally, ifL is unknown before, then it is unknown after: eitdepr —L can obtain.
All other components of the belief state remain unchangedest is 1-CNF.

11.9 Using the second definition @fiecar in the chapter—namely, that there is a clear space
for a block—the only change is that the destination remaieardf it is the table:

Action(Move(b, z,y),
PRECOND.On(b, z) A Clear(b) A Clear(y),
EFFECT.On(b,y) A Clear(x) A =On(b,z) A (Wheny # Table: =Clear(y)))

11.10 LetCleanH be true iff the robot’s current square is clean @id¢anO be true iff the
other square is clean. Théhck is characterized by

Action(Suck, PRECOND:, EFFECT.CleanH)
Unfortunately, moving affects these new literals! Herft we have

Action(Left, PRECOND: AtR,
EFFECT AtL A - AtR AwhenCleanH: CleanO A whenCleanO: CleanH
Awhen—-CleanO: =CleanH N when—CleanH: —-CleanO)

with the dual forRight.

11.11 The main thing to notice here is that the vacuum cleaner megsatedly over dirty
areas—presumably, until they are clean. Also, each forwaode is typically short, followed
by an immediate reversing over the same area. This is exgaaimterms of a disjunctive
outcome: the area may be fully cleaned or not, the reversiagles the agent to check, and
the repetition ensures completion (unless the dirt is iingd). Thus, we have a strong cyclic
plan with sensing actions.

11.12 One solution plan i§Test, if Culture Growththen[Drink, M edicate]].



Solutions for Chapter 12
Knowledge Representation

12.1 Sortal predicates:
Player(p)
Mark(m)
Square(q)

Constants:
Xp, Op: Players.
X, 0, Blank: Marks.
Q11,Q12...(Q33: Squares.
S0: Situation.
Atemporal:
MarkO f(p): Function mapping player p to his/her mark.
Winning(ql, q2,q3): Predicate. Squared, ¢2, g3 constitute a winning position.
Opponent(p): Function mapping player to his opponent.
Situation Calculus:
Result(a, s).
Poss(a, s).
State:
TurnAt(s): Function mapping situationto the player whose turn it is.
Marked(q, s): Function mapping squargand situations to the mark ing at s.
Wins(p, s). Playerp has won in situatioss.
Action:
Play(p, q): Function mapping player and square to the action ofpp markinggq.
Atemporal axioms:
Al. MarkOf(Xp)=X.
A2. MarkOf(Op)=0.
A3. Opponent(Xp) = Op.
A4. Opponent(Op) = Xp.
A5.Vp Player(p) < p=XpV p=_0p.
A6.Vm Mark(m) <& m=XVm=0V m=Blank.
A7.Yq Square(q) & ¢=Q11V q¢=Q12V ...V ¢=Q33.
A8.VYql,q2,q3 WinningPosition(ql,q2,q3) <
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[q1=Q11 AN q2=Q12 A ¢3=Q13]V
[q1=0Q21 A q2=Q22 A g3 =Q23]V
... (Similarly for the other six winning positiong
[q1=Q31 A q2=0Q22 A ¢3=Q13].
Definition of winning:

A9.Vp,s Wins(p,s) <
dql,q2,q3 WinningPosition(ql,q2,q3)A
MarkAt(ql,s) = MarkAt(q2,s) = MarkAt(¢3,s) = MarkO f(p)

Causal Axioms:
A10.Vp,q Player(p) A Square(q) =
MarkAt(q, Result(Play(p, q),s)) = MarkO f(p).
All.Vp,a,s TurnAt(p,s) = TurnAt(Opponent(p), Result(a,s)).

Precondition Axiom:
Al12. Poss(Play(p,q),s) = TurnAt(s)=p A MarkAt(q,s) = Blank.
Frame Axiom: Al13. q1 # ¢q2 = MarkAt(ql, Result(Play(p, q2),s)) = MarkAt(ql, s).
Unique names:
Al4. X # O # Blank.
(Note: the unique property on playeksp # Op follows from Al4, Al, and A2.)

A15-A50. For each, j, k, m between 1 and 3 such that eithieg k or j # m assert
the axiomQij # Qkm.

Note: In many theories it is useful to posit unigue namesragidetween entities of
different sorts e.g¥p,q Player(p) A Square(q) = p # q. In this theory these are not
actually necessary; if you want to imagine a circumstancehiich player Xp is actually
the same entity as squafg23 or the same as the actidiay(X p, Q23) there is no harm in
it.

12.2 This exercise and the following two are rather complex, ppghsuitable for term
projects. At this point, we want to strongly urge that you dsign some of these exercises
(or ones like them) to give your students a feeling of whasiteally like to do knowl-
edge representation. In general, students find classifichierarchies easier than other rep-
resentation tasks. A recent twist is to compare one’s hibgawith online ones such as
yahoo.com .

12.3 A plausible language might contain the following primitve
Temporal Predicates:

Poss(a, s) — Predicate: Actiom is possible in situatior. As in section 10.3
Result(a, s) — Function from actiorn and situations to situation. As in section
10.3.

Arithmetic: z <y, z <y,x+y,0.
Window State:
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Minimized(w, s), Displayed(w, s), Nonexistent(w, s), Active(w, s) — Pred-
icates. In all thesev is a window ands is a situation. (Displayed(w, s)” means
existent and non-minimized; it includes the case wherefall gs actually oc-
cluded by other windows.)

Window Position:
RightEdge(w, s), LeftEdge(w, s), TopEdge(w, s), BottomEdge(w, s): Func-
tions from a windoww and situatiors to a coordinate.

ScreenWidth, Screen Height: Constants.

Window Order:

InFront(wl,w2,s): Predicate. Windowu1 is in front of windoww?2 in situa-
tion s.

Actions:

Minimize(w), MakeVisible(w), Destroy(w), BringToFront(w) — Func-
tions from a windoww to an action.

Move(w, dz, dy) — Move windoww by dx to the left anddy upward. (Quan-
tities dz anddy may be negative.)

Resize(w, dxl, dzxr, dyb, dyt) — Resize windoww by dzl on the left,dzr on
the right,dyb on bottom, andlyt on top.

12.4
a LeftEdge(W1,50) < LeftEdge(W2,S0)A Right Edge(W2,50) < RightEdge(W1,S0)A
TopEdge(W1,50) < TopEdge(W2,S0)\ BottomEdge(W2,50) < BottomEdge(W1,S0)A
InFront(W2,W1,50).
b Vw,s Displayed(w,s) = BottomEdge(w,s) < TopEdge(w, s).
c Vw,s Poss(Create(w),s) = Displayed(w, Result(Create(w), s)).
d Displayed(w,s) = Poss(Minimize(w), s)

12.5 This is the most involved representation problem. It isalé for a group project of
2 or 3 students over the course of at least 2 weeks. Solutlumdd include a taxonomy, a
choice of situation calculus, fluent calculus, or eventwaie for handling time and change,
and enough background knowledge. If a logic programmingesy®r theorem prover is not
used, students might want to write out the proofs for at Isaste of the answers.

12.6 Normally one would assign the preceding exercise in ongasgnt, and then when it
is done, add this exercise (posibly varying the questiofilsat way, the students see whether
they have made sufficient generalizations in their initiabv@er, and get experience with
debugging and modifying a knowledge base.

12.7 Remember that we defined substances soltfiater is a category whose elements
are all those things of which one might say “it's water.” OnieKky part is that the English
language is ambiguous. One sense of the word “water” insligke (“that’s frozen water”),
while another sense excludes it: (“that’s not water—it8”)c The sentences here seem to
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use the first sense, so we will stick with that. It is the sehsagis roughly synonymous with
H>0.

The other tricky part is that we are dealing with objects ttfange (freeze and melt)
over time. Thus, it won't do to say € Liquid, becausav (a mass of water) might be a
liquid at one time and a solid at another. For simplicity, wdl wse a situation calculus
representation, with sentences suchlas € Liquid, s). There are many possible correct
answers to each of these. The key thing is tacbasistentin the way that information is
represented. For example, do not useuid as a predicate on objectslif ater is used as a
substance category.

a. “Water is a liquid between 0 and 100 degrees.” We will trateslthis as “For any
water and any situation, the water is liquid iff and only iéttvater's temperature in the
situation is between 0 and 100 centigrade.”

Vw,s weWater =
(Centigrade(0) < Temperature(w, s) < Centigrade(100)) <
T (w € Liquid, s)

b. “Water boils at 100 degrees.” It is a good idea here to do stwokbuilding. On
page 243 we used/eltingPoint as a predicate applying to individual instances of
a substance. Here, we will defit&Boiling Point to denote the boiling point of all
instances of a substance. The basic meaning of boilingtigtsiances of the substance
becomes gaseous above the boiling point:

S BoilingPoint(c,bp) <
Vr,s t€c =
(Vt T(Temperature(z,t),s) Nt >bp = T(xz € Gas,s))

Then we need only sa§yBoilingPoint(W ater, Centigrade(100)).
c. “The water in John’s water bottle is frozen.”
We will use the constan¥ ow to represent the situation in which this sentence holds.
Note that it is easy to make mistakes in which one assertotiatsome of the water
in the bottle is frozen.
b Vw we Water ANbe WaterBottles AN Has(John, b, Now)
A Inside(w, b, Now) = (w € Solid, Now)
d. “Perrier is a kind of water.”
Perrier C Water

e. “John has Perrier in his water bottle.”
b Yw we Water Nbe Water Bottles AN Has(John, b, Now)
A Inside(w,b, Now) = w € Perrier
f. “All liquids have a freezing point.”
Presumably what this means is that all substances thatcarié lat room temper-
ature have a freezing point. If we usel LiquidSubstance to denote this class of
substances, then we have

Ve RT LiquidSubstance(c) = 3t SFreezingPoint(c,t)
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whereS FreezingPoint is defined similarly taS Boiling Point. Note that this state-
ment is false in the real world: we can invent categories stsctblue liquid” which do

not have a unique freezing point. An interesting exerciseld/de to define a “pure”
substance as one all of whose instances have the same cheonigosition.

g. “Aliter of water weighs more than a liter of alcohol.”
Vw,a we Water A a e Alcohol N Volume(w) = Liters(1)
AVolume(a) = Liters(1) = Mass(w) > Mass(a)
12.8 This is a fairly straightforward exercise that can be dondirect analogy to the cor-
responding definitions for sets.

a. ExhaustivePartDecomposition holds between a set of parts and a whole, saying
that anything that is a part of the whole must be a part of ortee§et of parts.

Vs, w ExhaustivePartDecomposition(s,w) <
(Vp PartOf(p,w) = 3ps pr€s A PartOf(p,p2))

b. PartPartition holds between a set of parts and a whole when the set is digjoihis
an exhaustive decomposition.

Vs,w PartPartition(s,w) <
PartwiseDisjoint(s) A Exhaustive Part Decomposition(s,w)

c. A set of parts isPartwiseDisjoint if when you take any two parts from the set, there
is nothing that is a part of both parts.

Vs PartwiseDisjoint(s) <
Vp1,p2 pLESAP2ESAPL#p2 = —3ps PartOf(ps,p1) A PartO f(ps, p2)

It is not the case thaPartPartition(s, BunchOf(s)) for any s. A sets may consist of
physically overlapping objects, such as a hand and the fingethe hand. In that case,
BunchOf (s) is equal to the hand, butis not a partition of it. We need to ensure that the
elements ok are partwise disjoint:

Vs PartwiseDisjoint(s) = PartPartition(s, BunchOf(s)) .

12.9 Inthe scheme in the chapter, a conversion axiom looks liiee th
Va Centimeters(2.54 x x) = Inches(x) .

“50 dollars” is just$(50), the name of an abstract monetary quantity. For any measoee f
tion such as$, we can extend the use ofas follows:

Vz,y x>y = $(x) > $(y) .
Since the conversion axiom for dollars and cents has
Vo Cents(100 x z) =$(x)

it follows immediately that(50) > Cents(50).
In the new scheme, we must introduce objects whose lengghsoarverted:

YV Centimeters(Length(x)) = 2.54 x Inches(Length(z)) .
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There is no obvious way to refer directly to “50 dollars” o relation to “50 cents”. Again,
we must introduce objects whose monetary value is 50 dataB® cents:

Va,y $(Value(z)) =50 A Cents(Value(y)) =50 = $(Value(z)) > $(Value(y))

12.10 Plurals can be handled byRural relation between strings, e.g.,

”ow

Plural (“computer”, " computers”)

plus an assertion that the plural (or singular) of a namesig alname for the same category:
Ve, s1,s2 Name(si,c) A (Plural(sy, s2) V Plural(s2, s1)) = Name(s2,c)

Conjunctions can be handled by saying that any conjunctiimgds a name for a category if
one of the conjuncts is a name for the category:

Ve,s,s2 Conjunct(sa,s) AN Name(sa,c) = Name(s,c)

where Conjunct is defined appropriately in terms of concatenation. Prob#hbivould be
better to redefingRelevantCategoryName instead.

12.11 Section 12.3 includes a couple of axioms for the wumpus world

Initiates(e, HaveArrow(a),t) < e = Start
Terminates(e, HaveArrow(a),t) < e € Shootings(a)

Here is an axiom for turning; the others are similar albeitrenoomplex. Let the term
TurnRight(a) denote the event category of the agent turning right. We washy about

it that if (say) the agent is facing south up to the beginnifithe action, then it is facing west
after the action ends, and so on.

T(TurnRight(a),i) <
[Fh Meets(h,i) N T(FacingSouth(a),h) =
Clipped (FacingSouth(a),i) N\ Restored(FacingWest(a),1)]

12.12 Starts(IK,LK).
Finishes(PK, LK).
During(LK, LJ).
Meets(LK, PJ).
Overlap(LK, LC).
Before(IK, PK).
During(IK, LJ).
Before(IK,PJ).
Before(IK, LC).
During(PK, LJ).
Meets(PK,PJ).
During(PK,LC).
During(PJ,LJ).



104

Chapter 12. Knowledge Representation

Overlap(LJ, LC).
During(PJ, LC).

12.13 The main difficulty with simultaneous (also called concuatjeevents and actions is
how to account correctly for possible interference. A gotdtig point is the expository pa-
per by Shanahan (1999). Section 5 of that paper shows howrnageaconcurrent actions by
the introduction of additional generic predicatéancels andCanceled, describing circum-
stances in which actions may interfere with each other. Véédaots of “non-cancellation”
assertions using the same predicate-completion trick &sidoessor-state axioms, and the
meaning of cancellation is defined once and for all througlzd@nnection to clipping, restor-
ing, etc.

12.14 For quantities such as length and time, the conversion axsmh as
Centimeters(2.54 x d) = Inches(d)

are absolutes that hold (with a few exceptions) for all timfdhe same is true for conver-
sion axioms within a given currency; for exampléS$(1) = U S¢(100). When it comes to
conversiorbetweercurrencies, we make the simplifying assumption that at avgngtimet
there is a prevailing exchange rate:

T(ExchangeRate (UK £(1),US$(1)) = 1.55,1)
and the rate is reciprocal:

ExchangeRate(UK £(1),US$(1)) = 1/ ExzchangeRate(US$(1), UK £(1)) .
What we cannot do, however, is write

T(UK £(1)=US$(1.55),t)

therebyequatingabstract amounts of money in different currencies. At amgrimoment,
prevailing exchange rates across the world’s currenciesl mot be consistent, and using
equality across currencies would therefore introdudeggcal inconsistency. Instead, ex-
change rates should be interpreted as indicating a wilésgitio exchange, perhaps with some
commission; and exchange rate inconsistency is an opptyrfon arbitrage. A more sophis-
ticated model would include the entity offering the ratenits on amounts and forms of
payment, etc.

12.15 Any objectz is an event, and.ocation(x) is the event that for every subinterval of
time, refers to the place whereis. For example Location(Peter) is the complex event

consisting of his home from midnight to about 9:00 todayntixarious parts of the road, then
his office from 10:00 to 1:30, and so on. To say that an evenkeslfis to say that any two

moments of the event have the same spatial extent:

Ve Fizved(e) <
(Va,b a€ Moments \be Moments N\ Subevent(a,e) N Subevent (b, e)
= Spatial Extent(a) = Spatial Extent (b))
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12.16 Let T'rade(b,z,a,y) denote the class of events where perédrades objecty to
persona for objectz:
T(Trade(b,z,a,y),i) <
T(Owns(b,y), Start(i)) AN T(Owns(a,x), Start(i))A
T(Owns(b,x), End(i)) AT (Owns(a,y), End(i))
Now the only tricky part about defining buying in terms of fireglis in distinguishing a price
(a measurement) from an actual collection of money.

T(Buy(b,xz,a,p),1) < Im Money(m) A Trade(b, z,a,m) A\ Value(m)=p

12.17 There are many possible approaches to this exercise. Thasder the students to
think about doing knowledge representation for real; tosoder a host of complications and
find some way to represent the facts about them. Some of thpdiets are:

« Ownership occurs over time, so we need either a situatideutus or interval-calculus
approach.

» There can be joint ownership and corporate ownership. 3higests the owner is a
group of some kind, which in the simple case is a group of omsque

« Ownership provides certain rights: to use, to resell, i@gway, etc. Much of this is
outside the definition of ownershiper se but a good answer would at least consider
how much of this to represent.

* Own can own abstract obligations as well as concrete abjddtis is the idea behind
the futures market, and also behind banks: when you depatlar in a bank, you
are giving up ownership of that particular dollar in excharigr ownership of the right
to withdraw another dollar later. (Or it could coincidemyaturn out to be the exact
same dollar.) Leases and the like work this way as well. Tigicky in terms of
representation, because it means we have to reify transactf this kind. That is,
Withdraw(person, money, bank, time) must be an object, not a predicate.

12.18 We refer the reader to Faget al. (1995) for several examples of the type of reasoning
needed. Just to get you started: In Game 1, Alice says “| dowiv.” If Carlos had K-K,
and given that Alice can see Bob’s K-K, then she would know Bab and Carlos had all
four kings between them and she would announce A-A. Thezefdarlos does not have K-
K. Then Bob says “I don't know.” If Carlos had A-A, and giveratrBob can see Alice’s
A-A, then he would know that Alice and Carlos had all four abesveen them and he would
announce A-A. Therefore, Carlos does not have A-A. Theee@arlos should announce A-
K.

12.19

A. The logical omniscience assumption is a reasonableiidg@mn. The limiting factor
here is generally the information available to the players, the difficulty of making
inferences.

B. This kind of reasoning cannot be accommodated in a thedtylagical omniscience.
If logical omniscience were true, then every player couldagls figure out the optimal
move instantaneously.
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C. Logical omniscience is a reasonable idealization. Tstsoof getting the information

D.

are almost always much greater than the costs of reasonthgtwi

It depends on the kind of reasoning you want to do. If youtvtameason about the re-
lation of cryptography to particular computational probke then logical omniscience
cannot be assumed, because the assumption entails thabruputational problem
can be solved instantly. On the other hand, if you are willmgdealize the encryp-
tion/decryption as a magical process with no computatitaais, then it may be rea-
sonable to apply a theory with logical omniscience to otlspieats of the theory.

12.20 This corresponds to the following open formula:

Man(zx) A 3 s1,82,83 Son(sy,x) A Son(sa,x) A Son(ss,x)
NS1 # 82 N\ 81 # 83\ 89 # 83
A—3dy,ds,ds Daughter(dy,x) N Daughter(ds,x) A Daughter(ds, x)
Ndy # dy Ndy # d3 Ndy # d3
AYs Son(s,x) = Unemployed(s) N Married(s) A Doctor(Spouse(s))
AYd Daughter(d,z) = Professor(d)A
(Department(d) = Physics V Department(d) = Math) .

12.21 In many Al and Prolog textbooks, you will find it stated plgirthat implications
suffice for the implementation of inheritance. This is trodhe logical but not the practical
sense.

a. Here are three rules, written in Prolog. We actually woueeh many more clauses on

the right hand side to distinguish between different mad#ferent options, etc.

worth(X,575) :- year(X,1973), make(X,dodge), style(X,va n).
worth(X,27000) :- year(X,1994), make(X,lexus), style(X, sedan).
worth(X,5000) :- year(X,1987), make(X,toyota), style(X, sedan).

Tofind the value of JB, given a data base widar(jb,1973) ,make(jb,dodge)
andstyle(jb,van) we would call the backward chainer with the geadrth(jb,D)
and read the value fdb.

The time efficiency of this query i©(n), wheren in this case is the 11,000 entries in
the Blue Book. A semantic network with inheritance wouldadlus to follow a link
from JB to 1973-dodge-van , and from there to follow thevorth slot to find the
dollar value inO(1) time.

. With forward chaining, as soon as we are told the three faotait JB, we add the new

fact worth(jb,575) . Then when we get the quewyorth(jb,D) ,itis O(1) to

find the answer, assuming indexing on the predicate and figsineent. This makes
logical inference seem just like semantic networks excepto things: the logical
inference does a hash table lookup instead of pointer faigwand logical inference
explicitly storesworth statements for each individual car, thus wasting spaceeitth
are a lot of individual cars. (For this kind of applicatiomwever, we will probably
want to consider only a few individual cars, as opposed td.he00 different models.)
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d. If each category has many properties—for example, thefsgaons of all the replace-
ment parts for the vehicle—then forward-chaining on theliogpions will also be an
impractical way to figure out the price of a vehicle.

e. If we have a rule of the following kind:

worth(X,D) :- year-make-style(X,Yr,Mk,St),

year-make-style(Y,Yr,Mk,St), worth(Y,D).
together with facts in the database about some other speeliicle of the same type
as JB, then the quenyorth(jb,D) will be solved inO(1) time with appropriate
indexing, regardless of how many other facts are known athaittype of vehicle and
regardless of the number of types of vehicle.

12.22 When categories are reified, they can have properties addodl objects (such as
Cardinality andSupersets) that do not apply to their elements. Without the distinctie-
tween boxed and unboxed links, the sente@eedinality(SingletonSets, 1) might mean
that every singleton set has one element, or that there wiom@ singleton set.

12.23 Here is an initial sketch of one approach. (Others are plesyiB given object to be
purchased magequire some additional parts (e.g., batteries) to be functionad,taere may
also beoptional extras. We can represent requirements as a relation betareerdividual
object and a class of objects, qualified by the number of thjeguired:

Vo x€ Coolpiz995DigitalCamera = Requires(x, AABattery,4) .

We also need to know that a particular object is compatibée, fills a given role appropri-
ately. For example,

Vx,y x € Coolpiz995DigitalCamera Ay € DuracellAABattery
= Compatible(y, z, AABattery)

Then it is relatively easy to test whether the set of ordergigdats contains compatible re-
quired objects for each object.

12.24 Chapter 23 explains how to use logic to parse text stringseatrdct semantic infor-
mation. The outcome of this process is a definition of whagctsjare acceptable to the user
for a specific shopping request; this allows the agent to dand find offers matching the
user’s requirements. We omit the full definition of the agafthough a skeleton may appear
on the AIMA project web pages.

12.25 Here is a simple version of the answer; it can be elaboratEdfinitum Let the term
Buy(b, z, s, p) denote the event category of buydnuying objectz from sellers for price p.
We want to say about it thattransfers the money tg ands transfers ownership af to b.
T(Buy(b,x,s,p),i) <
T(Owns(s,x), Start(i))A
Im Money(m) A p=Value(m) AT (Owns(b,m), Start(i))A
T(Owns(b,x), End(i)) A T(Owns(s,m), End(i))



Solutions for Chapter 13
Quantifying Uncertainty

13.1 The “first principles” needed here are the definition of ctindial probability, P(X|Y") =
P(X ANY)/P(Y), and the definitions of the logical connectives. It is notwggioto say that
if B A Alis “given” then A must be true! From the definition of conditional probabjligyd
the fact thatd A A < A and that conjunction is commutative and associative, we hav

_ P(AN(BANA)) PBANA)
PAIBAA) = P(BANA)  P(BAA) =1

13.2 The main axiom is axiom 3P(a V b) = P(a) + P(b) — P(a A b). For the discrete
random variableX, let a be the event thak = x;, andb be the event thak has any other
value. Then we have

P(X =21V X = other) = P(X = x1) + P(X = other) +0
where we know thaP(X = 21 A X = other) is O because a variable cannot take on two
distinct values. If we now break down the caseXof= others, we eventually get
PX=x1V---VX=ux,)=PX=x1)+ - +P(X=ua,).

But the left-hand side is equivalent #(true), which is 1 by axiom 2, so the sum of the
right-hand side must also be 1.

13.3

a. True. By the product rule we know (b, c)P(a|b,c) = P(a,c)P(bla,c), which by
assumption reduces #(b, c) = P(a, c). Dividing through byP(c) gives the result.

b. False. The statemeft(a|b,c) = P(a) merely states that is independent of andc,
it makes no claim regarding the dependenceé ahdc. A counter-examplex andb
record the results of two independent coin flips, ard b.

c. False. While the statemet(a|b) = P(a) implies thata is independent o, it does
not imply thata is conditionally independent @fgivenc. A counter-examplea andb
record the results of two independent coin flips, ardjuals the xor ofi andb.

13.4 Probably the easiest way to keep track of what's going on Isdk at the probabil-
ities of the atomic events. A probability assignment to adgbropositions is consistent
with the axioms of probability if the probabilities are c@stent with an assignment to the
atomic events that sums to 1 and has all probabilities betWesnd 1 inclusive. We call the
probabilities of the atomic events b, ¢, andd, as follows:

108
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B|-B
A la
-AlcC

We then have the following equations:

P(A)=a+b=04

P(B)=a+c=03

P(AVB)=a+b+c=0.5

P(True)=a+b+c+d=1
From these, it is straightforward to infer that= 0.2, b = 0.2, ¢ = 0.1, andd = 0.5.
Therefore,P(A A B) = a = 0.2. Thus the probabilities given are consistent with a rationa
assignment, and the probabilily( A A B) is exactly determined. (This latter fact can be seen
also from axiom 3 on page 422.)

If P(AV B) = 0.7, thenP(A A B) = a = 0. Thus, even though the bet outlined in
Figure 13.3 loses ifl and B are both true, the agent believes this to be impossible sbahe
is still rational.

135

a. Each atomic event is a conjunctionrofiterals, one per variable, with each literal either
positive or negative. For the events to be distinct, at least pair of corresponding
literals must be nonidentical; hence, the conjunction ef tlvo events contains the
literals X; and—X; for somei, so the conjunction reduces talse.

b. Proof by induction om. Forn =0, the only event is the empty conjunctidirue, and
the disjunction containing only this event is al®eue. Inductive step: assume the claim
holds forn variables. The disjunction fot 4 1 variables consists of pairs of disjuncts
of the form (7}, A X, 1) V (T, A= X 41) for all possible atomic event conjunctioff.
Each pair logically reduces t6,,, so the entire disjunction reduces to the disjunction
for n variables, which by hypothesis is equivalentfaue.

c. Let o be the sentence in question angd ..., u; be the atomic event sentences that
entail its truth. LetM; be the model corresponding tg (its only model). To prove that
w1 V...V up = «, simply observe the following:

* Becauseu; = «, ais true in all the models ofi;, So« is true inM;.

» The models ofi; V...V uy are exactlyM,, . . . , My, because any two atomic events
are mutually exclusive, so any given model can satisfy attraos disjunct, and
a model that satisfies a disjunct must be the model corregppiid that atomic

event.
« If any modelM satisfiesy, then the corresponding atomic-event senteneatails
«, SO the models of are exactlyM, ..., M.

Hencew andpy V ... V ui have the same models, so are logically equivalent.

13.6 Equation (13.4) states th&t(a VV b) = P(a) + P(b) — P(a A b). This can be proved
directly from Equation (13.2), using obvious abbreviatidar the possible-world probabili-
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ties:
P(a \ b) = Dab T Pa,~b + D-a,p
P(a’) = pa,b +pa,ﬁb
P(b) = Pab T P-ap
P(a A\ b) = pa,b .

13.7 This is a classic combinatorics question that could appearbasic text on discrete
mathematics. The point here is to refer to the relevant agiomprobability: principally,
axiom 3 on page 422. The question also helps students to grasponcept of the joint
probability distribution as the distribution over all pdss states of the world.

a There arg(”’) = (52 x 51 x 50 x 49 x 48)/(1 x 2 x 3 x 4 x 5) = 2,598,960 possible
five-card hands.

b. By the fair-dealing assumption, each of these is equadbhji By axioms 2 and 3, each
hand therefore occurs with probability 1/2,598,960.

c. There are four hands that are royal straight flushes (onadh suit). By axiom 3, since
the events are mutually exclusive, the probability of a Feyaight flush is just the sum
of the probabilities of the atomic events, i.e., 4/2,598,861/649,740. For “four of
a kind” events, There are 13 possible “kinds” and for each,fitth card can be one
of 48 possible other cards. The total probability is themefd3 x 48)/2,598,960 =
1/4,165.

These questions can easily be augmented by more complicaés] e.g., what is the proba-
bility of getting a full house given that you already have tpairs? What is the probability of
getting a flush given that you have three cards of the sam 8uiyou could assign a project
of producing a poker-playing agent, and have a tournamenngrthem.

13.8 The main point of this exercise is to understand the variaations of bold versus
non-bold P, and uppercase versus lowercase variable nahfesrest is easy, involving a
small matter of addition.

a. This asks for the probability thdibothachas true.
P(toothache) = 0.108 4+ 0.012 + 0.016 + 0.064 = 0.2

b. This asks for the vector of probability values for the ramdeariableCavity. It has two
values, which we list in the ordétrue, false). First add ug.108 + 0.012 + 0.072 +
0.008 = 0.2. Then we have

P(Cavity) = (0.2,0.8) .
c. This asks for the vector of probability values fimothachegiven thatCavityis true.

P(Toothache|cavity) = ((.108 +.012)/0.2, (0.072 + 0.008)/0.2) = (0.6, 0.4)
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d. This asks for the vector of probability values f@avity, given that eithefoothacheor
Catchis true. First computé(toothache V catch) = 0.108 +0.012+0.016 + 0.064 +
0.072 4+ 0.144 = 0.416. Then

P(Cavity|toothache V catch) =
((0.108 + 0.012 + 0.072) /0.416, (0.016 + 0.064 + 0.144)/0.416) =
(0.4615,0.5384)

13.9 Leteando be the initial scoresyn be the score required to win, apdbe the probability
that £ wins each round. One can easily write down a recursive foaniod the probability
that £ wins from the given initial state:

1 ife=m
wg(p,e,o,m) =< 0 ifo=m
p-wg(p,e+1,0,m)+ (1 —p)-wg(p,e,o+ 1,m) otherwise
This translates directly into code that can be used to coeningt answer,
wg(0.5,4,2,7) = 0.7734375 .

With a bit more work, we can derive a nonrecursive formula:

mo it m—e—1 -
— pm—e 1
wg(p,e,o,m) =p ;) ( ; >(1 p)’.

Each term in the sum corresponds to the probability of wigrip exactly a particular score;
e.g., starting from 4-2, one can win by 7-2, 7-3, 7-4, 7-5+-6r Each final score requirds
to win exactlym—e rounds while the opponent wins exactlsounds, wheré=0,1, ..., m—
o — 1; and the combinatorial term counts the number of ways thistappen without®
winning first by a larger margin. One can check the nonreear8rmula by showing that
it satisfies the recursive formula. (It may be helpful to segjgo students that they start by
building the lattice of states implied by the above reci$armula and calculating (bottom-
up) the symbolic win probabilities in terms ef rather than 0.5, so that they can see the
general shape emerging.)

13.10

a. To compute the expected payback for the machine, we detertime probability for
each winning outcome, multiply it by the amount that wouldwsm in that instance,
and sum all possible winning combinations. Since each symbegually likely, the
first four cases have probabilityt /4)3 = 1/64.

However, in the case of computing winning probabilitiesdberries, we must only
consider the highest paying case, so we must subtract thmlpity for dominating
winning cases from each subsequent case (e.g., in the case ofierries, we subtract
off the probability of getting three cherries):

CHERRY/CHERRY/? 3/64 = (1/4)? —1/64
CHERRY/?/? 12/64 = (1/4)! —3/64 — 1/64
The expectation is therefore

20-1/64+15-1/64+5-1/64+3-1/64+2-3/64+1-12/64 = 61/64.
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Thus, the expected payback percentage is 61/64 (which sstihesx 1 as we would
expect of a slot machine that was actually generating rexvéomits owner).

. We can tally up the probabilities we computed in the presisection, to get

1/64 + 1/64 + 1/64 4+ 1/64 + 3/64 + 12/64 = 19/64.

Alternatively, we can observe that we win if either all syritbare the same (denote
this eventS), or if the first symbol is cherry (denote this eveti}. Then applying the
inclusion-exclusion identity for disjunction:

P(SVC)=P(S)+P(C)—P(SAC) = (1/4)*+1/4—1/64 = 19/64.

. Using a simple Python simulation, we find a mean of about 268 a median of 21.

This shows the distribution of number of plays is heavy thilmost of the time you run
out of money relatively quickly, but occasionally you last thousands of plays.

import random

def trial():

funds = 10
plays = 0
while funds >= 1:
funds -=1
plays += 1
slots = [random.choice(

['bar", "bell", "lemon", "cherry"])
for i in range(3)]
if slots[0] == slots[1]:
if slots[1] == slots[2]:
num_equal

1
w

else:

1
N

num_equal
else:
num_equal = 1
if slots[0] == "cherry™:
funds += num_equal
elif num_equal ==
if slots[0] == "bar":
funds += 20
elif slots[0] == "bell":
funds += 15
else:
funds += 5
return plays

def test(trials):
results = [trial() for i in xrange(trials)]
mean = sum(results) / float(trials)
median = sorted(results)[trials/2]
print "%s trials: mean=%s, median=%s" % (trials, mean, medi

an)
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test(10000)

13.11 The correct message is received if either zero or one ohthel bits are corrupted.
Since corruption occurs independently with probabilifythe probability that zero bits are
corrupted is(1 — ¢)"*!1. There aren + 1 mutually exclusive ways that exactly one bit can
be corrupted, one for each bit in the message. Each has pligbabl — ¢)", so the overall
probability that exactly one bit is corrupted g (1 — €)™. Thus, the probability that the
correct message is received(is— ¢)" ! + ne(1 — €)".

The maximum feasible value af therefore, is the largest satisfying the inequality

(1—e)"™ +ne(l —e)" >1-06.
Numerically solving this foe = 0.001, § = 0.01, we findn = 147.

13.12 Independence is symmetric (thatdsandb are independent iff anda are indepen-
dent) soP(alb) = P(a) is the same a®(bla) = P(b). So we need only prove th&t(a|b) =
P(a) is equivalent taP(a A b) = P(a)P(b). The product ruleP(a A b) = P(alb)P(b), can
be used to rewrité’(a A b) = P(a)P(b) asP(a|b)P(b) = P(a)P(b), which simplifies to
P(al|b) = P(a).

13.13
Let V' be the statement that the patient has the virus, Aathd B the statements that
the medical testgl and B returned positive, respectively. The problem statemeragyi

P(V) = 0.01
P(A|V) = 0.95
P(A|-V) = 0.10
P(B|V) = 0.90

P(B|-V) = 0.05

The test whose positive result is more indicative of the wineing present is the one whose
posterior probability,P(V|A) or P(V|B) is largest. One can compute these probabilities
directly from the information given, finding thd (V' |A) = 0.0876 and P(V|B) = 0.1538,
so B is more indicative.
Equivalently, the questions is asking which test has thédsg posterior odds ratio
P(V]A)/P(~V]A). From the odd form of Bayes theorem:
P(VIA) _ P(A]V) P(V)

P(=V|A) P(A|=V) P(=V)
we see that the ordering is independent of the probability” pfand that we just need to
compare the likelihood ratio®(A|V)/P(A|-V) = 9.5 and P(B|V)/P(V|-V) = 18 to
find the answer.

13.14
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If the probability « is known, then successive flips of the coin are independeeadt
other, since we know that each flip of the coin will lahelzds with probability . Formally,
if £'1 and F'2 represent the results of two successive flips, we have

P(F1 = heads, F2 = heads|tr) = x x x = P(F'1 = heads|x)P(F2 = heads|x)

Thus, the event$'l = heads andF'2 = heads are independent.

If we do not know the value of, however, the probability of each successive flip is
dependent on the result of all previous flips. The reasonHiw is that each successive
flip gives us information to better estimate the probabiityi.e., determining the posterior
estimate forz given our prior probability and the evidence we see in thetmasent coin
flip). This new estimate of would then be used as our “best guess” of the probability ef th
coin coming upheads on the next flip. Since this estimate foris based on all the previous
flips we have seen, the probability of the next flip cominghgpds depends on how many
heads we saw in all previous flips, making them dependent.

For example, if we had a uniform prior over the probabilitythen one can show that
aftern flips if m of them come up heads then the probability that the next omesap heads
is (m + 1)/(n + 2), showing dependence on previous flips.

13.15 We are given the following information:
P(test|disease) = 0.99
P(—test|~disease) = 0.99
P(disease) = 0.0001

and the observatiotest. What the patient is concerned abouti&disease|test). Roughly
speaking, the reason itis a good thing that the diseasesissrtiratP (diseaseltest) is propor-
tional to P(disease), so a lower prior forlisease will mean a lower value foP (diseaseltest).
Roughly speaking, if 10,000 people take the test, we expecadtually have the disease, and
most likely test positive, while the rest do not have the alisg but 1% of them (about 100
people) will test positive anyway, 98(disease|test) will be about 1 in 100. More precisely,
using the normalization equation from page 480:

P(diseasel|test)
_ P(test|disease) P(disease)
" P(test|disease) P(disease)+ P(test|~disease) P(—disease)
— 0.99x0.0001

" 0.99x0.0001+40.01x0.9999

= .009804

The moral is that when the disease is much rarer than thedestacy, a positive test result
does not mean the disease is likely. A false positive readingains much more likely.

Here is an alternative exercise along the same lines: A dsetys that an infant who
predominantly turns the head to the right while lying on tlelwill be right-handed, and
one who turns to the left will be left-handed. Isabella pradntly turned her head to the
left. Given that 90% of the population is right-handed, wisdsabella’s probability of being
right-handed if the test is 90% accurate? If it is 80% acatrat

The reasoning is the same, and the answer is 50% right-hahtifedtest is 90% accu-
rate, 69% right-handed if the test is 80% accurate.
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13.16 The basic axiom to use here is the definition of conditionabpbility:

a. We have
P(A, B|E) = 7'3(;‘;(?’)@
and
P(A,B,E)P(B,E) P(A,B,E)
P(B,E) P(E)  P(E)

P(A|B, E)P(B|E) =

hence
P(A, B|E) = P(A|B, E)P(BI|E)

b. The derivation here is the same as the derivation of thelsingrsion of Bayes’ Rule
on page 426. First we write down the dual form of the condal@®d product rule,
simply by switchingA and B in the above derivation:

P(A, B|E) = P(B|A,E)P(A|E)
Therefore the two right-hand sides are equal:
P(B|A, E)P(A|E) = P(A|B, E)P(B|E)
Dividing through byP(B|E) we get
P(B|A, E)P(A|E)

P(AIB, B) = == 5rmrm

13.17 The key to this exercise is rigorous and frequent applicatibthe definition of con-
ditional probability, P(X|Y) = P(X,Y)/P(Y). The original statement that we are given
is:

P(A, B|C) = P(A|C)P(B|C)

We start by applying the definition of conditional probatilio two of the terms in this
statement:
P(A, B,C) P(B,C)

P(A,B|C) = 7P(C) P(C)
Now we substitute the right hand side of these definitionstfeleft hand sides in the original
statement to get:

P(A, B,C) P(B,C)

P(C) P(C)

Now we need the definition once more:

P(A,B,C) =P(A|B,C)P(B,C)
We substitute this right hand side B(A, B, C) to get:

P(A|B,C)P(B,C) P(B,C)

P(C) P(C)

Finally, we cancel th@(B, C') andP(C)s to get:

P(A|B,C) = P(A|C)

and P(B|C) =

= P(4|C)

= P(4|C)
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The second part of the exercise follows from by a similarwdgion, or by noticing thatd
and B are interchangeable in the original statement (becausgpiizdtion is commutative
and A, B means the same d3, A).

In Chapter 14, we will see that in terms of Bayesian netwotls,original statement
means that” is the lone parent ofl and also the lone parent éf. The conclusion is that
knowing the values oB andC' is the same as knowing just the value(dfn terms of telling
you something about the value df

13.18

a. A typical “counting” argument goes like this: There aravays to pick a coin, and 2
outcomes for each flip (although with the fake coin, the rssod the flip are indistin-
guishable), so there af total atomic events, each equally likely. Of those, only 2
pick the fake coin, an@ + (n — 1) result in heads. So the probability of a fake coin
given headspP(fake|heads),is2/(2+n—1) =2/(n+1).

Often such counting arguments go astray when the situatts @mplex. It may
be better to do it more formally:

P(Fakelheads) = aP(heads|Fake)P(Fake)
= «(1.0,0.5)(1/n,(n — 1)/n)
= a(l/n,(n —1)/2n)
= (2/(n+1),(n—1)/(n+1))

b. Now there ar@*n atomic events, of which* pick the fake coin, and® + (n—1) result
in heads. So the probability of a fake coin given a rurk ¢feads,P(fake|heads"), is
2k /(2¥ + (n — 1)). Note this approaches 1 &sncreases, as expected klf= n = 12,
for example, tharP(fake|heads'®) = 0.9973.

Doing it the formal way:
P(Fake|heads®) = aP(heads*|Fake)P(Fake)
= a(1.0,0.5%)(1/n, (n —1)/n)
= a(l/n,(n —1)/2%n)
= (2%/(2* +n—1),(n — 1)/(2* +n 1))

¢. The procedure makes an error if and only if a fair coin is emoand turns up heads

times in a row. The probability of this

P(heads®| - fake)P(~fake) = (n —1)/2%n .

13.19 The important point here is that although there are oftenynpassible routes by
which answers can be calculated in such problems, it is lyshatter to stick to systematic
“standard” routes such as Bayes’ Rule plus normalizatiomap@er 14 describes general-
purpose, systematic algorithms that make heavy use of hiazatian. We could guess that
P(S|—=M) = 0.05, or we could calculate it from the information already giefthough the
idea here is to assume th&tS) is not known):

_ P(=MI[S)P(S)  (1—P(M|S))P(S)  0.9998 x 0.05 _
P(S|=M) = P(-M) —  1-P(=M) 099998 0.049991
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Normalization proceeds as follows:

P(M|S) < P(S|M)P(M) = 0.5/50,000 = 0.00001
P(—=M]|S) < P(S|=M)P(—=M) = 0.049991 x 0.99998 = 0.04999
P(M|[S) = 0.000%%%(1)4999 = 0.0002

(

_ .00001 _
P(=M|S) = 0.00001+0.04999 — 0.9998

13.20 Let the probabilities be as follows:

x y z|Px,y,z)
FFF a
FFT b
FTF &
FTT d
T F F e
TFET| f
TTF| g
TTT h

Conditional independence asserts that

PX,Y|Z)=P(X|2)PY |Z)
which we can rewrite in terms of the joint distribution usitige definition of conditional
probability and marginals:

P(X,Y,Z) P(X,Z) P(Y,Z)

PZ)  ~ P@) P
P 2P,z (S,PX.2)) (5, P@. Y. 2)
A 2y P9 7)

Now we instantiateX, Y, Z in all 8 ways to obtain the following 8 equations:

a = (a+c)(at+e)/(a+c+e+g)orag=-ce
b= (b+d)(b+f)/(b+d+f+h)orbh=df
¢ = (a+c)(c+g)/(a+c+e+g)orce=ag
d = (b+d)(d+h)/(b+d+f+h)ordf =bh
e = (e+g)ate)/(a+c+e+g)orce=ag
f=+h)b+f)/b+d+ f+h)ordf =bh
g = (e+g)ct+g)/(a+c+e+g)orag=-ce
h = (f+h)(d+h)/(b+d+ f+h)orbh=df .

Thus, there are only 2 nonredundant equatiagss: ce andbh = df. This is what we would
expect: the general distribution requires- 1 =7 parameters, whereas the Bayes net ith
as root andX andY as conditionally indepednent children requires 1 paranfeteZ and
2 each forX andY’, or 5 in all. Hence the conditional independence assergomores two
degrees of freedom.
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13.21 The relevant aspect of the world can be described by two randoiables:B means
the taxiwasblue, andL B means the taxiooked blue The information on the reliability of
color identification can be written as

P(LB|B)=0.75 P(-LB|-B) =0.75
We need to know the probability that the taxi was blue, givet it looked blue:

P(B|LB) < P(LB|B)P(B) x 0.75P(B)

P(—B|LB) x P(LB|-B)P(—B) x 0.25(1 — P(B))
Thus we cannot decide the probability without some inforamaabout the prior probability
of blue taxis,P(B). For example, if we knew that all taxis were blue, i.B(,B) = 1, then
obviously P(B|LB) = 1. On the other hand, if we adopt Laplac®snciple of Indifference
which states that propositions can be deemed equally likelye absence of any differenti-
ating information, then we havB(B) = 0.5 and P(B|LB) = 0.75. Usually we will have
somedifferentiating information, so this principle does nopap

Given that 9 out of 10 taxis are green, aassuming the taxi in question is drawn
randomly from the taxi populatiorwe haveP(B) = 0.1. Hence

P(B|LB) x 0.75 x 0.1 o 0.075

P(~B|LB) & 0.25 x 0.9 o 0.225
0.075

PEB\LB) = 50750995 — 0-20

_ 250
P(=B|LB) = 0.075+0.225 — 0.75

13.22 This question is essentially previewing material in Chag@ (page 842), but stu-
dents should have little difficulty in figuring out how to estite a conditional probability
from complete data.

a. The model consists of the prior probabil®(Category) and the conditional probabil-
ities P(Word;|Category). For each category, P(Category = c) is estimated as the
fraction of all documents that are of categengimilarly, P(Word; = true|Category = c)
is estimated as the fraction of documents of categdhat contain word.

b. See the answer for 13.17. Here, every evidence variablesereed, since we can tell
if any given word appears in a given document or not.

c. Theindependence assumption is clearly violated in practor example, the word pair
“artificial intelligence” occurs more frequently in any g document category than
would be suggested by multiplying the probabilities of ifestal” and “intelligence”.

13.23 This probability model is also appropriate for Minesweefiex. 7.11). If the total
number of pits is fixed, then the variabl&s; and P}, ; are no longer independent. In general,

P(P; j = true| Py = true) < P(P; ; = true| Py ; = false)

because learning that, ; = true makes it less likely that there is a minejatj] (as there are
now fewer to spread around). The joint distribution placgsat probability on all assign-
ments toP; > ... P, 4 that have exactly 3 pits, and zero on all other assignmeitseS$here
are 15 squares, the probability of each 3-pit assignment(i¥’) = 1/455.
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To calculate the probabilities of pits i, 3] and|[2, 2], we start from Figure 13.7. We
have to consider the probabilities of complete assignmeintse the probability of the “other”
region assignment does not cancel out. We can count thentatalber of 3-pit assignments
that are consistent with each partial assignment in 13af{d)13.7(b).

In 13.7(a), there are three partial assignments With = true:

 The first fixes all three pits, so corresponds to 1 complesgament.

» The second leaves 1 pit in the remaining 10 squares, sospomels to 10 complete
assignments.

» The third also corresponds to 10 complete assignments.

Hence, there are 21 complete assignments With= true.
In 13.7(b), there are two partial assignments Wiy = false:

» The first leaves 1 pit in the remaining 10 squares, so cooredpto 10 complete assign-
ments.
* The second leaves 2 pits in the remaining 10 squares, sespamds tc(120) =45 com-
plete assignments.
Hence, there are 55 complete assignments Wijth= false. Normalizing, we obtain
P(P13) = a(21,55) = (0.276,0.724) .
With P » = true, there are four partial assignments with a total(gf) +2 - (') +

(100) = 66 complete assignments. With » = false, there is only one partial assignment with
(*?) =10 complete assignments. Hence

P(Py5) = a(66,10) = (0.868,0.132) .

13.24 First we redo the calculations d?(frontier) for each model in Figure 13.6. The
three models withP; 3 = true have probabilities 0.0001, 0.0099, 0.0099; the two models
with P, 3 = false have probabilities 0.0001, 0.0099. Then

P(Py 3| known,b) = o (0.01(0.0001 + 0.0099 + 0.0099), 0.99(0.0001 + 0.0099))
~ (0.1674,0.8326) .
The four models withP; ; = true have probabilities 0.0001, 0.0099, 0.0099, 0.9801; the one
model with P, » = false has probability 0.0001. Then
P(P22 | known,b) = o (0.01(0.0001 + 0.0099 + 0.0099 + 0.9801), 0.99 x 0.0001)
~ (0.9902,0.0098) .
This means that [2,2] is almost certain death; a probalsilegent can figure this out and
choose [1,3] or [3,1] instead. Its chance of death at thigestaill be 0.1674, while a log-
ical agent choosing at random among the three squares wilividh probability (0.1674 +
0.9902 + 0.1674)/3 = 0.4416. The reason that [2,2] is so much more likely to be a pit in
this case is that, for ot to be a pit,bothof [1,3] and [3,1] must contain pits, which is very

unlikely. Indeed, as the prior probability of pits tends tate posterior probability of [2,2]
tends to 1.
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13.25 The solution for this exercise is omitted. The main modifaato the agent in Fig-
ure 7.20 is to calculate, after each move, the safety prbtyafor each square that is not
provably safe or fatal, and choose the safest if there is nsited safe square.



Solutions for Chapter 14
Probabilistic Reasoning

14.1

a. With the random variablé€’ denoting which coif{a, b, ¢} we drew, the network has

at the root andX, X5, and X3 as children.

The CPT forC is:

C|P(C)
a|1/3
b |1/3
c|1/3
The CPT forX; givenC are the same, and equal to:
X, P(C)
a | heads|0.2
b |heads|0.6
c |heads|0.8
b. The coin most likely to have been drawn from the bag givéngbquence is the value

of C' with greatest posterior probabiliti’(C'|2 heads, 1 tails Now,

P(C|2 heads, 1 tails = P(2 heads, 1 tail&’)P(C)/P(2 heads, 1 tails
x P(2 heads, 1 tail&)P(C)
x P(2 heads, 1 tailg”)

where in the second line we observe that the constant of piopality 1/P(2 heads, 1 tails

is independent o, and in the last we observe th&{(C) is also independent of the

value ofC' since it is, by hypothesis, equal 1@3.

From the Bayesian network we can see tRat X5, and X3 are conditionally inde-
pendent givert’, so for example
P(Xy = tails, Xo = heads, X3 = heads|C = a)
= P(X; =tails|C = a)P(X3 = heads|C = a)P(X3 = heads|C = a)
= 0.8 x0.2 x 0.2 = 0.032

Note that since the CPTs for each coin are the same, we wotteysame probability

above for any ordering of 2 heads and 1 tails. Since therehage such orderings, we

have

P(2heads, 1tails|C = a) = 3 x 0.032 = 0.096.

121
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Similar calculations to the above find that
P(2heads, 1tails|C = b) = 0.432
P(2heads, 1tails|C = ¢) = 0.384

showing that coirb is most likely to have been drawn.
Alternatively, one could directly compute the value/fC'|2 heads, 1 tails

14.2 This question is quite tricky and students may require &t guidance, particularly
on the last part. It does, however, help them become conblertaith operating on complex
sum-of-product expressions, which are at the heart of gcapmodels.

a. By Equations (13.3) and (13.6), we have
Ply.2) ¥, Py.2)
Ply) Y. Play2)

b. By Equation (14.1), this can be written as

> 0(@)0(y | 2)0(2y)

D e 0(@)0(y | 2)0(' |y)

c. For students who are not familiar with direct manipulat@frsummation expressions,
the expanding-out step makes it a bit easier to see how tdigitie expressions. Ex-
panding out the sums, collecting terms, using the sum-tmfpeauty of the parameters,
and finally cancelling, we have

P(|y) = 0(x)0(y | 2)0(z|y) + 0(—)0(y | ~x)0(z | y)
0(2)0(y | 2)0(z | y)+0(2)0(y | 2)0(=z | y)+0(=2)0(y | 72)0(2 | y)+0(=z)0(y | =x)0(=z | y)
_ 0(z]y) [0()0(y | =) + 0(—z)0(y | ~)]
[0(x)0(y | ) + 0(—z)0(y | ~x)] [0(z]y) + O(—z | y)]
_ 0(z]y) [0(=)0(y | x) + 0(—x)0(y | ~)]
[0(x)0(y | ) + 0(—z)0(y | ~)]
= 0(z]y).

If, instead, students are prepared to work on the summatiosstly, the key step is

moving the sum ovet’ inwards::

6(2]y) ¥, 0(x)0(y|)

PEI) = =m0ty |0 50 0 T9)
_ 0Czly) >, 0(x)0(y| x)
>, 0()0(y | 2)
= 0(z]y) .
(Note that the first printing has a typo, asking &t | y) instead ofd(z | y).)

d. The general case is a bit more difficult—the key to a simptofis figuring out how to
split up all the variables. First, however, we need a lighamina: for any set of variables
V, we have

ST 6G pa(viy) = 1.

P(zly) =

P(zly) =
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This generalizes the sum-to-1 rule for a single variablel, iareasily proved by induc-
tion given any topological ordering for the variablesvn

One of the principal rules for manipulating nested summmatits that a particular
summation can be pushed to the right as long as all occuseafdhat variable remain
to the right of the summation. For this reason, tlescendantsf Z, which we will
call U, are a very useful subset of the variables in the network.ahtiqular, they have
the property that they cannot be parents of any other varigbthe network. (If there
was such a variable, it would be a descendanZdby definition!) We will divide
the variables intoZ, Y (the parents of7), U (the descendants d¢f), andX (all other
variables). We know that variables ¥randY have no parents i@ andU. So we have

> xu (XY, 2, u)
Ex,z/,u P(x,y,?',u)
2ol 0G| pa(X3)) T 0(y; | pa(Y5))0(z | Y) T}, 0(ur | pa(Us))
w0z | pa(X3)) T 0(y; | pa(Y;))0(2" 1Y) [Ty 0 (wr | pa(Ui))
>y 11 0(xi | pa(Xa)) I, 0(y; [ pa(¥;))0(2|y) 32y I, 0(ur | pa(Us))
> x 1L 0(xi | pa(Xa)) I1; 0(y; [ pa(Y;)) 22, 0(2"|Y) 220 Tk 0 (uw | pa(Uk))
(moving the sums in as far as possible)
>y 11 0(xi | pa(X3)) 11, 0(y; | pa(Y;))0(z |y)
> ox 11 0(zi | pa(X3)) I, 0(y; [ pa(Y;)) X2, 0(2' | y)
(using the generalized sum-to-1 rule for
> ox L 0(zi | pa(X3)) [T 0(y; | pa(Y;))0(2 | y)
> IL; 0(xi | pa(Xi)) I, 0(y; | pa(Y;))
(using the sum-to-1 rule for')

P(zly) =

= 0(z1y)-
14.3

a. Suppose that andY sharel parents. After the reversal will gain m — [ new parents,
them — [ original parents ofX that it does not share with, and loses one parenk.
After the reversalX will gain n—1[ new parents, the —[ — 1 original parents ot that it
does not share witlX’ and isn't X itself, and plusY’. So, after the reversal will have
n+(m—I1—1) =m+ (n—1—1) parents, an will havem + (n—1) =n+(m—1)
parents.

Observe thain — [ > 0, since this is the number of original parentsiot shared
with Y, and thatn — [ — 1 > 0, since this is the number of original parentsofnot
shared withX and not equal toX. This shows the number of parameters can only
increase: before we hdd® + k", after we have™+(n—1=1) 4 pn+(m=1)

(As a sanity check on our counting above, if are reversingglsiarc without any
extra parents, we have= 0, m = 0, andn = 1; the previous formulas say we will
havem’ = 0 andn’ = 1 afterwards, which is correct.)

b. For the number of parameters to remain constant, assuimng > 1, requires by our
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previous calculation that — I = 0 andn — [ — 1 = 0. This holds exactly wheX and
Y share all their parents originally (exceptalso hasX as a parent).

. For clarity, denote by”'(Y'|U, V, W) and P'(X|U,V,W,Y") the new CPTs, and note

that the set of variablel® U W does not includeX. It suffices to show that
P(X,)Y|UV,W)=P(X,Y|U,V,W)
To see this, leD denote the variables, outside X, Y} UU U V U W, which have
either X or Y as ancestor in the original network, amdthose which don’t. Since the
arc reversed graph only adds or removes arcs incoming tr Y, it cannot change
which variables lie inD or D. We then have
P(D7 E? X7 Y? U? V’ W) = P(§7 U7 ‘/Y? W)P(X7 Y|U7 V7 W)P(D|X7 Y7 U7 V7 W)
= P'(D,U,V,W)P(X,Y|U,V,W)P(D|X,Y,U,V,W)
= P'(D,U,V,W)P(X,Y|U,V,W)P'(D|X,Y,U,V,W)
P'(D,U,V,W)P'(X,Y|UV,W)P(D|X,Y,U,V,W)
= P(D,D,X,Y,UV,W)
the second as arc reversal does not change the CPTs of earial)}, U, V, W contains
all its parents, the third as if we condition éh Y, U, V, W the original and arc-reversed
Bayesian networks are the same, and the fourth by hypothesis
Then, calculating:
P(X,Y|U,V,W)
= P(Y|U,V,W)P (X|U,V,W,Y)

anvww(mwﬂpwmwwwwmm

ZPYWVWw(MMWHHMWWOHHKWWWMWW

) PY|X,V,W)P(X|U,V)

YUVW@(LMWHMMW)
P(U,V,W,z)P(U,V)P(Y,U,V,W)

ZP z|Y,U,V,W)P(z|U,V)/P(x|U,V, W)> PY|X,V,IW)P(X|U,V)

:(ZFMMMWWOHHKWWWWWV)

= PY|X,V,W)P(X|U,V)

where the third step follows &g, W, z is the parent set oY it's conditionally inde-
pendent ofU, and the second to last step follows@sV is the parent set oK it's
conditionally independent af.
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a. Yes. Numerically one can compute ti#atB, F) = P(B)P(FE). Topologically B and
E are d-separated hy.

b. We check whetheP(B, E|a) = P(Bl|a)P(E|a). First computingP(B, E|a)

P(B,E|a) = aP(a|B,E)P(B,E)

.95 x 0.001 x 0.002 if B=bandE =e

.94 % 0.001 x 0.998 if B=bandE = —e

.29 x 0.999 x 0.002 if B=-bandE =e

.001 x 0.999 x 0.998 if B=-bandE = —e

(0.0008 if B=bandFE =¢
0.3728 if B=bandFE = —e
0.2303 if B=-bandE =¢
0.3962 if B=-bandE = —e

wherea is a normalization constant. Checking whetti&b, e|a) = P(bla)P(ela) we
find

P(b,ela) = 0.0008 # 0.0863 = 0.3736 x 0.2311 = P(bla)P(e|a)
showing thatB and E' are not conditionally independent giveh

14.5 The question is not very specific about what “remove” meankelVa node is a leaf
node with no children, removing it and its CPT leaves the oéshe network unchanged.
When a node has children, however, we have to decide what &bdot the CPTs of those
children, since one parent has disappeared. The only rebkoimterpretation is that removal
has to leave the posterior of all other variables unchamggdrdlessof what new CPTs are
supplied forY”’s children.

a. Let X be the set of all variables in the Bayesian Network exceptfand M B(Y').
SinceY is conditionally independent of all other nodes in the nekwgiven M/ B(Y),
we haveP (X|Y,mb(Y)) = P(X|mb(Y)) = aP(X,mb(Y)). By definition, the par-
ents ofY’s children are a subset ¢fy'} U M B(Y), so not include any variables .
Hence, if we expand ou? (X, mb(Y")) in terms of CPT entries, all the CPT entries for
Y’s children are constants that can be subsumed in

b. We have argued that any removal operation as describecedbaves posteriors un-
changed; therefore, both algorithms will still return trerect answers.

14.6

a. (c) matches the equation. The equation describes absollgpendence of the three
genes, which requires no links among them.

b. (a) and (b). Thassertionsre theabsentinks; the extra links in (b) may be unnecessary
but they do not assert an actual dependence. (c) asserfseimknce of genes which
contradicts the inheritance scenario.

c. (a)is best. (b) has spurious links among theariables, which are not directly causally
connected in the scenario described. (In reality, handedmey also be passed down
by example/training.)
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d. Notice that thd — r andr — [ mutations cancel when the parents have different
genes, so we still get 0.5.

Gmother Gfather P(Gchild = l| i ) P(Gchild = ’I”| .. )
l l 1—m m
l r 0.5 0.5
T l 0.5 0.5
T T m 1—-m

e. This is a straightforward application of conditioning:

P(Gchild:l) = Z P(Gchild:l|gmugf)P(gmagf)

9m,39f
= Z P(Genita =1gm, 9£) P (gm) P(gr)
9m,39f
= (1-m)g® +0.5¢(1 — q) + 0.5(1 — q)g + m(1 — ¢)*
= ¢* —mq¢* +q— ¢ +m—2mq+mq’
= qg+m—2mgq
f. Equilibrium means thaP (G140 = 1) (the prior, with no parent information) must equal
P(Gmothe'r = l) andP(Gfather = l), i.e.,

q+m — 2mq = q, henceg = 0.5.

But few humans are left-handed = 0.08 in fact), so something is wrong with the
symmetric model of inheritance and/or manifestation. Thigti-school” explanation is
that the “right-hand gene is dominant,” i.e., prefereftiadherited, but current studies
suggest also that handedness is not the result of a singke ggehmay also involve
cultural factors. An entire journalL@terality) is devoted to this topic.

14.7 These proofs are tricky for those not accustomed to martipglgrobability expres-
sions, and students may require some hints.

a. There are several ways to prove this. Probably the sim@éstwork directly from the
global semantics. First, we rewrite the required probgbik terms of the full joint:
P(xy,...,x,)

P(CIZ’l, sy Ti—15 L1, - - - axn)
_ P(zy,...,xy,)

in P(x1,...,20)

[1; =, P(zj|parentsX;)

>z, [ =1 P(j|parentsX;)

Now, all terms in the product in the denominator that do nettaim x; can be moved

outside the summation, and then cancel with the correspgrtdrms in the numerator.
This just leaves us with the terms that do mentigni.e., those in whichX; is a child

P(.Z‘Z‘|ZL‘1,. . ,ZCi_l,ZL‘H_l, e ,xn) =
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or a parent. Hence?(x;|x1, ..., 2i—1, Tit1,...,Z,) IS €qual to
P(x;|parentsX;) HYJ-GChildren(Xi) P(y;|parents(Y;))
Z$i P(z;|parentsX;) HYjeChz‘ldren(Xi) P(y;|parents(Y}))
Now, by reversing the argument in part (b), we obtain therddsiesult.

b. Thisis a relatively straightforward application of Bayresde. LetY =Y1,...,y, be the
children of X; and letZ ; be the parents df; other thanX;. Then we have

P(Xi|MB(X:))
= P(X;|Parents(X;),Y,Z1,...,2Zy)

aP(X;|Parents(X;),Z1,...,Z0)P(Y|Parents(X;), Xi, Z1,...,2Zy)

= aP(X;|Parents(X;))P(Y|X;,Z1,...,2Zy)

= aP(X;|Parents(X;)) H P(Yj|Parents(Yj))

Y;j €Children(X;)

where the derivation of the third line from the second rebesthe fact that a node is
independent of its nondescendants given its children.

14.8 Adding variables to an existing net can be done in two waystrmity speaking,
one should insert the variables into the variable orderimd) r@run the network construction
process from the point where the first new variable appeafsrrally speaking, one never
really builds a network by a strict ordering. Instead, orkesasghat variables are direct causes
or influences on what other ones, and builds local pareitd/gnaphs that way. It is usually
easy to identify where in such a structure the new variabésgbut one must be very careful
to check for possible induced dependencies downstream.

a. IeyWeather is not caused by any of the car-related variables, so neegsrents.
It directly affects the battery and the starter motdftarter Motor is an additional
precondition forStarts. The new network is shown in Figure S14.1.

b. Reasonable probabilities may vary a lot depending on the &f car and perhaps the
personal experience of the assessor. The following vahdisdte the general order of
magnitude and relative values that make sense:

» A reasonable prior for IcyWeather might be 0.05 (perhapzedding on location
and season).
* P(Battery|IlcyWeather) = 0.95, P(Battery|—IcyWeather) = 0.997.
P(Starter Motor|IcyWeather) = 0.98, P(Battery|-IcyW eather) = 0.999.
P(Radio|Battery) = 0.9999, P(Radio|—~Battery) = 0.05.
» P(Ignition|Battery) = 0.998, P(Ignition|-Battery) = 0.01.
P(Gas) = 0.995.
P(Starts|Ignition, Starter Motor, Gas) = 0.9999, other entries 0.0.
P(Mowves|Starts) = 0.998.

c. With 8 Boolean variables, the joint ha% — 1 = 255 independent entries.

d. Given the topology shown in Figure S14.1, the total numib@rdependent CPT entries
IS 1+2+2+2+2+1+8+2= 20.
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Figure S14.1 Car network amended to include IcyWeather and
Starter M otorWorking (SMW).

e. The CPT forStarts describes a set of nearly necessary conditions that ar¢htage

almost sufficient. That is, all the entries are nearly zerceex for the entry where all
the conditions are true. That entry will be not quite 1 (beeathere is always some
other possible fault that we didn’t think of), but as we addenmonditions it gets closer

to 1. If we add al.eak node as an extra parent, then the probability is exactly Inwhe
all parents are true. We can relate noisy-AND to noisy-ORgigle Morgan’s rule:
AN B = —(=AV -B). Thatis, noisy-AND is the same as noisy-OR except that the
polarities of the parent and child variables are reversedhe noisy-OR case, we have

P(Y =true|zy,...,xp) =1— H qi
{i:@; =true}

whereg; is the probability that th@resenceof the ith parentfails to cause the child to
betrue. In the noisy-AND case, we can write

P(Y =true|zy,...,xp) = H T
{i:x; = false}

wherer; is the probability that thabsenceof the ith parentfails to cause the child to
befalse(e.qg., it is magically bypassed by some other mechanism).

14.9 This exercise is a little tricky and will appeal to more mattadically oriented students.

a. The basic idea is to multiply the two densities, match tisalteo the standard form for

a multivariate Gaussian, and hence identify the entriekdririverse covariance matrix.
Let’s begin by looking at the multivariate Gaussian. Frorgg882 in Appendix A we
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have
=L b= o)

(2m)" 2|

wherep is the mean vector anBl is the covariance matrix. In our caseis (z; x2)
and let the (as yet) unknowm be (m; ms)". Suppose the inverse covariance matrix is

-1 cd
== (i:)

Then, if we multiply out the exponent, we obtain
5 (x=p) 27 (X = ) =
—% - c(zr —ma)? + 2d(z1 — mq) (22 — ma) + f(z2 — M2)?

Looking at the distributions themselves, we have

1 2 2
Plz) = e~ (@1—p)?/(207)
(21) o1V 2T
and
1 2 2
P _ = —(z2—(az1+b))?/(203)
(‘TQ‘Q:l) 0_2\/%6
hence
P21, 29) = — e~ (3@ (az148)> 03 (w2 —(am1+0)2)/ 201 03)
o102(27)

We can obtain equations for d, ande by picking out the coefficients af?, 215, and

2.
x5.

¢ = (05 +d%0}) /0?03
2d = —2a/o3
e = 1/03
We can check these by comparing the normalizing constants.
1 1 1 1

o102(27) /)| (2m)\/1/|=1] ©(2m)\/1/(ce — &2
from which we obtain the constraint
ce —d* =1/0%02

which is easily confirmed. Similar calculations yietdy andms, and plugging the re-
sults back shows thdt(z, z2) is indeed multivariate Gaussian. The covariance matrix

IS
s_(¢ AN _ 1 e —d\ _ o? ao?
de ce —d?>\ —d c ac} o3 +a’o}

. The induction is om, the number of variables. The base caseret 1 is trivial.
The inductive step asks us to show that if @, ..., x,) constructed with linear—
Gaussian conditional densities is multivariate Gausdlen anyP(z1, ..., Zn, Tpi1)
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constructed with linear—-Gaussian conditional densiteeal$so multivariate Gaussian.
Without loss of generality, we can assume that, is a leaf variable added to a net-
work defined in the first variables. By the product rule we have

P(xy,...,xn,xny1) = P(@psi|zr, ... xn)P(x1,. .., 20)
= P(zpt1|parents(Xn4+1))P(z1,...,2x)

which, by the inductive hypothesis, is the product of a Im@aussian with a multivari-
ate Gaussian. Extending the argument of part (a), this igrima multivariate Gaussian
of one higher dimension.

14.10

a. With multiple continuous parents, we must find a way to mappghrent value vector to
a single threshold value. The simplest way to do this is te taknear combination of
the parent values.

b. For ordered valueg; < y» < --- < g4, We assume some unobserved continuous
dependent variablg* that is normally distributed conditioned on the parent afalés,
and define cutpoints; such thatt” =y; iff ¢;_; < y* < ¢;. The probability of this
event is given by subtracting the cumulative distributianthe adjacent cutpoints.

The unordered case is not obviously meaningful if we ingist the relationship
between parents and child be mediated by a single, rea¢édalormally distributed
variable.

14.11 This question exercises many aspects of the student’s stadeling of Bayesian net-
works and uncertainty.

a. A suitable network is shown in Figure S14.2. The key aspaesthe failure nodes are
parents of the sensor nodes, and the temperature node isra p&both the gauge and
the gauge failure node. It is exactly this kind of correlatihat makes it difficult for
humans to understand what is happening in complex systethsunieliable sensors.

Figure S14.2 A Bayesian network for the nuclear alarm problem.

b. No matter which way the student draws the network, it shooltbe a polytree because
of the fact that the temperature influences the gauge in twswa

c. The CPT forG is shown below. Students should pay careful attention teémeantics
of Fw, which is true when the gaugefeulty, i.e., notworking.
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T=Normal| T =High
Fa -Fq Fo | - Fg

G=Normal| vy r |[1—y|l—2
G = High l-y|l—2| y T

d. The CPT forA is as follows:

G = Normal|G= High
Fu -Fy Fa| - F4

A O 0 0 1
-Al 1l 1 1 0

e. This part actually asks the student to do something usdaihe by Bayesian network
algorithms. The great thing is that doing the calculatiothailt a Bayesian network
makes it easy to see the nature of the calculations thatgioeithims are systematizing.
Itillustrates the magnitude of the achievement involvedreating complete and correct
algorithms.

AbbreviatingT = High andG = High by T andG, the probability of interest here
is P(T|A,~Fg,—~F4). Because the alarm’s behavior is deterministic, we caroreas
that if the alarm is working and sound&, must beHigh. Becausef'y and A are
d-separated frorff’, we need only calculat®(T'|-Fg, G).

There are several ways to go about doing this. The “oppatighiway is to notice
that the CPT entries give U3(G|T, —~F), which suggests using the generalized Bayes’
Rule to switchG andT with —F as background:

P(T|-Fq,G) x P(G|T,~Fg)P(T|~Fg)
We then use Bayes’ Rule again on the last term:

P(T|-Fg,G) o P(G|T, ~Fg)P(~Fg|T)P(T)
A similar relationship holds forT":

P(-T|-Fqg,G) x P(G|-T,—~Fg)P(—Fg|-T)P(-T)
Normalizing, we obtain

P(T|-Fg,G) =

P(G|T,~Fg)P(~Fg|T)P(T)
P(G|T,=Fg)P(~Fa|T)P(T)+P(G|-T,~Fg)P(~Fc|-T)P(=T)
The “systematic” way to do it is to revert to joint entries (icong that the subgraph

of T, G, andFg is completely connected so no loss of efficiency is entailédd have

P(T,~Fg,G) P(T,—Fg,G)
P(G,-Fg)  P(T,G,-Fg)+ P(T,G,~Fg)
Now we use the chain rule formula (Equation 15.1 on page 439%write the joint
entries as CPT entries:
P(T|-Fg,G) =

P(T|-Fg,G) =

P(T)P(-Fa|T)P(G|T,~Fg)
P(T)P(—FGIT)P(GIT,~Fg)+P(=1)P(~Fg[-T)P(G-T,~Fc)
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which of course is the same as the expression arrived at atostting P(7") = p,
P(Fg|T) = g, andP(Fg|-T) = h, we get

p(l—g)(1 —x)
p(l—g)1—z)+ (1 -p)(1 - h)z

P(T|-Fg,G) =

14.12

a. Although (i) in some sense depicts the “flow of informatiaitiring calculation, it is
clearly incorrect as a network, since it says that given tleasarementd/; and M,
the number of stars is independent of the focus. (ii) colyepresents the causal
structure: each measurement is influenced by the actual eofilstars and the focus,
and the two telescopes are independent of each other. Haiys a correct but more
complicated network—the one obtained by ordering the nddesiM,, N, Fy, Fy. If
you order)M, before M7 you would get the same network except with the arrow from
M to M reversed.

b. (ii) requires fewer parameters and is therefore bettan {hig.
c. To computeP(M;|N), we will need to condition o (that is, consider both possible
cases forF, weighted by their probabilities).
P(M1|N) = P(Mi|N, F1)P(Fi|N) + P(M;1|N,=F;)P(=F1|N)
= P(Mi|N, F1)P(Fy) + P(M;|N, ~F1)P(=FY)
Let f be the probability that the telescope is out of focus. Theatse states that this
will cause an “undercount of three or more stars,” bulVif= 3 or less the count will
be 0 if the telescope is out of focus. If it is in focus, then wi# assume there is a

probability of e of counting one two few, and of counting one too many. The rest of
the time(1 — 2e), the count will be accurate. Then the table is as follows:

N=1 | N=2 | N=3
M; = 0] f+e(1-) f f

M; =1|(1-2e)(1-) e(1-f) 0.0
My =2| e(@f) |@-2e)(1-H e(l-
M, =3| 00 e(1-H) |(1-2e)(1-f)
My=4| 00 0.0 e(1-f)

Notice that each column has to add up to 1. Reasonable valuesahd f might be
0.05 and 0.002.

. This question causes a surprising amount of difficulty,t$e important to make sure

students understand the reasoning behind an answer. Ormaabpises the fact that
it is easy to reason in the forward direction, that is, trytepossible number of stars
N and see whether measuremenfs =1 and M, = 3 are possible. (This is a sort of
mental simulation of the physical process.) An alternaéipproach is to enumerate the
possible focus states and deduce the valu® édr each. Either way, the solutions are
N =2,4,0r> 6.
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e. We cannot calculate the most likely number of stars withkoatwing the prior distribu-
tion P(N). Let the priors beys, ps, andps¢. The posterior forV =2 is pae?(1 — f)%
for N =4t is at mostpsef (at most, because withv =4 the out-of-focus telescope
could measure 0 instead of 1); fof > 6 it is at mostp>¢f2. If we assume that the
priors are roughly comparable, théhn=2 is most likely because we are told théais
much smaller thasa.

For follow-up or alternate questions, it is easy to come uthwndless variations on the
same theme involving sensors, failure nodes, hidden st@tee can also add in complex
mechanisms, as for thetarts variable in exercise 14.1.

14.13 The symbolic expression evaluated by the enumeration igigois

PN |[My=2,My=2) = oY P(f1, f2, N, My =2, M, =2)
f1,f2

= oY P(f))P(f2)P(N)P(My =2 f, N)P(Mp =2| f»,N) .

f1,f2

Because an out-of-focus telescope cannot report 2 stalng igiven circumstances, the only
non-zero term in the summation is 6§ = F5» = false, so the answer is

P(N | M1 ZQ,MQ = 2) = a(l — f)(l — f)<p1,p2,p3><€, (1 — 26), €><€, (1 — 26), 6>
= o/ (p1e?, pa(1 — 2¢)%, p3e?) .

14.14

a. The network asserts (i) and (iii). (For (iii), consideetMarkov blanket of\/.)

b. P(b,i,~m,g,j)= P(b)P(—=m)P(i|lb, ~m)P(g|b,i,~m)P(j|g)
=9%x .9x.5%x.8x.9=.2916

c. SinceB, I, M are fixed true in the evidence, we can tréaas having a prior of 0.9 and
just look at the submodel wit&y, J:
P(J|b,i,m) = a >, P(J,g) = a[P(J, ) + P(J, ~g)]
= a[(P(j,9), P(j,9)) + (P(j,~9), P(=j, ~9))
= o[(.81,.09) + (0,0.1)] = (.81,.19)
That is, the probability of going to jail is 0.81.

d. Intuitively, a person cannot be found guilty if not indidieegardless of whether they
broke the law and regardless of the prosecutor. This is wieaCPT forG says; sa~
is context-specifically independent Bfand M givenl = false.

e. A pardon is unnecessary if the person is not indicted or oohd guilty; sol andG
are parents oP. One could also ad® and M as parents of?, since a pardon is more
likely if the person is actually innocent and if the proseeus politically motivated.
(There are other causes #fardon, such asLargeDonationToPresidentsParty,
but such variables are not currently in the model.) The pargoesumably) is a get-
out-of-jail-free card, s@” is a parent of/.
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14.15 This question definitely helps students get a solid feel forable elimination. Stu-
dents may need some help with the last part if they are to dofgly.

a.
P(B|j,m)
B)ZP ZP alb,e)P(jla)P(m]a)
= aP [9><7 <9Z ggl>+.05x.01x<:82 ;1)9)]
— 4P < .598525 .183055 )
09223  .0011295

.598525 09223

= o [002 < 183055) 998 <.0011295>]
. .001 « .59224259
— N\ 999 001493351
_ .00059224259

“\ .0014918576
(.284,.716)
b. Including the normalization step, there are 7 additiorsmlltiplications, and 2 divi-

sions. The enumeration algorithm has two extra multipiores.

c. To computeP(X;|X,, = true) using enumeration, we have to evaluate two complete
binary trees (one for each value &f ), each of deptm — 2, so the total work i) (2").
Using variable elimination, the factors never grow beyond Vvariables. For example,
the first step is

P(X1|X,, = true)
= aP(X1)... Y P(rn slrn-3) Y P(wn_1|rn_2)P(X, = true|z, 1)

%

Tn—2 In—1

= aP(X1)... Y P(zn_alrn-3) Y fx, ) (@n-1,Tn—2)fx, (Tn_1)
Tn—2 In—1

= aP(Xl) ce Z P(xn_2|xn_3)fmxn (.1‘71_2)
Tn—2

The last line is isomorphic to the problem with— 1 variables instead af; the work
done on the first step is a constant independent, dfence (by induction on, if you
want to be formal) the total work i©(n).

d. Here we can perform an induction on the number of nodes irpthgree. The base
case is trivial. For the inductive hypothesis, assume thafalytree withn nodes can
be evaluated in time proportional to the size of the polyfiee, the sum of the CPT
sizes). Now, consider a polytree with+ 1 nodes. Any node ordering consistent with
the topology will eliminate first some leaf node from this yiote. To eliminate any
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leaf node, we have to do work proportional to the size of itsSTCFhen, because the
network is a polytreewe are left withindependensubproblems, one for each parent.
Each subproblem takes total work proportional to the suntsoEPT sizes, so the total
work for n + 1 nodes is proportional to the sum of CPT sizes.

14.16

a. Consider a 3-CNF formul@; A ... C, with n clauses where each clause is a disjunct
C; = (Ui V lip V £;3) of literals i.e., eacl?;; is either P, or =P for some atomic
propositionPy, . .., Pp,.

Construct a Bayesian network with a (boolean) variabléor the whole formula,
C; for each clause, and, for each atomic proposition. We will define parents and
CPTs such that for any assignment to the atomic proposijtisns true if and only if
the 3-CNF formula is true.

Atomic propositions have no parents, and are true with gritha0.5. Each clause
C; has as its parents the atomic propositions corresponditigettiteralsé;, ¢;2, and
/;3). The clause variable is true iff one of its literals is truentdlthat this is a determin-
istic CPT. Finally,S has all the clause variablég as its parents, and if true if any only
if all clause variables are true.

Notice thatP(S = T'rue) > 0 if and only if the formula is satisfiable, and exact
inference will answer this question.

b. Using the same network as in part (a), notice tRa§ = True) = s2~™ wheres is
the number of satisfying assignments to the atomic proposit’,, . .., B,.

14.17

a. To calculate the cumulative distribution of a discreteialale, we start from a vector
representatiorp of the original distribution and a vectaP of the same dimension.
Then, we loop through, adding up thep; values as we go along and settiffgto the
running sumy % _, p;. To sample from the distribution, we generate a random numbe
r uniformly in [0, 1], and then returr; for the smallest such thatP; > r. A naive
way to find this is to loop throughstarting at 1 untilP; > r. This takesO(k) time. A
more efficient solution is binary search: start with the falhge[1, k|, choosei at the
midpoint of the range. IP; < r, set the range fromto the upper bound, otherwise set
the range from the lower bound fo After O(log k) iterations, we terminate when the
bounds are identical or differ by 1.

b. If we are generatingV > k samples, we can afford to preprocess the cumulative
distribution. The basic insight required is thifithe original distribution were uniform,
it would be possible to sample {@i(1) time by returning[kr|. That is, we can index
directly into the correct part of the range (analog randooeas, one might say) instead
of searching for it. Now, suppose we divide the ranggl| into & equal parts and
construct ak-element vector, each of whose entries is a list of all thofk® which
P; is in the corresponding part of the range. Thee want is in the list with index
[kr]. We retrieve this list inO(1) time and search through it in order (as in the naive
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implementation). Let; be the number of elements in list Then the expected runtime
is given by

k

k
> ny1/k=1/k- Y nj=1/k-0(k) = O(1)

j=1 j=1

The variance of the runtime can be reduced by further sullidigiany part of the range
whose list contains more than some small constant numbédeioieats.

. One way to generate a sample from a univariate Gaussiarc@npute the discretized

cumulative distribution (e.g., integrating by Taylor'slel and use the algorithm de-
scribed above. We can compute the table once and for all @ésthndard Gaussian
(mean 0, variance 1) and then scale each sampled vatoerz + u. If we had a
closed-form, invertible expression for the cumulativetdisition F'(z), we could sam-
ple exactly, simply by returning”—!(r). Unfortunately the Gaussian density is not
exactly integrable. Now, the densitype—ﬂ”?/ 2 is exactly integrable, and there are cute
schemes for using two samples and this density to obtainact &aussian sample. We
leave the details to the interested instructor.

. When querying a continuous variable using Monte carla@riee, an exact closed-form

posterior cannot be obtained. Instead, one typically defitiscrete ranges, returning
a histogram distribution simply by counting the (weightedmber of samples in each
range.

14.18

a. There are two uninstantiated Boolean variabté&f:.dy and Rain) and therefore four

possible states.

. First, we compute the sampling distribution for each \agaconditioned on its Markov

blanket.
P(C|r,s) = aP(C)P(s|C)P(r|C)
— a(0.5,0.5)(0.1,0.5)(0.8,0.2) = a{0.04,0.05) = (4/9,5/9)
P(C|-r,s) = aP(C)P(s|C)P(—r|C)

«(0.5,0.5)(0.1,0.5)(0.2,0.8) = «(0.01,0.20) = (1/21,20/21)
P(R|c,s,w) = aP(R|c)P(wls, R)
= «(0.8,0.2)(0.99,0.90) = «(0.792,0.180) = (22/27,5/27)
P(R|—c, s,w) = aP(R|~c)P(wl|s, R)
= «(0.2,0.8)(0.99,0.90) = «(0.198,0.720) = (11/51,40/51)
Strictly speaking, the transition matrix is only well-defthfor the variant of MCMC in
which the variable to be sampled is chosen randomly. (In#nart where the variables

are chosen in a fixed order, the transition probabilitiesedepon where we are in the
ordering.) Now consider the transition matrix.
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 Entries on the diagonal correspond to self-loops. Suatsitians can occur by
samplingeithervariable. For example,

q((¢,r) — (e,7)) = 0.5P(c|r,s) + 0.5P(r|c, s,w) = 17/27
» Entries where one variable is changed must sample thathlariFor example,
q((e,r) = (¢,—r)) = 0.5P(—r|c,s,w) = 5/54
« Entries where both variables change cannot occur. For pkeam
q((e;r) = (me, 7)) =0
This gives us the following transition matrix, where thensgion is from the state given
by the row label to the state given by the column label:

(e,r) (¢,—r) (—e,r) (me,—r)

(c,r) 17/27  5/54 5/18 0
(c,-r) | 11727 22/189 0 10/21
(=e,r) 2/9 0 59/153  20/51
(=, ) 0 1/42 11/102 310/357

c. Q? represents the probability of going from each state to etath & two steps.

d. Q" (asn — oo) represents the long-term probability of being in eachesgarting in
each state; for ergodi® these probabilities are independent of the starting state,
every row ofQ is the same and represents the posterior distribution deszssgiven
the evidence.

e. We can produce very large powers Qf with very few matrix multiplications. For
example, we can g&? with one multiplication,Q* with two, andQ?2" with k. Unfor-
tunately, in a network witlm Boolean variables, the matrix is of si2é x 2", so each
multiplication takesD(23") operations.

14.19
a. Supposing that; andgs are in detailed balance we have:
7(X)(aqi(x — X') + (1 — a)ga(x — X))
= an(X)q1(x — X') + (1 — a)m(X)ga(x — X)
= an(X)q1 (X' — X) + (1 — )a(X)g2(X’ — X)
= 7(x)(agi (X = X) + (1 - a)ga(x' — X))
b. The sequential composition is defined by
(qrog)(x —x) =3 qu(x — X")ga(x" — X).
XN
If ¢; andg, both haver as their stationary distribution, then:

Y om0 (@og)x—x) = > 7)) qx = X)X —X)

X X

X
= D e =X) Y m()ax —X")

XII X
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= 3w — X))
X//
= (X))
14.20

a. Because a Gibbs transition step is in detailed balandemwitve have that the accep-
tance probability is one:

Py m(X)g(x|X)
o' [x) = min (LW)
=1

since by definition of detailed balance we have
m(X)g(x|x') = 7(x)qg(X'|X).
b. Two prove this in two stages. Far # x' the transition probability distribution is
q(z' | z)a (X" | x) and we have:

7(X)q(z" | 2)a(X'|X) = m(X)q(x’ | z) min <1, )
= min (7(X)g(z’ | x), 7 (X )g(x | X))
(

= 7(X)q(z| ') min <77:7 1

m(X)q(x] X’))

m(X)q(z]2)a(x|X)

Forx = X’ the transition probability is somg(x | ) which always satisfies the equation
for detailed balance:

()¢ (x| 2) = 7(X)q (x| ).
14.21

a. The classes ar€eam, with instancesd, B, andC, and M atch, with instancesA B,
BC,andC A. Each team has a qualiy and each match hasli&am, andTeams, and
anOutcome. The team names for each match are of course fixed in advaheeprior
over quality could be uniform and the probability of a win team 1 should increase
with Q(Team;) — Q(Teams).

b. The random variables art ), B.QQ, C.Q, AB.Outcome, BC.Outcome, andC A.Outcome.
The network is shown in Figure S14.3.

c. The exact result will depend on the probabilities used erttodel. With any prior on
quality that is the same across all teams, we expect thabttenor overBC.Outcome
will show thatC' is more likely to win thanB.

d. The inference cost in such a model will ©¢2™) because all the team qualities become
coupled.

e. MCMC appears to do well on this problem, provided the prdiigs are not too
skewed. Our results show scaling behavior that is roughlgdr in the number of
teams, although we did not investigate very large
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AB.Outcome BC.Outcome CA.Outcome

SCRENCT
<

Figure S14.3 Bayes net showing the dependency structure for the teantyjaatl game

outcome variables in the soccer model.




Solutions for Chapter 15
Probabilistic Reasoning over Time

15.1 For each variablé/; that appears as a parent of a varialllg », define an auxiliary
variable U7l4, such thatl; is parent ofU74 and Ul is a parent ofX,,,. This gives us

a first-order Markov model. To ensure that the joint disttita over the original variables

is unchanged, we keep the CPT 8, 2 is unchanged except for the new parent name, and
we require thaP(Ut‘idﬂUt) is an identity mapping, i.e., the child has the same valudas t
parent with probability 1. Since the parameters in this nhadefixed and known, there is no
effective increase in the number of free parameters in theéaino

15.2
a. Forallt, we have the filtering formula
P(R¢|ury) = oP(ue|Ry) > P(Ry|Ry—1)P(Ry—1|uy—1) -
Ry
At the fixed point, we additionally expect thBf R¢|u1.1) = P(R¢—1|u1¢—1). Let the
fixed-point probabilities bép, 1 — p). This provides us with a system of equations:

(p, 1 —p) = (0.9, 0.2)(0.7, 0.3)p + (0.3, 0.7)(1 — p)
— (0.9, 0.2)((0.4p, —0.4p) + (0.3, 0.7))
1

= To0a, T3 T0a a0 % 02040, ~04p) + (03, 0.7)

Solving this system, we find that~ 0.8933.
b. The probability converges t@®.5,0.5) as illustrated in Figure S15.1. This convergence
makes sense if we consider a fixed-point equatiorP{ds 1 |U1, Us):

P(Ro4x|U1,Uz) = (0.7,0.3) P(royk—1|U1, Uz) + (0.3,0.7) P(—1211—1|U1, Us)
P(T2+k|U1,U2) = O.7P(T2+k_1|U1,U2) +O3(1 — P(T‘2+k_1|U1,U2))
0.4P(T2+k,1|U1, Ug) + 0.3

That iS,P(T2+k|U1, UQ) = 0.5.
Notice that the fixed point does not depend on the initial @ve.

15.3 This exercise develops the Island algorithm for smoothmd@BNs (Binderet al.,
1997).

140



141

0.9 i
0.8 i
0.7 i
0.6 . i
05 ’ * . . . . . . . . . . . . . . . . —
0.4 i
0.3 i
0.2 i

0.1 i

0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Figure S15.1 A graph of the probability of rain as a function of time, foast into the
future.

a. The chapter shows thB{(Xy|e;.;) can be computed as
P(Xklert) = a P(Xg|err)P(&rt1:4|Xk) = afipbriry

The forward recursion (Equation 15.3) shows that can be computed frofy.,_; and
€, which can in turn be computed frof.,_, ande,_;, and so on down td;. and
e;. Hencefy.; can be computed frof.o ande;.;. The backward recursion (Equation
15.7) shows thaby;.; can be computed fromy 2., andey 1, which in turn can be
computed fromby, 5., ande,», and so on up td; 1., ande,. Henceby 1., can be
computed fromby, 1.+ ande;1.,. Combining these two, we find th&(Xy|e;.;) can
be computed fronfy.g, by1.¢, andey.y,.

b. The reasoning for the second half is essentially identi¢at & betweenh andt,
P(X|er.t) can be computed froMy.;, by11.¢, andey, 1.4

c. The algorithm takes 3 arguments: an evidence sequencejtah forward message,
and a final backward message. The forward message is prepagahe halfway point
and the backward message is propagated backward. Thetlfgdtien calls itself
recursively on the two halves of the evidence sequence Wwéhappropriate forward
and backward messages. The base case is a sequence of length 1

d. At each level of the recursion the algorithm traverses thtgee sequence, doin@(t)
work. There areD(log, t) levels, so the total time i©(tlog, t). The algorithm does
a depth-first recursion, so the total space is proportiooahe depth of the stack,
i.e., O(logy t). With n islands, the recursion depth @(log,, ¢), so the total time is
O(tlog,, t) but the space i®(nlog, t).



142

Chapter 15. Probabilistic Reasoning over Time

15.4 Thisis a very good exercise for deepening intuitions abewrporal probabilistic rea-
soning. First, notice that the impossibility of the sequentmost likely states cannot come
from an impossible observation because the smoothed pglitypalb each time step includes
the evidence likelihood at that time step as a factor. Hetleejmpossibility of a sequence
must arise from an impossible transition. Now consider sadhansition fromX; =i to
Xp4+1=j forsomei, j, k. For X1 = j to be the most likely state at tinke+ 1, even though

it cannot be reached from the most likely state at tipee can simply have am-state system
where, say, the smoothed probability ®f, =i is (1 4+ (n — 1)¢)/n and the remaining states
have probability(1 — €) /n. The remaining states all transition deterministicallyXip, ; = j.
From here, it is a simple matter to work out a specific moddl biehaves as desired.

15.5 The propagation of thé message is identical to that for filtering:
L1 =aO0u T by

Since/ is a column vector, each entdy of which givesP(X; =1i,e;.;), the likelihood is
obtained simply by summing the entries:

Liy=Plen) =Y b

15.6 Let/ be the single possible location under deterministic sgnstrertainly, ag — 0,
we expect intuitively thatP(X; =¢|e;.;) — 1. If we assume that all reachable locations
are equally likely to be reached under the uniform motion elothen the claim thaf is
the most likely location under noisy sensing follows imnaelly: any other location must
entail at least one sensor discrepancy—and hence a pritp@leihalty factor ok—on every
path reaching it i — 1 steps, otherwise it would be logically possible in the deiarstic
setting. The assumption is incorrect, however: if the nletghood graph has outdegrée
the probability of reaching any two locations could differ & factor of O (k). If we sete
smaller than this, the claim still holds. But for any fixedhere are neighborhood graphs and
observation sequences such that the claim may be false ffariexily larget. Essentially,

if t — 1 steps of random movement are much more likely to reacthan/—e.g., if ¢ is at
the end of a long tunnel of length exactly- 1—then that can outweigh the cost of a sensor
error or two. Notice that this argument requires an envirentrof unbounded size; for any
bounded environment, we can bound the reachability ratibsafe accordingly.

15.7 This exercise is an important one: it makes very clear thierdifice between the ac-
tual environment and the agent’s model of it. To generatesthered data, the student will
need to run a world simulator (movment and percepts) usiagrtie model (northwest prior,
southeat movement tendency), while running he agent's ststimator using the assumed
model (uniform prior, uniformly random movement). The statwill also begin to appreci-
ate the inexpressiveness of HMMs after constructing6thg 64 transition matrix from the
more natural representation in terms of coordinates.

Perhaps surprisingly, the data for expected localizatioor éexpected Manhattan dis-
tance between true location and the posterior state egtjrshbw that having an incorrect
model is not too problematic. A “southeast” biasboivas implemented by multiplying the
probability of any south or east move bbyand then renormalizing the distribution before
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Figure S15.2 Graphs showiing the expected localization error as a fonatif time, for
bias values of 1.0 (unbiased), 2.0, 5.0, 10.0.

sampling. Graphs for four different values of the bias arewshin Figure S15.2. The re-
sults suggest that the sensor data sequence overwhelmganingoduced by the incorrect
motion model.

15.8 The code for this exercise is very similar to that for Exezci®.6. The main difference
is the state space: instead of 64 locations, the state spacbb location—heading pairs, and
the transition matrix i256 x 256—starting to be a little painful when running hundreds of
trials. We also need to add a “bump” bit to the percept veetod we assume this is perfectly
observed (else the robot could not always decide to pick aheawling). Generally we expect
localization to be more accurate, since the sensor sequesszkonly disambiguate among a
small number of possible headings rather than an expotigrgrawing set of random-walk
paths. Also the exact bump sensor will eliminate many péssitates completely.

15.9 The code for this exercise is very similar to that for Exeecl®.7. The state is again a
location/heading pair with 256 x 256 transition matrix. The observation model is different:
instead of a 4-bit percept (16 possible percepts), the peiga location (or null), fon x m+

1 possible percepts. Generally speaking, tracking worksmeglr the walls because any bump
(or even the lack thereof) helps to pin down the location. Y\ivam the walls, the location
uncertainty will be slightly worse but still generally acate because the location errors are
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independent and unbiased and the policy is fairly predietalit is reasonable to expect
students to provide snapshots or movies of true locationpasterior estimate, particularly
if they are given suitable graphics infrastructure to mdilie ¢asy.

15.10

a. Looking at the fragment of the model containing j3st Xo, andX;, we have
k

P(X1) = 3 Pso) / P(%0)P(X1 /X0, 50)

so=1
From the properties of the Kalman filter, we know that the gré¢ gives a Gaussian
for each different value of,. Hence, the prediction distribution is a mixture bf
Gaussians, each weighted Bys).

b. The update equation for the switching Kalman filter is

P(Xt11, Str1l€1:441)

_ aP(ern X, i) 3 / (Xt s1l1:0 )P (K41, St11%1, 1)

Stfl

k
= aP(e1/X¢41) Z P(5t|e1:t)P(St+1|5t)/ P(X¢|er:)P(Xeg1|Xe, S¢)

Stil Xt

We are given thaP(x;|e;.;) is a mixture ofm Gaussians. Each Gaussian is subject to
k different linear—Gaussian projections and then updatea Imear-Gaussian observa-
tion, so we obtain a sum d&fmn Gaussians. Thus, aftesteps we havé! Gaussians.

c. Each weight represents the probability of one of #iesequences of values for the
switching variable.

15.11 This is a simple exercise in algebra. We have

_ ((Z1 ;1)2> _ ((wl{uog)z)
P(z1]21) = ae 3 Je 2\ otk

(oo+ar)<zl 21)2+02(2q — u0)2)
2+02)

MI»—\

MI»—\

oz (‘72+°':E)

((0'0-&-0'33)(21—221T1+T1)+0Z(T —2p0T1+p0))
1
Y

(03+02+02)22—2((0cf+02)21+02pg) w1 +c
oz (O-2+UT)

(21 (01)+Gr)zl+az“0 )2
2+o‘ +o‘z

(0'0+0'r)0'z/(0'0+0'r+0'z)

[N

= e

15.12
a. See Figure S15.3.
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Figure S15.3  Graph for Ex. 15.7, showing the posterior variangeas a function of for
various values of2 ando?.

b. We can find a fixed point by solving

2 2\ 2
2 — (U + Ux)az
02+ 02+ o2

for o2. Using the quadratic formula and requiring > 0, we obtain

2 = ~9s+ 0z +40507

2
z

We omit the proof of convergence, which, presumably, candmedy showing that the
update is a contraction (i.e., after updating, two différgarting points forr; become
closer).

c. Aso2 — 0, we see that the fixed point® — 0 also. This is because? = 0 implies
a deterministic path for the object. Each observation sapphore information about
this path, until its parameters are known completely.

As o? — 0, the variance update give$™! — 0 immediately. That is, if we have an
exact observation of the object’s state, then the postesiardelta function about that
observed value regardless of the transition variance.

g

15.13 The DBN has three variables, whether the student gets enough slep;whether
they have red eyes in class;, whether the student sleeps in claSsis a parent o5 1, R,
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andC;. The CPTs are given by

P(so) =
P(s¢y1]st

)
P(st11|mst)
P(rfs) =
P(ry|=s) =
) =

(Ct|3t

P(ci|=st) =

0.7
0.8
0.3
0.2
0.7
0.1
0.3

To reformulate as an HMM with a single observation node, $impmbine the 2-valued vari-
ables “having red eyes” and “sleeping in class” into a sirgl@lued variable, multiplying
together the emission probabilities. (Probability talwestted.)

15.14

a. We apply the forward algorithm to compute these probaddlit

P(So)
P(S1)

P(Siler)

P(Saler)

P(Sz)e1:2)

P(Ssle1:2)

P(Ssle1.3)

(0.7,0.3)
> P(S1]s0)P(s

0
((0.8,0.2)0.7 + (0.3,0.7)0.3)
(0.65,0.35)
a P(e1|S1)P(S1)
(0.8 x 0.9,0.3 x 0.7)(0.65,0.35)
a (0.72,0.21)(0.65, 0.35)
(0.8643,0.1357)

Z P(SQ|$1)P(81‘€1>
(0.7321,0.2679)

[0 P(eg |SQ>P(SQ‘€1>
(0.5010, 0.4990)

) " P(Ss]s2) P(s2]er:2)

(0.5505, 0.4495)
a P(es|S3)P(Ss]e1:2)

= (0.1045,0.8955)

Similar to many students during the course of the school téhe student observed
here seems to have a higher likelihood of being sleep depeasdime goes on!

b. First we compute the backwards messages:
P(es|S3) = (0.2 x0.1,0.7 x 0.3)
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(0.02,0.21)
P(es|Sa) = Y Ples|ss)P(|s3)P(s3]S2)
3
= (0.02 x 0.840.21 x 0.2,0.02 x 0.3 + 0.21 x 0.7)
(0.0588,0.153)
P(eg3]S1) = ) Plealsa)Ples|s2)P(s2]S1)
52

= (0.0233,0.0556)

Then we combine these with the forwards messages computetbpsly and normal-
ize:

P(Sile1.s) = a P(Sile1)P(ea:3]S1)
— (0.7277,0.2723)

P(S3le1.3) = a P(S3ler.2)P(es|St)
— (0.2757,0.7243)

P(Sslers) = (0.1045,0.8955)

c. The smoothed analysis places the time the student stagedirsy poorly one step
earlier than than filtered analysis, integrating futureasiaations indicating lack of sleep
at the last step.

15.15 The probability reaches a fixed point because there is ahsagse chance of spon-
taneously starting to sleep well again, and students whepsiell sometimes have red eyes
and sleep in class. Even if we knew for sure that the studemitdsleep well on day, and
that they slept in class with red eyes on day 1, there would still be a chance that they slept
well on dayt + 1.

Numerically one can repeatedly apply the forward equatiorfind equilibrium proba-
bilities of (0.0432,0.9568).

Analytically, we are trying to find the vectdip,, p1)? which is the fixed point to the
forward equation, which one can pose in matrix form as

r  {0.016 0.006 T
(po-p1) _O‘(o.o42 0.147 ) Po:P1)

whereq is a normalization constant. That i@, p1)” is an eigenvector of the given ma-
trix. Computing, we find that the only positive eigenvalud.is487, which has eigenvector
(normalized to sum to ong.0432,0.9568)"', just as we numerically computed.

15.16

a. The curve of interest is the one féf( Battery,| ... 5555000000...). In the absence
of any useful sensor information from the battery meter, ghsterior distribution for
the battery level is the same as the projection without exdde The transition model
for the battery includes a small probability for downwaralrsitions in the battery level
at each time step, but zero probability for upward transgi¢there are no recharging
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actions in the model). Thus, the stationary distributionaads which the battery level
tends has value 0 with probability 1. The curve #6¢Battery,|...5555000000. . .)
will asymptote to O.

b. See Figure S15.4. The CPT fétMeter; has a probability of transient failure (i.e.,
reporting 0) that increases with temperature.

c. The agent can obviously calculate the posterior distidoubver Temp, by filtering
the observation sequence in the usual way. This posteriotbeainformative if the
effect of temperature on transient failure is non-negliggiand transient failures occur
more frequently than do major changes in temperature. Ealgnthe temperature is
estimated from the frequency of “blips” in the sequence dfdrg meter readings.

Batteryo Battery1

Figure S15.4 Modification of Figure 15.13(a) to include the effect of exi@ temperature
on the battery meter.

15.17 The process works exactly as on page 507. We start with theXptession:
P(Rs|uy, uz, uz) = a Y > P(r1)P(u|r1) P(ralr1)P(us|ry)P(Rs|ry)P(us| Rs)

T T2
Whichever order we push in the summations, the variableiéition process never creates
factors containing more than two variables, which is theesaire as the CPTs in the original
network. In fact, given an HMM sequence of arbitrary lengile can eliminate the state
variables in any order.



Solutions for Chapter 16
Making Simple Decisions

16.1 It is interesting to create a histogram of accuracy on ttek far the students in the
class. Itis also interesting to record how many times eaatiestt comes within, say, 10% of
the right answer. Then you get a profile of each student: thésis an accurate guesser but
overly cautious about bounds, etc.

16.2

Pat is more likely to have a better car than Chris becauseahmbre information with
which to choose. She is more likely to be disappointed, hewef/she takes the expected
utility of the best car at face value. Using the results ofreise 16.11, we can compute the
expected disappointment to be about 1.54 times the stad@&idtion by numerical integra-
tion.
16.3

a. The probability that the first heads appears onrttietoss is2~", so

EMV(L)=>» 27"-2"=) l=00
n=1 n=1
b. Typical answers range between $4 and $100.
c. Assume initial wealth (after payingto play the game) of(k — ¢); then

U(L) = i 27" . (alogy(k — c+2") +b)

n=1

Assumek — ¢ = $0 for simplicity. Then

UL) = Y 27" (alogy(2") +)

n=1

= iQ‘”~an+b

n=1

= 2a+b
d. The maximum amountis given by the solution of

alogy k+b= Z 27" . (alogy(k — c+2") +b)

n=1

149
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For our simple case, we have
alogyc+b=2a+b
orc=9%4.

16.4 The program itself is pretty trivial. But note that there amme studies showing you
get better answers if you ask subjects to move a slider taatelia proportion, rather than
asking for a probability number. So having a graphical ustgrface is an advantage. The
main point of the exercise is to examine the data, exposagisient behavior on the part of
the subjects, and see how people vary in their choices.

16.5

a. Networks (ii) and (iii) can represent this network but (ipt

o

e.

(i) is fully connected, so it can represent any joint disation.

(iii) follows the generative story given in the problem: tifevor is determined (pre-
sumably) by which machine the candy is made by, then the skapadomly cut, and
the wrapper randomly chosen, the latter choice indepehdehthe former.

(i) cannot represent this, as this network implies that thapper color and shape
are marginally independent, which is not so: a round candikey to be strawberry,
which is in turn likely to be wrapped in red, whilst convessal square candy is likely
to be anchovy which is likely to be wrapped in brown.

. Unlike (ii), (iii) has no cycles which we have seen simp6finference. Its edges also

follow the, so probabilities will be easier to elicit. Indkehe problem statement has
already given them.

. Yes, because Wrapper and Shape are d-separated.
. Once we know the Flavor we know the probability its wrappi#irbe red or brown. So

we marginalize Flavor out:
P(Wrapper = red) = Z P(Wrapper = red, Flavor = f)

f

= Z P(Flavor = f)P(Wrapper = red|Flavor = f)
f

= 0.7x08+03x0.1

= 0.59

We apply Bayes theorem, by first computing the joint prdhigs

P(Flavor = strawberry, Shape = round, Wrapper = red)

= P(Flavor = strawberry) x P(Shape = round|Flavor = strawberry)
x P(Wrapper = red|Flavor = strawberry)

= 0.7x08x0.8
= 0.448

P(Flavor = anchovy, Shape = round, Wrapper = red)
= P(Flavor = anchovy) x P(Shape = round|Flavor = anchovy)
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x P(Wrapper = red|Flavor = anchovy)
= 0.3 x0.1x0.1
= 0.003
Normalizing these probabilities yields that it is strawlyewith probability 0.448 /(0.448+
0.003) ~ 0.9933.
f. Its value is the probability that you have a strawberry mpoawrapping times the value

of a strawberry, plus the probability that you have a anchapgn unwrapping times
the value of an anchovy or

0.7s + 0.3a .
g. The value is the same, by the axiom of decomposability.

16.6

First observe thaC' ~ [0.25, A;0.75,$0] and D ~ [0.25, B;0.75%0]. This follows
from the axiom of decomposability. But by substitutabilttyis means that the preference
ordering between the lotterie$ and B must be the same as that betwé&gand D.

16.7

As mentioned in the text, agents whose preferences viobgteoted utility theory
demonstrate irrational behavior, that is they can be matiergio accept a bet that is a guar-
anteed loss for them (the case of violating transitivityiiseg in the text), or reject a bet that
is a guaranteed win for them. This indicates a problem fowatient.

16.8 The expected monetary value of the lottdrys

1
EMV(L)=— x $10 + x $1000000 = $0.70

1
50 2000000
Although $0.70 < $1, it is notnecessarilyirrational to buy the ticket. First we will consider
just the utilities of the monetary outcomes, ignoring thiétytof actually playing the lottery
game. Usind/(Sk.,,) to represent the utility to the agent of havinglollars more than the
current state, and assuming that utility is linear for smalles of money (i.el/(Skin) =~
n(U(Sks1) — U(Sk)) for —10 < n < 10), the utility of the lottery is:
1 1
U(L) = %U(Skﬂo) + 2,000,000

1 1
—U(Sky1) + WU(Sk+1,ooo,ooo)

U (Sk+1,000,000)

Q

5

This is more thar/ (Si41) whenU (Sk1,000,000) > 1,600,000U ($1). Thus, for a purchase
to be rational (when only money is considered), the agent ieigjuite risk-seeking. This
would be unusual for low-income individuals, for whom théprof a ticket is non-trivial. It
is possible that some buyers do not internalize the magaitddhe very low probability of
winning—to imagine an event is to assign it a “non-triviafbpability, in effect. Apparently,
these buyers are better at internalizing the large magaitfdthe prize. Such buyers are
clearly acting irrationally.



152

Chapter 16. Making Simple Decisions

Some people may feel their current situation is intolerathlat is,U (Si) ~ U (Sk+1) =
u, . Therefore the situation of having one dollar more or lessildide equally intolerable,
and it would be rational to gamble on a high payoff, even if tireg has low probability.

Gamblers also derive pleasure from the excitement of thterioiand the temporary
possession of at least a non-zero chance of wealth. So widsadito the utility of playing
the lottery the ternt to represent the thrill of participation. Seen this way, litéery is just
another form of entertainment, and buying a lottery ticleh® more irrational than buying
a movie ticket. Either way, you pay your money, you get a stiaill ¢, and (most likely)
you walk away empty-handed. (Note that it could be arguetdbiag this kind of decision-
theoretic computation decreases the value df is not clear if this is a good thing or a bad
thing.)

16.9 This is an interesting exercise to do in class. Chabge= $100, M; = $100, $1000,
$10000, $1000000. Ask for a show of hands of those prefethiadottery at different values
of p. Students will almost always display risk aversion, butéhmay be a wide spread in its
onset. A curve can be plotted for the class by finding the ssillyielding a majority vote
for the lottery.

16.10 The protocol would be to ask a series of questions of the fashi¢ch would you
prefer” involving a monetary gain (or loss) versus an inse2gor decrease) in a risk of death.
For example, “would you pay $100 for a helmet that would efiaté completely the one-in-
a-million chance of death from a bicycle accident.”

16.11
First observe that the cumulative distribution functionifeax{ X1, ..., X;.}is (F(z))*
since

Pmax{Xi,..., Xy} <z) = P(X; <z,..., X <2x)
= P(X; <z)...P(X} < 2)
= F(z)*

the second to last step by independence. The result follsweegprobability density function
is the derivative of the cumulative distribution function.

16.12
a. This question originally had a misprint/(z) = —e*/% instead ofU/ (z) = —e %/,
With the former utility function, the agent would be rathehappy receiving $1000000
dollars.

Getting $400 for sure has expected utility
—400/400 — 1 /ey —0.3679
while the getting $5000 with probability 0.6 and $0 othemvigas expected utility
0.6 — ¢ 2000/400 4 5 _ =0/400 — _ (0,612 4 0.5) ~ —0.5000
so one would prefer the sure bet.

b. We want to findR such that
e 100/R — 0 5500/ 4 0 5
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Solving this numerically, we findk = 152 up to 3sf.

16.13 The information associated with the utility node in Figu@6élis an action-value
table, and can be constructed simply by averaging ouftbeths, Noise, andCost nodes
in Figure 16.5. As explained in the text , modifications tccidft noise levels or to the
importance of noise do not result in simple changes to theraetlue table. Probably the
easiest way to do it is to go back to the original table in Fegli8.5. The exercise therefore
illustrates the tradeoffs involved in using compiled reygmetations.

16.14 The answer to this exercise depends on the probability satisen by the stu-
dent.

16.15
a. See Figure S16.1.

BuyBook

Gy F——Crn 3=

Figure S16.1 A decision network for the book-buying problem.

b. For each ofB = b and B = —b, we computeP(p| B) and thusP(—p|B) by marginal-
izing out M, then use this to compute the expected utility.

P(plb) = Y P(p|b,m)P(m|b)
= 0719 x0.9+0.5x0.1
= 0.86
P(p|=b) = ) P(p|=b,m)P(m|-b)
= 07.% x 0.74+0.3 x0.3

= 0.65
The expected utilities are thus:

EU[] = ) P(p|b)U(p,b)
P

= 0.86(2000 — 100) + 0.14(—100)
= 1620

EU[-b] = ) P(p|-b)U(p,~b)
P

= 0.65 x 2000 +0.14 x 0
= 1300
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C.

Buy the book, Sam.

16.16 This exercise can be solved using an influence diagram packazh asdeAL. The
specific values are not especially important. Notice howel@m of encoding all the entries
in the utility table cries out for a system that allows the itidel, multiplicative, and other
forms sanctioned by MAUT.

One of the key aspects of the fully explicit representatioRigure 16.5 is its amenabil-

ity to change. By doing this exercise as well as Exercise,1€flents will augment their
appreciation of the flexibility afforded by declarative repentations, which can otherwise
seem tedious.

a.

For this part, one could use symbolic values (high, mediom) for all the variables
and not worry too much about the exact probability valuespre could use actual
numerical ranges and try to assess the probabilities basetme knowledge of the
domain. Even with three-valued variables, the cost CPT Aanfries.

This part almost certainly should be done using a softwaokage.

c. If each aircraft generates half as much noise, we need tstttle entries in thé/oise

CPT.

. If the noise attribute becomes three times more importaptutility table entries must

all be altered. If an appropriate (e.g., additive) représtson is available, then one
would only need to adjust the appropriate constants to tefiecchange.

This part should be done using a software package. Somagesknay offer VPI
calculation already. Alternatively, one can invoke theisien-making package repeat-
edly to do all the what-if calculations of best actions angirtlitilities, as required in
the VPI formula. Finally, one can write general-purpose ¥¢Bdle as an add-on to a
decision-making package.

16.17 This question is a simple exercise in sequential decisickimgaand helps in making
the transition to Chapter 17. It also emphasizes the podit tthe value of information is
computed by examining theonditionalplan formed by determining the best action for each
possible outcome of the test. It may be useful to introduceciglon trees” (as the term is
used in the decision analysis literature) to organize tfatimation in this question. (See Pearl
(1988), Chapter 6.) Each part of the question analyzes sepexhof the tree. Incidentally,
the question assumes that utility and monetary value abéncnd ignores the transaction
costs involved in buying and selling.

a. The decision network is shown in Figure S16.2.

b.

The expected net gain in dollars is
P(q")(2000 — 1500) + P(q)(2000 — 2200) = 0.7 x 500 + 0.3 x —200 = 290

¢. The question could probably have been stated better: Biéngesem is used to compute

P(q"|Pass), etc., whereas conditionalization is sufficient to compRféass).

P(Pass) = P(Pass|qt)P(q") + P(Pass|q”)P(q™)
=0.8x0.74+0.35 x 0.3 = 0.665
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Using Bayes’ theorem:

+ +
_ P(Pass|q™)P(q™) _ 0.8 x0.7 ~ 0.8421
P(Pass) 0.665

P(q"|Pass)
P(q™|Pass) ~ 1—0.8421 = 0.1579
)

_ P(=Pass|qgt)P(q") 02x0.7
P(=Pass) 0335
P(q~|=Pass) ~ 1—0.4179 = 0.5821

d. If the car passes the test, the expected value of buying is

P(qT|Pass)(2000 — 1500) + P(q~ | Pass)(2000 — 2200)
= 0.8421 x 500 + 0.1579 x —200 = 378.92

Thus buying is the best decision given a pass. If the cartfaéisest, the expected value
of buying is

P(qt|~Pass)(2000 — 1500) + P(q~|~Pass)(2000 — 2200)
= 0.4179 x 500 + 0.5821 x —200 = 92.53

Buying is again the best decision.

e. Since the action is the same for both outcomes of the teste#t itself is worthless (if
itis the only possible test) and the optimal plan is simplipug the car without the test.
(This is a trivial conditional plan.) For the test to be wanvttile, it would need to be
more discriminating in order to reduce the probabilityg*|—Pass). The test would
also be worthwhile if the market value of the car were lesd, the cost of repairs were
more.

An interesting additional exercise is to prove the generapgpsition that ifa is the
best action for all the outcomes of a test then it must be tise dmtion in the absence
of the test outcome.

P(q"|-Pass ~ 0.4179

Buy

Figure S16.2 A decision network for the car-buying problem.




156 Chapter 16. Making Simple Decisions

16.18

a. Intuitively, the value of information is nonnegative basa in the worst case one could
simply ignore the information and act as if it was not avdaal formal proof therefore
begins by showing that this policy results in the same exgakeatility. The formula for
the value of information is

VPIp(E <ZP i =eji|E)EU (o, |E, E; —e]k)> — EU(a|E)

If the agent does: given the informationZ;, its expected utility is
ZP i =ex|E)EU(a|E, E;=ej;) = EU(a|E)

where the equality holds because the LHS is just the comdilization of the RHS with
respect taf;. By definition,

EU(O[ejk |E, Ej = ejk) 2 EU(Q|E, Ej = ejk)
henceV PIg(E;) > 0.

b. One explanation is that people are aware of their own omatiity and may want to
avoid making a decision on the basis of the extra informatidnother might be that
the value of information is small compared to the value opgae—for example, many
people prefer not to know in advance what their birthday gméss going to be.

c. Value of information is not submodular in general. Suppbse¢ A is the empty set and

B is the setY =1; and suppose that the optimal decision remains unchandedsun
both X =1 andY =1 are observed.
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17.1 The best way to calculate this is NOT by thinking of all waygéd to any given square
and how likely all those ways are, but to compute the occupancbabilities at each time
step. These are as follows:

Up| Up | Right| Right| Right
(1,2)}|1| .1|.02| .026|.0284|.02462
(1,2) .8|.24| .258|.2178|.18054
(1,3) .64| .088| .0346(.02524
(2,2) .1].09| .034| .0276|.02824
(2,3) .512| .1728|.06224|
(3,2) .01| .073|.0346|.02627
(3,2) .001] .0073|.04443
(3,3) .4097|.17994
(4,1) .008| .0656(.08672
4,2) .0016/.01400
4,3) 32776

Projection in an HMM involves multiplying the vector of oqmancy probabilities by
the transition matrix. Here, the only difference is thatréhis a different transition matrix for
each action.

17.2 If we pick the policy that goeight in all the optional states, and construct the cor-
responding transition matriX, we find that the equilibrium distribution—the solution to
Tx =x—has occupancy probabilities of 1/12 for (2,3), (3,1), [3(3,3) and 2/3 for (4,1).
These can be found most simply by computiritk for any initial occupancy vectox, for n
large enough to achieve convergence.

17.3 Stationarity requires the agent to have identical prefegsrbetween the sequence pair
[S0, 81, S2, - - -], [S0, 8], S, .. .] and between the sequence gair, s, . . .|, [}, 55, .. .]. [fthe
utility of a sequence is its maximum reward, we can easilyat@stationarity. For example,

[4,3,0,0,0,...] ~ [4,0,0,0,0,...]
but
[3,0,0,0,...] = [0,0,0,0,...].

157
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We can still defind/” (s) as the expected maximum reward obtained by executisigrting
in s. The agent’s preferences seem peculiar, nonetheless. x&ompée, if the current state
s has rewardRmax the agent will be indifferent among all actions, but once #ttion is

executed and the agent is no longersirit will suddenly start to care about what happens
next.

17.4 This is a deceptively simple exercise that tests the stigdentlerstanding of the for-
mal definition of MDPs. Some students may need a hint or an pbeato get started.

a. The key here is to get the max and summation in the right plaoeR(s, a) we have

U(s) = max[R(s,a) + > T(s,a,8)U(s)

S/

and forR(s, a, s') we have

U(s) = mgxz T(s,a,s)[R(s,a,s") +~yU(s")] .

b. There are a variety of solutions here. One is to create asm@e” pre(s,a,s’) for
everys, a, s', such that executing in s leads not tos’ but topre(s, a, s’). In this state
is encoded the fact that the agent came froamd dida to get here. From the pre-state,
there is just one actioh that always leads te’. Let the new MDP have transitiof,
rewardR’, and discount’. Then

T'(s,a,pre(s,a,s')) =T(s,a,s)
T’(p’re(s, a, 8/)7 b, 8/) =1

R'(s,a) =
R'(pre(s,a,s’),b) = 7_%R(s,a, s')
Y =3
c. In keeping with the idea of part (b), we can create states(s, a) for everys, a, such
that
T'(s,a,post(s,a,s")) =1
T’ (post(s,a,s’),b,s") =T(s,a,s)
R'(s) =
R'(post(s,a,s")) = 7_%R(s, a)
Y =3

17.5 This can be done fairly simply by:

* Callpolicy-iteration (from "uncertainty/algorithms/dp.lisp" )on
the Markov Decision Processes representing the 4x3 grith, wailues for the step cost
ranging from, say, 0.0 to 1.0 in increments of 0.02.

« For any two adjacent policies that differ, run binary séaoo the step cost to pinpoint
the threshold value.

» Convince yourself that you haven’t missed any policietheziby using too coarse an
increment in step size (0.02), or by stopping too soon (1.0).
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One useful observation in this context is that the expeaital teward of any fixed
policy is linear inr, the per-step reward for the empty states. Imagine dravii@gatal reward
of a policy as a function of—a straight line. Now draw all the straight lines correspogd
to all possible policies. The reward of thgtimal policy as a function of is just the max of
all these straight lines. Therefore it is a piecewise lineanvex function of-. Hence there
is a very efficient way to finall the optimal policy regions:

* For any two consecutive valuesothat have different optimal policies, find the optimal
policy for the midpoint. Once two consecutive values-djive the same policy, then
the interval between the two points must be covered by thiatypo

» Repeat this until two points are known for each distinciropt policy.

* SUPPOSE 41, va1) @nd (rq2, ve2) are points for policya, and (ry, vp1) and (142, vp2)
are the next two points, for policy. Clearly, we can draw straight lines through these
pairs of points and find their intersection. This does notméawever, that there is no
other optimal policy for the intervening region. We can detime this by calculating
the optimal policy for the intersection point. If we get afdient policy, we continue
the process.

The policies and boundaries derived from this procedureshmvn in Figure S17.1. The
figure shows that there ar@ne distinct optimal policies! Notice that asbecomes more
negative, the agent becomes more willing to dive straigtd the —1 terminal state rather
than face the cost of the detour to the +1 state.

The somewhat ugly code is as follows. Notice that becauséirtbe for neighboring
policies are very nearly parallel, numerical instabilitya serious problem.

(defun policy-surface (mdp rl r2 &aux prev (unchanged nil))
"returns points on the piecewise-linear surface
defined by the value of the optimal policy of mdp as a
function of r"
(setqg rvplist
(list (cons rl1 (r-policy mdp rl)) (cons r2 (r-policy mdp r2)) )
(do ()
(unchanged rvplist)
(setg unchanged t)
(setg prev nil)
(dolist (rvp rvplist)
(let = ((rest (cdr (member rvp rvplist :test #eq)))
(next (first rest))
(next-but-one (second rest)))
(dprint (list (first prev) (first rvp)
"+ (first next) (first next-but-one)))
(when next
(unless (or (= (first rvp) (first next))
(policy-equal (third rvp) (third next) mdp))
(dprint "Adding new point(s)")
(setqg unchanged nil)
(if (and prev next-but-one
(policy-equal (third prev) (third rvp) mdp)
(policy-equal (third next) (third next-but-one) mdp))



160

Chapter 17. Making Complex Decisions

(let = ((intxy (policy-vertex prev rvp next next-but-one))
(int (cons (xy-x intxy) (r-policy mdp (xy-x intxy)))))
(dprint (list "Found intersection" intxy))
(cond ((or (< (first int) (first rvp))
(> (first int) (first next)))
(dprint "Intersection out of range!")
(let ((int-r (/ (+ (first rvp) (first next)) 2)))
(setq int (cons int-r (r-policy mdp int-r))))
(push int (cdr (member rvp rvplist :test #eq))))
((or (policy-equal (third rvp) (third int) mdp)
(policy-equal (third next) (third int) mdp))
(dprint "Found policy boundary")
(push (list (first int) (second int) (third next))
(cdr (member rvp rvplist :test #eq)))
(push (list (first int) (second int) (third rvp))
(cdr (member rvp rvplist :test #'eq))))
(t (dprint "Found new policy!")
(push int (cdr (member rvp rvplist :test #eq))))))
(let = ((int-r (/ (+ (first rvp) (first next)) 2))
(int (cons int-r (r-policy mdp int-r))))
(dprint (list "Adding split point" (list int-r (second int)
(push int (cdr (member rvp rvplist :test #'eq))))))))
(setq prev rvp))))

(defun r-policy (mdp r &aux U)
(set-rewards mdp r)
(setg U (value-iteration mdp
(copy-hash-table (mdp-rewards mdp) #’identity)
:epsilon 0.0000000001))

(list (gethash (1 1) U) (optimal-policy U (mdp-model mdp) ( mdp-rewards mdp))))

(defun set-rewards (mdp r &aux (rewards (mdp-rewards mdp))
(terminals (mdp-terminal-states mdp)))
(maphash #(lambda (state reward)
(unless (member state terminals :test #'equal)
(setf (gethash state rewards) r)))
rewards))

(defun policy-equal (p1 p2 mdp &aux (match t)
(terminals (mdp-terminal-states mdp)))
(maphash #(lambda (state action)
(unless (member state terminals :test #'equal)
(unless (eq (caar (gethash state pl)) (caar (gethash state p
(setg match nil))))
p1)
match)

(defun policy-vertex (rvpl rvp2 rvp3 rvp4)
(let ((a (make-xy :x (first rvpl) :y (second rvpl)))
(b (make-xy :x (first rvp2) 1y (second rvp2)))
(c (make-xy :x (first rvp3) :y (second rvp3)))
(d (make-xy :x (first rvp4) 1y (second rvp4))))

2)))
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(intersection-point (make-line :xyl a :xy2 b)
(make-line :xyl ¢ :xy2 d))))

(defun intersection-point (11 12)
;o 11 is line ab; 12 is line cd
;;; assume the lines cross at alpha a + (1-alpha) b,
also known as beta ¢ + (1-beta) d
;;; returns the intersection point unless they're parallel
(let » ((a (line-xyl 1))
(b (line-xy2 1))
(c (line-xyl 12))
(d (line-xy2 12))
(xa (xy-x a)) (ya (xy-y a))
(xb (xy-x b)) (yb (xy-y b))
(xc (xy-x c)) (yc (xy-y c))
(xd (xy-x d)) (yd (xy-y d))
(@ (- ( * (- xa xb) (- yc yd))
(* (- ya yb) (- xc xd)))))
(unless (zerop Q)

(let ((alpha (/ (- ( * (- xd xb) (- yc yd))
(* (- yd yb) (- xc xd)))
a)))
(make-xy :x (float (+ ( * alpha xa) ( * (- 1 alpha) xb)))

y (float (+ ( =+ alpha ya) ( * (- 1 alpha) yb))))))

17.6

a. To find the proof, it may help first to draw a picture of two arbiy functionsf and
g and mark the maxima; then it is easy to find a point where tHerdifice between
the functions is bigger than the difference between the maxiAssume, w.l.0.g., that
max, f(a) > max, g(a), and letf have its maximum value at‘. Then we have

|m§1x fla) — max gla)| = max fla) — max g(a) (by assumption)
f(a*) - maxg(a)

fla*) — g(a®)
max |f(a) — g(a)] (by definition of max)

IA A

b. From the definition of thd3 operator (Equation (17.6)) we have
BU; — BU] = |R P(s'|s,a)U;(s
I( D) = | (s)+var€nj(>;)z; (s'[s,a)Us(s")

— R(s) =7 max P( "['s,a)U; (s")]

a€A(s) <
= P U ! - P ! bl U/ !
'Vlarengé) (s’ IS a)Ui(s") max, > (s'|s,a)Us(s")]|
gfymax|ZP "'s,a)U, ZP "'s,a)U;(s")]

a€A(s
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| | | |
r=[-o :-1.6284] r=[-1.6284:-1.3702] r=[-1.3702 : -0.7083]
| | | | | |
INDERTRERDNDE
A=A A [d]=|h|[=]|d]|=|[d]|=
r=[-0.7083 : -0.4278] r=[-0.4278 : -0.0850] r =[-0.0850 : -0.0480]
| | | | | |
| A |c3| | - (= | A o [=:
r = [-0.0480 : —0.0274] r=[-0.0274 : -0.0218] r = [-0.0218 : 0.0000]
Figure S17.1  Optimal policies for different values of the cost of a stefthia4 x 3 envi-
ronment, and the boundaries of the regions with constatappolicy.

:7|ZP "I5,a%(s))Us(s") = Y P(s' | s,a"(s)) U} (s")]
:v|ZP |'s,a%())(Ui(s) = UL(s)]

Inserting this into the expression for the max norm, we have
|BU; = BU))|| = max|(BU; — BUj)(s)|
< ymax| Y P(s'|s,a"(s))(Ui(s") = U{(s)))|

< ymax|Us(s) — Ul(s)| = y||U; — U]
S

17.7
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ForU 4 we have
Ua(s)=R(s) + max Z P(s'a,s)Up(s")

and forUg we have
Ug(s)=R(s) +min Y _ P(s'|a, s)Ua(s) .

. To do value iteration, we simply turn each equation front farinto a Bellman update

and apply them in alternation, applying each to all statesianeously. The process
terminates when the utility vector for one player is the saamsethe previous utility
vectorfor the same playefi.e., two steps earlier). (Note that typicalljy andUp are
not the same in equilibrium.)

The state space is shown in Figure S17.2.

. We mark the terminal state values in bold and initializeeotlalues to 0. Value iteration

proceeds as follows:

(1.4)[(2,4)](3,4)(1,3)[(2,3)[(4,3)| (1,2)(3,2)[ (4,2)| (2,1)| (3,1)
Ual|l O 0 0 0 0O |+1| O 0O |+1|-1] -1
Ug| O 0 0 O|-1|+1| 0 |-1|+1|-1|-1
Uall O 0 O | -1|+1|+1 | 1| +1|+1 | -1| -1
Up||l -1 |+1|+1 | -1|-1|+1 | -1|-1|+1|-1] -1
Uyl +1 | +1 | +1 | -1 | +1 | +1 | -1 | +1 | +1 | -1 | -1
Upl||l 1| +1|+1 | -1|-1|+1 | -1|-1|+1|-1] -1

and the optimal policy for each player is as follows:

(1,4)(2,4),(3:4)[(1,3)[(2,3)[(4,3)] (1,2)[(3,2)| (4,2)| (2,1)| (3,1)

™ (1 (2,4)](3,4)[(2,4)((2,3)|(4,3) (3,2)|(4,2)
75 |(1,3)[(2,3)[(3,2)[(1,2)|(2,1) (1,3)[(3,1)

(1,4) ==(2,4) =—=(3,4)
| | |

19—y —1T—{@3]D
|
o0

(2,1) (3,1)

Figure S17.2 State-space graph for the game in Figure 5.17.

17.8
a.

r = 100.
ull].

ull|d
ullil
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See the comments for part d. This should have beea —100 to illustrate an

alternative behavior:
riri.

dirfu
r{rju
Here, the agent tries to reach the goal quickly, subject tengiting to avoid the
square(1,3) as much as possible. Note that the agent will choose to movenDo
square(1, 2) in order to actively avoid the possibility of “accidentdlignoving into the
square(1, 3) if it tried to move Right instead, since the penalty for mayinto square
(1, 3) is so great.
b. r = =3.
riri.
ririu
ririu
Here, the agent again tries to reach the goal as fast as [goggille attempting to
avoid the squar¢l, 3), but the penalty for squaré, 3) is not so great that the agent
will try to actively avoid it at all costs. Thus, the agent Mihoose to move Right in
square(1, 2) in order to try to get closer to the goal even if it occasionaill result in
a transition to squarél, 3).
c.r=20
rirf.
ulufu
ulufu
Here, the agent again tries to reach the goal as fast as [mydsib will try to do so
via a path that includes squafe, 3) if possible. This results from the fact that square
(1,3) does not incur the reward of1 in all other non-goal states, so it reaching the goal
via a path through that square can potentially have sligirdater reward than another
path of equal length that does not pass thro(igh3).
dr=3
ulll.
ull|d
ulll

17.9 The utility of Up is

101 . 21 . ,y100
507y — =50y —y2P——
y ;'y (i et
while the utility of Down is
101 1— 7100
—507 + Y A = =50y + 4 ——
t=2 1—v

Solving numerically we find the indifference point to hex~ 0.9844: larger than this
and we want to go Down to avoid the expensive long-term carssees, smaller than this
and we want to go Up to get the immediate benefit.
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17.10

a. Intuitively, the agent wants to get to state 3 as soon aslpgesbecause it will pay a

cost for each time step it spends in states 1 and 2. Howeeeortly action that reaches
state 3 (actiord) succeeds with low probability, so the agent should minanitze cost
it incurs while trying to reach the terminal state. This sesfg that the agent should
definitely try actionb in state 1; in state 2, it might be better to try actioto get to state
1 (which is the better place to wait for admission to state&@jer than aiming directly
for state 3. The decision in state 2 involves a numericaleméd

. The application of policy iteration proceeds in alterngtsteps of value determination
and policy update.

e Initialization: U « (—1, —2, 0), P « (b, b).

* Value determination

u; = —1+4+0.1ug + 0.9u,
uy = —2+ 0.1ug + 0.9us
us = 0

That is,u; = —10 andus = —20.
Policy update In state 1,

> T(1,a,5)u; =08 x —20+ 0.2 x =10 = 18
j
while

> T(1,b,j)u; =0.1x0x0.9x 10 =—9
J
so actionb is still preferred for state 1.
In state 2,
> T(1,a,5)u; = 0.8 x =10+ 0.2 x —20 = —12
J
while

D T(1,b,j)u; =0.1x0x 0.9 x —20 = —18
J
so actiona is preferred for state 1. We sehchanged? «— false and proceed.
* Value determination

u; = —1+4+0.1ug + 0.9u,
uy = —2+ 0.8u; + 0.2us
ug = 0
Once moray; = —10; now,us, = —15. Policy update In state 1,

> T(1,a,5)u; =08 x —15+ 02 x —10 = —14
J
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while
> T(1,b,j)u; =0.1x0x0.9x —10 = -9
J
so actionb is still preferred for state 1.
In state 2,
> T(1,a,5)u; =08 x —10 402 x —15 = 11
J
while

> T(1,b,j)u; =01%x0x09x —15 = —13.5
J

so actiona is still preferred for state lunchanged? remainstrue, and we termi-
nate.

Note that the resulting policy matches our intuition: whestate 2, try to move to state
1, and when in state 1, try to move to state 3.

. Aninitial policy with actiona in both states leads to an unsolvable problem. The initial

value determination problem has the form

up = —1+40.2uy + 0.8uy
Uy = -2+ O8’LL1 + OQUQ
us = 0

and the first two equations are inconsistent. If we were tadrgolve them iteratively,
we would find the values tending teco.

Discounting leads to well-defined solutions by boundingglealty (expected dis-
counted cost) an agent can incur at either state. Howeeeghbice of discount factor
will affect the policy that results. Foy small, the cost incurred in the distant future
plays a negligible role in the value computation, becawi$es near 0. As a result,
an agent could choose actibrin state 2 because the discounted short-term cost of re-
maining in the non-terminal states (states 1 and 2) outvedigé discounted long-term
cost of actiorb failing repeatedly and leaving the agent in state 2. An &ulthl exer-
cise could ask the student to determine the valug af which the agent is indifferent
between the two choices.

17.11 The framework for this problem is ftuncertainty/domains/4x3-mdp.lisp" .
There is still some synthesis for the student to do for angw&or c. some experimental de-
sign is necessary.

17.12 (Note: Early printings used “value determination,” a terccidentally left over from
the second edition, instead of “policy evaluation.”) Théigoevaluation algorithm calculates
U™ (s) for a given policyr. The policy for an agent that thinKgis the true utility andP is
the true model would be based on Equation (17.4):

m(s) = argmaxz P(s'|s,a)U(s") .
a€A(s)

S/
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Given this policy, the policy loss compared to the true oplipolicy, starting in state, is
justU™ (s) — U™ (s).

17.13 The belief state update is given by Equation (17.11), i.e.,
b(s') =aP(e|s) ) P(s'|s,a)b(s) .

It may be helpful to compute this in two stages: update forttteon, then update for the ob-

servation. The observation probabiliti#Xe | s’) are all either 0.9 (for squares that actually
have one wall) or 0.1 (for squares with two walls). The foliog/table shows the results.

Note in particular how the probability mass concentrate$3,2).

Left| 1wall| Left| 1 wall
(1,1)}|.11111).20000| .06569 .09197.02090
(1,2)||.111111.11111{.03650Q .04234} .00962
(1,3)||-11111.20000 .06569 .09197 .02090
(2,1))|.11111.11111}.03650Q .27007| .06136
(2,3)]|.11111).11111{.03650 .05985 .01360
(3,1)[|.11111).11111{.32847.06861, .14030
(3,2)||.11111.11111}.32847.30219 .61791
(3,3)]|.11111).02222(.06569 .03942 .08060
(4,1)||.11111.01111{.00365 .00036 .00008
4,2) 0].01111{.03285.03321.06791
(4,3) 0 0 0 0 0

17.14 In a sensorless environment, POMDP value iteration is ¢isflgrthe same as ordi-
nary state-space search—the branching ocurs only on abtooes, not observations. Hence
the time complexity i) (| A|9).

17.15 Policies for the 2-state MDP all have a threshold bedieduch that ifb(0) > p then
the optimal action ig70, otherwise it isStay. The question is, what does this change do to
the threshold? By making sensing more informative in staadless informative in state 1,
the change has made state 0 more desirable, hence the ttreshep increases

17.16 This question is simple a matter of examining the definitiolmsa dominant strat-
egy equilibrium[sy,...,s,], it is the case that for every playér s; is optimal for every
combinationt_; by the other players:

V1 Vt_i VSQ [Si,t_i] i [Sg,t_i] .
In a Nash equilibrium, we simply require thgtis optimal for the particular current combi-
nations_; by the other players:

Vi Vst [si,5.5] < [sh s 4] .
Therefore, dominant strategy equilibrium is a special cd$¢ash equilibrium. The converse

does not hold, as we can show simply by pointing to the CD/Ddbhg, where neither of the
Nash equilibria is a dominant strategy equilibrium.
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INDEPENDENT
PRIVATE VALUES

17.17 In the following table, the rows are labelled by A's move ahd tolumns by B’s
move, and the table entries list the payoffs to A and B respedyt

R|P| S| F|W
00/-111,-1-1,11,-1
1-110,0-1,1|-1,1/1,-1
-1,11,-110,0|-1,11,-1
1-1|1,-1}1,-1/0,0|-1,1
-1,1-1,1-1,1/1,-1| 0,0

Supposed chooses a mixed strate§y: R; p: P; s:S; f: F; w: W], wherer +p + s +
f +w=1. The payoffto Aof B’s possible pure responses are as follows:

S nw oo

R:+4p—s+f—-w
P:—-r+s+f-w
S:+r—-p+f-w
F:—r—p-—s+w
W :+r+p+s—f

Itis easy to see that no option is dominated over the whoieme&olving for the intersection
of the hyperplanes, we find=p=s=1/9 and f = w = 1/3. By symmetry, we will find the
same solution whe® chooses a mixed strategy first.

17.18 We apply iterated strict dominance to find the pure stratdggst, Pol: do nothing
dominatedPol: contract so we drop thd?ol: contractrow. Next,Fed: contractdominates
Fed: do nothingandFed: expandn the remaining rows, so we drop those columns. Finally,
Pol: expanddominatesPol: do nothingon the one remaining column. Hence the only Nash
equilibrium is a dominant strategy equilibrium wiBol: expandandFed: contract This is
not Pareto optimal: it is worse for both players than the fitategy profiles in the top right
quadrant.

17.19 This question really has two answers, depending on whatrgstfan is made about
the probability distribution over bidder’s private valigats v; for the item.

In a Dutch auction, just as in a first-price sealed-bid anctindders must estimate the
likely private values of the other bidders. When the prichigher tharv;, agent; will not
bid, but as soon as the price reachegshe faces a dilemma: bid now and win the item at a
higher price than necessary, or wait and risk losing the tieanother bidder. In the standard
models of auction theory, each bidder, in addition to a peivealuev;, has a probability
densityp;(v1, ..., v,) over the private values of atl bidders for the item. In particular, we
considerindependent private values so that the distribution over the other bidders’ values
is independent of;. Each bidder will choose a bid—i.e., the first price at whioky will bid
if that price is reached—through a bidding functititw; ).

We are interested in finding a Nash equilibrium (technicalBBayes—Nash equilibrium
in which each bidder’s bidding function is optimal given thiedding functions of the other
agents. Under risk-neutrality, optimality of a bids determined by the expected payoff, i.e.,
the probability of winning the auction with bibltimes the profit when paying that amount



169

for the item. Now, agent wins the auction with bid if all the other bids are less than
let the probability of this happening B&;(b) for whatever fixed bidding functions the other
bidders use. W;(b) is thus a cumulative probability distribution and nondesiag inb;
under independent private values, it does not depend.pdhen we can write the expected
payoff for agent as

Qi(vi, b) = Wi(b)(vi — b)
and the optimality condition in equilibrium is therefore

Vi, b Wi(bi(vi))(vi — bi(v;)) > Wi(b)(v; — b) . (17.1)
We now prove that the bidding functiohgv;) must bemonotonic, i.e.,nondecreasingn the
private valuatiorv;. Letv andv’ be two different valuations, with=b;(v) andb’ = b;(v’).

Applying Equation (17.1) twice, first to say that, b) is better than(v,b’) and then to say
that(v/,b) is better thar{v’, b), we obtain

Wi(b)(v —b) > W;()(v —V)

Wi0)(v' — V) > Wi(b)(v' —b)
Rearranging, these become

v(Wi(b) = Wi(t')) = Wi(b)b — Wity

O'(Wi(t') — W;i(b)) > Wi(b)Y — W;(b)b
Adding these equations, we have

(W'~ v)(W;(¥') = Wi(b)) > 0
from which it follows that ifv” > v, thenW; (') > W;(b). Monotonicity does not follow
immediately, however; we have to handle two cases:

o If W (V') > W;(b), or if W; is strictly increasing, thetY > b andb;(-) is monotonic.

+ Otherwise,W;(b') = W;(b) andW; is flat betweerb andd’. Now if W; is flat in any
interval [z, y], then an optimal bidding function will prefer over any other bid in the
interval since that maximizes the profit on winning withoffeating the probability of
winning; hence, we must have= b and agairb;(-) is monotonic.

Intuitively, the proof amounts to the following: if a highealuation could result in a lower
bid, then by swapping the two bids the agent could increassumof the payoffs for the
two bids, which means that least oneof the two original bids is suboptimal.

Returning to the question of efficiency—the property that item goes to the bidder
with the highest valuation—we see that it follows immediatigom monotonicity in the
case where the bidders’ prior distributions over valuaiaresymmetric or identically dis-
tributed?

L According to Milgrom (1989), Vickrey (1961) proved that werdhis assumption, the Dutch auction is efficient.
Vickrey's argument in Appendix Il for the monotonicity ohé bidding function is similar to the argument
above but, as written, seems to apply only to the uniforntritligtion case he was considering. Indeed, much
of his analysis beginning with Appendix Il is based on an igeebidding function, which implicithassumes
monotonicity of the bidding function. Many other authorsabegin by assuming monotonicity, then derive the

form of the optimal bidding function, and then show it is mtdc. This proves the existence of an equilibrium
with monotonic bidding functions, but not that all equilébhave this property.
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Vickrey (1961) proves that the auctionnst efficient in the asymmetric case where one
player’s distribution is uniform ovej0, 1] and the other’s is uniform ovdn, b] for a > 0.
Milgrom (1989) provides another, more transparent exaropleefficiency: Suppose Alice
has a known, fixed value of $101 for an item, while Bob’s vaki&50 with probability 0.8
and $75 with probability 0.2. Given that Bob will never bidyher than his valuation, Alice
can see that a bid of $51 will wiat least80% of the time, giving an expected profit af
least0.8 x ($101 — $51) = $40. On the other hand, any bid of $62 or more cannot yield an
expected profit at most $39, regardless of Bob’s bid, and donsinated by the bid of $51.
Hence, in any equilibrium, Alice’s bid at most $61. Knowitngst Bob can bid $62 whenever
his valuation is $75 and be sure of winning. Thus, with 20%bphility, the item goes to
Bob, whose valuation for it is lower than Alice’s. This vitéa efficiency.

Besides efficiency in the symmetric case, monotonicity hadher important conse-
quence for the analysis of the Dutch (and first-price) ancti@ makes it possible to derive
the exact form of the bidding function. As it stands, Equaiib7.1) is difficult or impossible
to solve because the cumulative distribution of the othddéis’ bids,1W;(b), depends on
their bidding functions, so all the bidding functions areipled together. (Note the similar-
ity to the Bellman equations for an MDP.) With monotonicibgwever, we can defing/;
in terms of the known valuation distributions. Assumingépdndence and symmetry, and
writing b;l(b) for the inverse of the (monotonic) bidding function, we have

Qi(vi,b) = (P(b; ' (0))" " (v — b)

where P(v) is the probability that an individual valuation is less than At equilibrium,
whereb maximizes(Q);, the first derivative must be zero:

0Q . (n—=1)(P(b; " (b)"*p(b; " (b)) (vi — b) IR
-5 =0= 5 60) — (P(b; ' ()"

where we have used the fact théit ' (z)/dz=1/f'(f~(z)).
For an equilibrium bidding function, of coursb;l(b) = v;; substituting this and sim-
plifying, we find the following differential equation fdr;:

bi(vi) = (vi = bi(vy)) - (n — 1)p(vi)/ P(vs) .

To find concrete solutions we also need to establish a boyrmdadition. Suppose is the
lowest possible valuation for the item; then we must havye,) = vy (Milgrom and Weber,
1982). Then the solution, as shown by McAfee and McMillarB@)9is

Sy (P(v))"Hdv
(P(wi))"

For example, suppogeis uniform in[0, 1}; thenP(v) = v andb;(v;) = v; - (n — 1) /n, which
is the classical result obtained by Vickrey (1961).

bi(v;) = v; —

17.20 Insuch an auction itis rational to continue bidding as losgvanning the item would
yield a profit, i.e., one is willing to bid up tv;. The auction will end &wv, +d, so the winner
will pay v, + d/2, slightly less than in the regular version.
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17.21 Every game is either a win for one side (and a loss for the pthrea tie. With 2 for a
win, 1 for a tie, and O for a loss, 2 points are awarded for egarye, so this is a constant-sum
game.

If 1 point is awarded for a loss in overtime, then for some gad@@oints are awarded
in all. Therefore, the game is no longer constant-sum.

Suppose we assume that team A has probabild§winning in regular time and team
B has probabilitys of winning in regular time (assuming normal play). Furthers assume
team B has a probability of winning in overtime (which occurs if there is a tie aftegugar
time). Once overtime is reached (by any means), the expedtds are as follows:

U = 1+p
U9 =144

In normal play, the expected utilities are derived from tmebability of winning plus the
probability of tying times the expected utility of overtinpday:

Ua = 2r+(1—7—s)(1+p)
U = 2s+(1—r—s)(1+q)
Hence A has an incentive to agred/if > U, or

l+p>2r+(1—-r—s)(1+p) or rp—r+sp+s>0 or p>rls
T S

and B has an incentive to agre(ﬂg > Upg, or
l+g>2s+(1—r—s)(1+q) OF sg—s+rqg+r>0 or q>i_|__z

When both of these inequalities hold, there is an incentvigetin regulation play. For any
values ofr ands, there will be values gp andq such that both inequalities hold.

For an in-depth statistical analysis of the actual effe€the rule change and a more
sophisticated treatment of the utility functions, see “@iwee! Rules and Incentives in the
National Hockey League” by Stephen T. Easton and Duane V\kdRbie, available at
http://people.uleth.ca/rockerbie/ OVERTIME.PDF



Solutions for Chapter 18
Learning from Examples

18.1 The aim here is to couch language learning in the frameworth®fchapter, not to
solve the problem! This is a very interesting topic for claéscussion, raising issues of
nature vs. nurture, the indeterminacy of meaning and reéereand so on. Basic references
include Chomsky (1957) and Quine (1960).

The first step is to appreciate the variety of knowledge tlmsgunder the heading
“language.” The infant must learn to recognize and prodpessh, learn vocabulary, learn
grammar, learn the semantic and pragmatic interpretati@speech act, and learn strategies
for disambiguation, among other things. The performaneeehts for this (in humans) and
their associated learning mechanisms are obviously vemyptex and as yet little is known
about them.

A naive model of the learning environment considers jusettehange of speech sounds.
In reality, the physical context of each utterance is ciuaachild must see the context in
which “watermelon” is uttered in order to learn to associatatermelon” with watermel-
ons. Thus, the environment consists not just of other hurbahsilso the physical objects
and events about which discourse takes place. Auditoryoseiietect speech sounds, while
other senses (primarily visual) provide information on {iteysical context. The relevant
effectors are the speech organs and the motor capacitieallza the infant to respond to
speech or that elicit verbal feedback.

The performance standard could simply be the infant’s gensitity function, however
that is realized, so that the infant performs reinforcenteatning to perform and respond to
speech acts so as to improve its well-being—for example,dtgining food and attention.
However, humans’ built-in capacity for mimicry suggestattthe production of sounds sim-
ilar to those produced by other humans is a goal in itself. dtikel (once he or she learns to
differentiate sounds and learn about pointing or other rediindicating salient objects) is
also exposed to examples of supervised learning: an aguit'shoe” or “belly button” while
indicating the appropriate object. So sentences produgestiblts provide labelled positive
examples, and the response of adults to the infant’'s speteipr@vides further classification
feedback.

Mostly, it seems that adults do not correct the child’s speso there are very few neg-
ative classifications of the child’s attempted sentencéss i§ significant because early work
on language learning (such as the work of Gold, 1967) conateut just on identifying the
set of strings that are grammatical, assuming a particutangatical formalism. If there are
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only positive examples, then there is nothing to rule outgtenmarS — Word*. Some
theorists (notably Chomsky and Fodor) used what they callgbverty of the stimulus” argu-
ment to say that the basic universal grammar of languageshmusnate, because otherwise
(given the lack of negative examples) there would be no waydhchild could learn a lan-
guage (under the assumptions of language learning asngaarset of grammatical strings).
Critics have called this the “poverty of the imaginationyjament—I can’t think of a learning
mechanism that would work, so it must be innate. Indeed, ijavéo probabilistic context
free grammars, then it is possible to learn a language withegative examples.

18.2 Learning tennis is much simpler than learning to speak. Huoglisite skills can be
divided into movement, playing strokes, and strategy. Tivrenment consists of the court,
ball, opponent, and one’s own body. The relevant sensorthareisual system and propri-
oception (the sense of forces on and position of one’s owy Ipadts). The effectors are
the muscles involved in moving to the ball and hitting thelst: The learning process in-
volves both supervised learning and reinforcement legtnfBupervised learning occurs in
acquiring the predictive transition models, e.g., whee dpponent will hit the ball, where
the ball will land, and what trajectory the ball will have @ftone’s own stroke (e.g., if | hit
a half-volley this way, it goes into the net, but if | hit ithat way, it clears the net). Rein-
forcement learning occurs when points are won and lost—hparticularly important for
strategic aspects of play such as shot placement and pasgige.g., in 60% of the points
where | hit a lob in response to a cross-court shot, | end updohe point). In the early
stages, reinforcement also occurs when a shot succeed=aiting the net and landing in the
opponent’s court. Achieving this small success is itseléguential process involving many
motor control commands, and there is no teacher availabielltthe learner's motor cortex
which motor control commands to issue.

18.3 The algorithm may not return the “correct” tree, but it widltarn a tree that is logi-
cally equivalent, assuming that the method for generatiagnples eventually generates all
possible combinations of input attributes. This is trueduse any two decision tree defined
on the same set of attributes that agree on all possible dgarape, by definition, logically
equivalent. The actually form of the tree may differ becaihsee are many different ways to
represent the same function. (For example, with two atieibd and B we can have one tree
with A at the root and another witB at the root.) The root attribute of the original tree may
not in fact be the one that will be chosen by the informatiom ggeuristic when applied to
the training examples.

18.4 This question brings a little bit of mathematics to bear amahalysis of the learning
problem, preparing the ground for Chapter 20. Error minatian is a basic technique in
both statistics and neural nets. The main thing is to seetiieaerror on a given training
set can be written as a mathematical expression and viewadusction of the hypothesis
chosen. Here, the hypothesis in question is a single numlzef0, 1] returned at the leaf.

a. If o is returned, the absolute error is

E=p(l—a)+na=a(n—p)+p = nwhena =1

= pwhena =0
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This is minimized by setting
a=1ifp>n
a=0ifp<n

That is,« is the majority value.

b. First calculate the sum of squared errors, and its devigati

E =p(1 —a)?+na?
98 — 2an — 2p(1 — a) = 2a(p +n) — 2p

The fact that the second derivativﬁ% = 2(p + n), is greater than zero means tHat

is minimized (not maximized) wher% =0, i.e., wheny = zﬁ'

18.5 This result emphasizes the fact that any statistical fldicios caused by the random
sampling process will result in an apparent informatiomgai

The easy part is showing that the gain is zero when each shhsdhe same ratio of
positive examples. The gain is defined as

d +n
B < p > N PRt < Pk )
p+n - bt Pk + ng
Sincep = > pr andn = > ny, if pr/(pr + ni) is the same for alk we must havey, / (pr, +
ni) = p/(p + n) for all k. From this, we obtain

d
. p P 1
Gain = B - B +n
<p+n> <p+n>p+n;p’“ *

1
:B< b >—B< P ) (p+n)=0
p+n p+n)p+n

Note that this holds for all values pf, +n;. To prove that the value is positive elsewhere, we
can apply the method of Lagrange multipliers to show that ihithe only stationary point;
the gain is clearly positive at the extreme values, so it Stp@ everywhere but the stationary
point. In detail, we have constrain}s, p; =p and) _, ni, =n, and the Lagrange function is

p Dk + 1 Dk
A=B - B +M(p— + A [n— .
<p+n> — pn <pk+nk> 1<p Z,;p’“> 2(” Z,;”’“>

Setting its derivatives to zero, we obtain, for edch

oA 1 Dk Dk + Nk Dk 1 Dk B
el B - log — - 5] —M=0
Op, p+n \pr+ng p+n np \pk +1r (px + 1)
OA 1 —

_ B Pk _pk+nklogp_k Pk )= =0.
ong p+n P + ng p+n nk \ (pr + nk)

Subtracting these two, we obtdiog (px/ni) = (p + n)(A2 — Ap) for all k, implying that at
any stationary point the ratigs, /n; must be the same for all. Given the two summation
constraints, the only solution is the one given in the qoesti
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18.6 Note that to compute each split, we need to compg¢erainder(A;) for each at-

tribute A;, and select the attribute the provides the minimal remgimiformation, since the

existing information prior to the split is the same for aliréitutes we may choose to split on.
Computations for first split: remainders fdrl, A2, and A3 are

(4/5)(—2/41og(2/4) — 2/410g(2/4)) + (1/5)(—=0 — 1/11og(1/1)) = 0.800

(3/5)(—2/31og(2/3) — 1/31log(1/3)) + (2/5)(—0 — 2/21og(2/2)) ~ 0.551

(2/5)(—1/2log(1/2) — 1/210g(1/2)) + (3/5)(—1/31log(1/3) — 2/310g(2/3)) ~ 0.951
ChooseA, for first split since it minimizes the remaining informatiokeeded to classify all
examples. Note that all examples witlh = 0, are correctly classified @ = 0. So we only
need to consider the three remaining examplesx,, x5) for which A, = 1.

After splitting onA,, we compute the remaining information for the other twaoilatties
on the three remaining exampléss, x4, x5) that haved, = 1. The remainders foA1 and
A3 are

(2/3)(=2/2log(2/2) — 0) + (1/3)(=0 — 1/1log(1/1)) = 0
(1/3)(—1/11og(1/1) — 0) + (2/3)(—1/2log(1/2) — 1/21log(1/2)) ~ 0.667.
So, we select attribute A1 to split on, which correctly cifiss all remaining examples.

18.7 See Figure S18.1, where nodes on successive rows measimaestd,, A,, andAs.
(Any fixed ordering works.)

(b)
Figure S18.1 XOR function representations: (a) decision tree, and (bjsiten graph.

18.8 This is a fairly small, straightforward programming exseei The only hard part is the
actualy? computation; you might want to provide your students wittbeaky function to do
this.

18.9 This is another straightforward programming exercise. Tdilew-up exercise is to
run tests to see if the modified algorithm actually does bette

18.10 Let the prior probabilities of each attribute value Bév,), ..., P(v,). (These prob-
abilities are estimated by the empirical fractions amorgggéRamples at the current node.)
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From page 540, the intrinsic information content of theiladtie is

n

I(P(vy),...,P(vy)) = > —P(v;) log v
=1

Given this formula and the empirical estimates /fv;), the modification to the code is
straightforward.

18.11 If we leave out an example of one class, then the majority @féimaining examples
are of the other class, so the majority classifier will alwpyedict the wrong answer.

18.12
| Test | If yes| If no
A =1 1 next tes
A3 =1NA,=0|0 next tes
Ay =0 0 1

18.13

Proof (sketch): Each path from the root to a leaf in a decisiea represents a logical
conjunction that results in a classification at the leaf nddle can simply create a decision
list by producing one rule to correspond to each such patutiir the decision tree where the
rule in the decision list has the test given by the logicaljgoction in the path and the output
for the rule is the corresponding classification at the Idahe path. Thus we produce one
rule for each leaf in the decision tree (since each leaf deters a unique path), constructing
a decision list that captures the same function representing decision tree.

A simple example of a function that can be represented wiittlgtfewer rules in a de-
cision list than the number of leaves in a minimal sized decifee is the logical conjunction

of two boolean attributesd; A Ay = T.

L Test | If yes|If no|
The decision list has the forrL.j.41 T A A, = T\T \F

Note: one could consider this either one rule, or at most tiesrif we were to represent

| Test | If yes] If no
itasfollows:|A; =T AAy =T ‘ T next test
T F

In either case, the corresponding decision tree has thaeede

18.14 Note: this is the only exercise to cover the material in e&cti8.6. Although the
basic ideas of computational learning theory are both ingmbrand elegant, it is not easy to
find good exercises that are suitable for an Al class as oppwsa theory class. If you are
teaching a graduate class, or an undergraduate class witbreg £mphasis on learning, it
might be a good idea to use some of the exercises from Keadhgamirani (1994).

a. If each test is an arbitrary conjunction of literals, themlecision list can represent
an arbitrary DNF (disjunctive normal form) formula directl The DNF expression
Civ CyV---V Oy, whereC; is a conjunction of literals, can be represented by a



177

decision list in whichC; is theith test and returnrue if successful. That is:

Ch1 — True;
Cy — True;

C,, — True;
True — False

Since any Boolean function can be written as a DNF formuke imy Boolean function
can be represented by a decision list.

b. A decision tree of depth can be translated into a decision list whose tests have dt mos
k literals simply by encoding each path as a test. The tesin®the corresponding leaf
value if it succeeds. Since the decision tree has deptio path contains more than
literals.

18.15 The L, loss is minimized by the median, in this case 7, andithéoss by the mean,
in this casel43/7.

For the first, suppose we have an odd nuniber- 1 of elementgy_,, < ... < yp <
... < yn. Forn =0, § = yo is the median and minimizes the loss. Then, observe thatthe
loss forn + 1is

1 n+1 1 ) n
om+3 (ZH) 19— yil = T3 (|y—yn+1| + Iy—y,(n+1)|) + miznw_yi'
=—(Nn —

The first term is equal tQ,, 11 — y—(n41)| Whenevery, 11 < 3§ < y_(11), €.9. forg = yo,
and is strictly larger otherwise. But by inductive hypotisébe second term also is minimized
by 4 = yo, the median.

For the second, notice that as theloss ofy given datay,, . . ., y,

1 .
= (i)
n <
(2
is differentiable we can find critical points:

OZ%Z@—%)

(2

ory = (1/n) )", y;. Taking the second derivative we see this is the unique lméalmum,
and thus the global minimum as the loss is infinite whdands to either infinity.

18.16
a. The circle equation expands into five terms
0 = 23 4+ 22 — 2ax; — 2bxy + (a® +b* — r?)

corresponding to weights = (2a, 2b, 1, 1) and intercept:? 4 b2 — r2. This shows that
a circular boundary is linear in this feature space, all@ninear separability.
In fact, the three features;, x5, 22 + 22 suffice.
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b. The (axis-aligned) ellipse equation expands into sixger
0 = ca? + dxs — 2acx; — 2bdxs + (a’c+ b2d — 1)

corresponding to weight® = (2ac, 2bd, ¢, d, 0) and intercept,? 4+ b* — r2. This shows
that an elliptical boundary is linear in this feature spalwing linear separability.
In fact, the four features, z2, 23, ¥3 suffice for any axis-aligned ellipse.

18.17 The examples map frofxy, zo] to [z1, z1, 2] coordinates as follows:

[—1,—1] (negative) maps tp-1, +1]

[—1, +1] (positive) maps tg—1, —1]

[+1, —1] (positive) maps td+1, —1]

[+1, +1] (negative) maps tp+1, +1]

Thus, the positive examples haver, = — 1 and the negative examples hawer, = + 1.

The maximum margin separator is the limgzr, =0, with a margin of 1. The separator
corresponds to the; =0 andzs = 0 axes in the original space—this can be thought of as the
limit of a hyperbolic separator with two branches.

18.18

18.19 XOR (in fact any Boolean function) is easiest to construgtgistep-function units.

Because XOR is not linearly separable, we will need a hiddger! It turns out that just one
hidden node suffices. To design the network, we can thinke @R function as OR with

the AND case (both inputs on) ruled out. Thus the hidden lagenputes AND, while the

output layer computes OR but weights the output of the hidaete negatively. The network
shown in Figure S18.2 does the trick.

W=0.3

W=0.
W:_O.

W=0.3

Figure S18.2 A network of step-function neurons that computes the XOR:fiom.

18.20 According to Rojas (1996), the number of linearly separ&melean functions with
n inputs is

n
2" —1
S
1=0 L

Forn > 2 we have
on _ 1 2r -1 2(n+1)(2")" n?

so the fraction of representable functions vanishes igreases.
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18.21 This question introduces some of the concepts that aresstudidepth in Chapter 20;
it could be used as an exercise for that chapter too, butdsdsting to see at this stage also.
The logistic output is
1 1
P wx = 14 e 2jwi%i

Taking the log and differentiating, we have

logp = —log (1+e"%)
Ologp 1 0 WX
ow; N <1+€W'X ow; (1 te )>

= —p-(—xi) e "= (1-p;.
For a negative example, we have
log(1—p) = —log1/(1—p)=—log(l+e")

Olog p _ 1 a9 Wex
<1+eW'X8wi (1475

8wi
= —(1-p)zi-"=—(1-p) zi p/(l-p)=—pz;.
The loss function id. = — log p for a positive exampley(=1) andL = — log(1 — p) for a
negative exampley(= 0). We can write this as a single rule:

L=—logp’(1—p)"™¥ = —ylogp — (1 —y)log(1 - p) .
Using the above results, we obtain

aai = —y(1 —p)z; + (1 — y)pz; = —zi(y — p) = —zi(y — hw(X))

which has the same form as the linear regression and peoodptirning rules.

18.22 This exercise reinforces the student’s understanding wfat@etworks as mathemat-
ical functions that can be analyzed at a level of abstraciimove their implementation as a
network of computing elements. For simplicity, we will asgithat the activation function

is the same linear function at each nod¢z) = cx + d. (The argument is the same (only
messier) if we allow different; andd; for each node.)

a. The outputs of the hidden layer are

Hj=g <Z wk,jlk> = CZwaIk; +d
k k

The final outputs are

Oi=yg Zwa‘mﬂj =c Zwm‘ (Czwkvaker) +d
J J k

Now we just have to see that this is linear in the inputs:

0; = C2ZIkak,jwj,i +d| 1+ Czwj,i
k J J
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Thus we can compute the same function as the two-layer nletwgimg just a one-layer
perceptron that has weights; ; = _, wy jw;; and an activation functiog(z) =

Ax+d (1 + CZJ- ’LijZ‘).
b. The above reduction can be used straightforwardly to redum:-layer network to an
(n — 1)-layer network. By induction, the-layer network can be reduced to a single-

layer network. Thus, linear activation function restrieumal networks to represent only
linearly functions.

c. The original network withn input and outout nodes and hidden nodes ha8hn
weights, whereas the “reduced” network hasweights. Whenh < n, the origi-
nal network has far fewer weights and thus represents thaajoping more concisely.
Such networks are known to learn much faster than the reduesebrk; so the idea of
using linear activation functions is not without merit.

18.23 This question is especially important for students who ateeRpected to implement
or use a neural network system. Together with 20.15 and 2@ .dives the student a concrete
(if slender) grasp of what the network actually does. Martyeotsimilar questions can be
devised.

Intuitively, the data suggest that a probabilistic pradictP(Output=1) = 0.8 is
appropriate. The network will adjust its weights to minieithe error function. The error is

1 1
E=; > (i—ai)’ = 518001 = a1)? +20(0 — a1)?] = 500? — 800; + 50

The derivative of the error with respect to the single outpuis

E
8_ = 100a; — 80
8@1

Setting the derivative to zero, we find that indeed= 0.8. The student should spot the
connection to Ex. 18.8.

18.24 This is just a simple example of the general cross-validatmdel-selection method
described in the chapter. For each possible size of hiddem lg to some reasonable bound,
the k-fold cross-validation score is obtained given the exgstiraining data and the best
hidden layer size is chosen. This can be done using the AlMde @y with any of several
public-domain machine learning toolboxes such as WEKA.

18.25 The main purpose of this exercise is to make concrete themofithecapacityof a
function class (in this case, linear halfspaces). It candrd to internalize this concept, but
the examples really help.

a. Three points in general position on a plane form a trianglay subset of the points
can be separated from the rest by a line, as can be seen frommdhexamples in
Figure S18.3(a).

b. Figure S18.3(b) shows two cases where the positive andinegxamples cannot be
separated by a line.
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c. Four points in general position on a plane form a tetrahedfmy subset of the points
can be separated from the rest by a plane, as can be seen &omvdlexamples in
Figure S18.3(c).

d. Figure S18.3(d) shows a case where a negative point iseirisel tetrahedron formed
by four positive points; clearly no plane can separate tredets.

e. Proof omitted.

®
O ® O O

(@ (b)

Figure S18.3 lllustrative examples for VC dimensions.




Solutions for Chapter 19
Knowledge in Learning

19.1 In CNF, the premises are as follows:
—Nationality(x,n) V ~Nationality(y,n) V ~Language(z,l) V Language(y, 1)
Nationality(Fernando, Brazil)
Language(Fernando, Portuguese)
We can prove the desired conclusion directly rather tharelfytation. Resolve the first two
premises with{x / Fernando} to obtain
—Nationality(y, Brazil) V ~Language(Fernando,l) V Language(y, 1)
Resolve this with.anguage( Fernando, Portuguese) to obtain
—Nationality(y, Brazil) V Language(y, Portuguese)

which is the desired conclusiaN ationality(y, Brazil) = Language(y, Portuguese).

19.2 This question is tricky in places. It is important to see thstikction between the
shared and unshared variables on the LHS and RHS of the detdion. The shared vari-
ables will be instantiated to the objects to be compared iaretogical inference, while the
unshared variables are instantiated with the objects’rebdgeand inferred properties.

a. Here the objects being reasoned about are coins, and degigomination, and mass
are properties of coins. So we have
Coin(c) = (Design(c,d) N Denomination(c,a) = Mass(c,m))
This is (very nearly exactly) true because coins of a giverod@nation and design are

stamped from the same original die using the same mateizal;and shape determine
volume; and volume and material determine mass.

b. Here we have to be careful. The objects being reasoned alpeutot programs but
runs of a given program (This determination is also one often forgotten by novice
programmers.) We can use situation calculus to refer touhs:r

Vp Input(p,i,s) = Output(p,o,s)

Here theV p captures the variable so that it does not participate in the determimatio
as one of the shared or unshared variables. The situatidreishtared variable. The
determination expands out to the following Horn clause:

Input(p,i,s1) A Input(p,i, s2) A Output(p, 0,s1) = Output(p,o,s2)
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That is, if p has the same input in two different situations it will have #ame output
in those situations. This is generally true because compuigerate on programs and
inputs deterministically; however, it is important thabput” include the entire state of
the computer's memory, file system, and so on. Notice thatrthiwe” choice

Input(p,i) = Output(p, o)
expands out to

Input(py,i) A Input(pa,i) A Output(pr,0) = Output(ps,0)
which says that if any two programs have the same input theyyme the same output!
. Here the objects being reasoned are people in specific titeevals. (The intervals
could be the same in each case, or different but of the santeskich as days, weeks,
etc. We will stick to the same interval for simplicity. As al®) we need to quantify the
interval to “precapture” the variable.) We will uggimate(z, c,i) to mean that person
x experiences climate in interval i, and we will assume for the sake of variety that a
person’s metabolism is constant.

Vi Climate(x,c,i) A Diet(x,d,i) N Exercise(x,e,i) A Metabolism(x,m)

= Gain(z,w,1)

While the determinations seems plausible, it leaves out $actors as water intake,
clothing, disease, etc. The qualification problem arisek determinations just as with
implications.
. Let Baldness(z,b) mean that persom has baldness (which might beBald, Partial,
or Hairy, say). A first stab at the determination might be

Mother(m,x) A Father(g,m) A Baldness(g,b) = Baldness(z,b)

but this would only allow an inference when two people hawesame mother and ma-
ternal grandfather because theandg are the unshared variables on the LHS. Also, the
RHS has no unshared variable. Notice that the determindtes not say specifically
that baldness is inherited without modification; it alloviar, example, for a hypothet-
ical world in which the maternal grandchildren of a bald mae all hairy, or vice
versa. This might not seem particularly natural, but comsather determinations such
as “Whether or not | file a tax return determines whether ormgtspouse must file a
tax return.”

The baldness of the maternal grandfather is the relevaneval prediction, so that
should be the unshared variable on the LHS. The mother anernaghigrandfather are
designated by skolem functions:

Mother(M (z),z) A Father(F(M(x)), M(z)) A Baldness(F (M (x)), by)
>~ Baldness(z, by)
If we useFather and Mother as function symbols, then the meaning becomes clearer:
Baldness(Father(Mother(x)),b1) = Baldness(x, by)
Just to check, this expands into

Baldness(Father(Mother(zx)),b1) A Baldness(Father(Mother(y)), by)
ABaldness(z,by) = Baldness(y, b2)
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which has the intended meaning.

19.3 Because of the qualification problem, it is not usually polssin most real-world
applications to list on the LHS of a determinatiafi the relevant factors that determine
the RHS. Determinations will usually therefore be true toceatent—that is, if two objects
agree on the LHS there is some probability (preferably gretitan the prior) that the two
objects will agree on the RHS. An appropriate definition foohabilistic determinations
simply includes this conditional probability of matching the RHS given a match on the
LHS. For example, we could defin€ationality(z,n) > Language(z,1)(0.90) to mean
that if two people have the same nationality, then there i8% 8hance that they have the
same language.

19.4 This exercise test the student’s understanding of resoiwnd unification, as well as
stressing the nondeterminism of the inverse resolutiongs®. It should help a lot in making
the inverse resolution operation less mysterious and nroemable to mathematical analysis.
It is helpful first to draw out the resolution “V” when doingetke problems, and then to do a
careful case analysis.

a. There is no possible value 6k, here. The resolution step would have to resolve away
both theP(x, y) on the LHS ofC; and theQ(x, y) on the right, which is not possible.
(Resolutioncanremove more than one literal from a clause, but only if thasedls
are redundant—i.e., one subsumes the other.)

b. Without loss of generality, l&f; contain the negative (LHS) literal to be resolved away.
The LHS of C; therefore contains one literd] while the LHS ofC; must be empty.
The RHS ofCy must contain’ such that and!’ unify with some unifie. Now we
have a choiceP(A, B) on the RHS ofC could come from the RHS af; or of Cs.
Thus the two basic solution templates are

Cy=1= False ; Cy=True = I'VP(A,B)§™*
Ci=1= P(ABW ', Co=True =1
Within these templates, the choiceld entirely unconstrained. Suppokis Q(x,y)
andl’ is Q(A, B). ThenP(A, B)§~! could beP(x,y) (or P(A,y) or P(x, B)) and
the solutions are
Cy =Q(z,y) = False ; Co=True = Q(A,B)V P(z,y)
Ci=Q(z,y) = P(x,y) ; Co=True = Q(A,B)

c. As before, let”; contain the negative (LHS) literal to be resolved away, W/itbn the
RHS ofC,. We now have four possible templates because each of theténadd inC
could have come from eith&r; or Cs:

Cy=1= False ; Cy=P(z,9)07t = 'V P(z, f(y))o™*
C1=1= P, f(y)o ' ; Co=Plx,y)ot =1
C,=IAP(z,y)0 ! = False ; Cy=True = I'V P(z, f(y)8*
Ci=INA P(m,y)H_l = P(J:,f(y))ﬂ_1 . Cy=True = I
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Again, we have a fairly free choice for However, since& containsz andy, 8 cannot
bind those variables (else they would not appeaf’)n Thus, ifl is Q(z,y), thenl’
must beQ(z, y) also and) will be empty.

19.5 We will assume that Prolog is the logic programming langudige certainly true that
any solution returned by the call esolve will be a correct inverse resolvent. Unfortunately,

it is quite possible that the call will fail to return becausieProlog’s depth-first search. If
the clauses iResolve andUni fy are infelicitously arranged, the proof tree might go down
the branch corresponding to indefinitely nested functiomlsgls in the solution and never
return. This can be alleviated by redesigning the Prolograrice engine so that it works
using breadth-first search or iterative deepening, althabg infinitely deep branches will
still be a problem. Note that any cuts used in the Prolog @nogwill also be a problem for

the inverse resolution.

19.6 This exercise gives some idea of the rather large branchicigrf facing top-down ILP

systems.

a. It is important to note that position is significanf2{A, B) is very different from

P(B,A)!' The first argument position can contain one of the five axistvariables
or a new variable. For each of these six choices, the secasitigmocan contain one of
the five existing variables or a new variabkxceptthat the literal with two new vari-
ables is disallowed. Hence there are 35 choices. With nédiéeals too, the total
branching factor is 70.

. This seems to be quite a tricky combinatorial problem. Tasiest way to solve it
seems to be to start by including the multiple possibilitieat are equivalent under
renaming of the new variables as well as those that contdinrew variables. Then
these redundant or illegal choices can be removed later., Newan use up to — 1
new variables. If we use i new variables, we can writen + 4)" literals, so using
exactlyi > 0 variables we can writén + i)" — (n + i — 1)" literals. Each of these
is functionally isomorphic under any renaming of the newialales. Withi variables,
there are aré renamings. Hence the total number of distinct literalsl(idimg those
illegal ones with no old variables) is

+ +i—1
+an nz)

Now we Just subtract off the number of distinct all-new lgkx. With< ¢ new variables,
the number of (not necessarily distinct) all-new literal§’i so the number with exactly
i > 0is¢" — (i — 1)". Each of these ha# equivalent literals in the set. This gives us
the final total for distinct, legal literals:

r—1 . .
(n+19)" n—t—z—l) "= (=1
+Z -2

=1
which can doubtless be simplified. One can check that fer2 andn = 5 this gives
35.
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c. If a literal contains only new variables, then either a sgfoent literal in the clause
body connects one or more of those variables to one or morbeofdld” variables,
or it doesn't. If it does, then the same clause will be gemeratith those two literals
reversed, such that the restriction is not violated. If ieslwt, then the literal is either
always true (if the predicate is satisfiable) or always fiké is unsatisfiable), inde-
pendent of the “input” variables in the head. Thus, thediterould either be redundant
or would render the clause body equivalenftal se.

19.7 FolL is available on the web at http://www-2.cs.cmu.edu/afisfogect/ai-repository-
[ailareas/learning/systems/foil/0.html (and possilityeo places). It is worthwhile to experi-
ment with it.



Solutions for Chapter 20
Learning Probabilistic Models

20.1 The code for this exercise is a straightforward implemémtadf Equations 20.1 and
20.2. Figure S20.1 shows the results for data sequencesagesdéromhs and hy. (Plots
for hy andhy are essentially identical to those fog andhy.) Results obtained by students
may vary because the data sequences are generated randomlthé specified candy dis-
tribution. In (@), the samples very closely reflect the truebabilities and the hypotheses
other thanhg are effectively ruled out very quickly. In (c), the early galeproportions are
somewhere between 50/50 and 25/75; furthermbsdras a higher prior thah,. As a result,
hs andhy vie for supremacy. Between 50 and 60 samples, a prepondeddines ensures
the defeat oh3 and the prediction quickly converges to 0.75.

20.2 This is a nontrivial sequential decision problem, but cansblved using the tools
developed in the book. It leads into general issues of statisdecision theory, stopping
rules, etc. Here, we sketch the “straightforward” solution

We can think of this problem as a simplified form of POMDP (sd@iier 17). The
“belief states” are defined by the humbers of cherry and lienedies observed so far in the
sampling process. Let these 6eand L, and letU (C, L) be the utility of the corresponding
belief state. In any given state, there are two possibles@®ts: sell andsample. There is a
simple Bellman equation relating andU for the sampling case:

Q(C, L, sample) = P(cherry|C,L)U(C + 1, L) 4+ P(lime|C, L)U(C,L + 1)

Let the posterior probability of each; be P(h;|C, L), the size of the bag b&, and the
fraction of cherries in a bag of typebe f;. Then the value obtained by selling is given by
the value of the sampled candies (which Ann gets to keep)tptiprice paid by Bob (which
equals the expected utility of the remaining candies for)Bob

Q(C, L, sell) = Cea + Ly + Z P(hi|C,L)[(fiN — C)ep + (1 — fi)N — L){p]

and of course we have

U(C,L) = max{Q(C, L, sell), Q(C, L, sample)} .
Thus we can set up a dynamic program to comgpigiven the obvious boundary conditions
for the case wher€'+ L. = N. The solution of this dynamic program gives the optimal poli

for Ann. It will have the property that if she should sell(@t, L), then she should also sell
at (C, L + k) for all positivek. Thus, the problem is to determine, for eachthe threshold
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Chapter 20. Learning Probabilistic Models

value of L at or above which she should sell. A minor complication id tha formula for
P(h;|C, L) should take into account the non-replacement of candiesheniihiteness ofV,
otherwise odd things will happen whénh+ L is close toN.

20.3 The Bayesian approach would be to take both drugs. The maxitikelihood ap-
proach would be to take the arfii-drug. In the case where there are two versionsBof
the Bayesian still recommends taking both drugs, while thgimum likelihood approach is
now to take the antd drug, since it has a 40% chance of being correct, versus 30%afth
of the B cases. This is of course a caricature, and you would be hassed to find a doctor,
even a rabid maximum-likelihood advocate who would présctike this. But you can find
ones who do research like this.

20.4 Boosted naive Bayes learning is discussed by Elkan (199%.application of boost-
ing to naive Bayes is straightforward. The naive Bayes keauses maximum-likelihood
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Figure S20.1 Graphs for Ex. 20.1. (a) Posterior probabiliti®$h;|d1,...,dN) over a
sample sequence of length 100 generated fign50% cherry + 50% lime). (b) Bayesian
prediction P(dy1 = lime|dy, . ..,dn) given the data in (a). (c) Posterior probabilities
P(h;|dy,...,dn) over a sample sequence of length 100 generated frr{25% cherry

+ 75% lime). (d) Bayesian predictiaf(dy 1 = limelds, . . ., dn) given the data in (c).
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parameter estimation based on counts, so using a weiglaiethty set simply means adding
weights rather than counting. Each naive Bayes model isetieas a deterministic classifier
that picks the most likely class for each example.

20.5 We have
L =—m(logo + log v2r) — Z
J
hence the equations for the derivatives at the optimum are

(yj — (Ohz; + 92))2
202

oL B xj(yj — (913&‘]’ + 92)) -

891 N ; 0'2 =0
OL o (yj—(bhzj +6))

892 N ; 0'2 =0

oL _ m (y; — (01 +62))*
do o + ; o3 =0

and the solutions can be computed as

m (Zj %'yj) - (Zj yj) (Zj 953')
m (57) = (Sim)

b = — > (y; — b))

J

o> = = (y; — (brzj +6))°

J

0 =

20.6 There are a couple of ways to solve this problem. Here, we ghevindicator vari-
able method described on page 743. Assume we have a chilableli” with parents
X1,..., X, and let the range of each variable & 1}. Let the noisy-OR parameters be
gi=P(Y =0|X;=1,X_;=0). The noisy-OR model then asserts that

k
PY=1|z1,...,2x) =1— quxl
i=1

Assume we haven complete-data samples with valugsfor Y andx;; for eachX;. The
conditional log likelihood forP(Y'| X, ..., X}) is given by

) 1—.

socfmie) (1)

= yjlog (1 - qu”) +(1—y)) ) wijlogy;
j i '

2

L



190 Chapter 20. Learning Probabilistic Models

The gradient with respect to each noisy-OR parameter is

oL _ Z ~yimi 1L q;cij n (1 —yj)xsj
dq; i g (1 —1II inj) i
> ij (1 —yj— H@fij)
5 qi(l—l_[qulj)

20.7
a. By integrating over the rang@®, 1], show that the normalization constant for the dis-
tribution betala, b] is given bya = I'(a + b)/I'(a)I'(b) whereI'(z) is the Gamma
GAMMA FUNCTION function, defined byl’(x + 1) =« - I'(x) andI'(1) = 1. (For integerz, I'(z + 1) = z!.)
We will solve this for positive integes andb by induction overa. Let a(a,b) be
the normalization constant. For the base cases, we have

1
a(1,b) = 1// 601 — 0)t-1do — —1/[%(1 — ) = b
0
and
I'(1+b) b-T'(b)
r(Hre)  1-1(b)
For the inductive step, we assume fortathat
I'(a+0) ~a—1 T(a+Db)
Tla—1)C(b+1) b T(a)(b)
Now we evaluatex(a, b) using integration by parts. We have

1/a(a,b) = / 611 — 0)'dp

=b.

ala—1,b+1) =

_ [90,—1 1(1_ bd@
b
a—1
Hence
b b a—1 T(a+b) T(a+b)
ala,b) = — 1a(a L,b+1)= a—1 b I'(a)L'(b)  T'(a)l(b)
as required.

b. The mean is given by the following integral:

p(a,b) = ofa, b)/ole'oalu—e)“de

_ a(a,b)/olﬁa(l _ 0)-1dp

- _T(a+b) T(a+1)L(d)
= ala.b)/ala+ 10 = Fomy Ta b+ 1)
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I'(a+0) al'(a)T'(b) _a

~ I(a)T'(b) (a+b)(a+b+1) a+b’
c. The mode is found by solving fatbeta[a, b](0)/df = 0:
d . -
p(aa,b)en = (1 -9
= aa,b)[(a-1)0"21 -0~ (b—-1)0""1(1-0)"? =0

= (a—1)(1-0)=(b-1)0
o — a—1
= a+b—2

d. betale, €] = a(e, €)0< (1 — 9)<~! tends to very large values closefte=0 andf =1,
i.e., it expresses the prior belief that the distributiomrmetterized by is nearly deter-
ministic (either positively or negatively). After updagirwith a positive example we
obtain the distributiorbeta[l + ¢, €], which has nearly all its mass nea# 1 (and the
converse for a negative example), i.e., we have learnedhbadistribution character-
ized by#@ is deterministic in the positive sense. If we see a “couneargle”, e.g., a
positive and a negative example, we obtaitta[l + ¢, 1 + €], which is close to uniform,
i.e., the hypothesis of near-determinism is abandoned.

20.8 Consider the maximum-likelihood parameter values for tRd ©f nodeY” in the orig-
inal network, where an extra pareft,,; will be added toY". If we set the parameters for
P(ylxy,...,zk, 1) in the new network to be identical B8(y|x1, ..., x) in the original
netowrk, regardless of the valug. ., then the likelihood of the data is unchanged. Maxi-
mizing the likelihood by altering the parameters can thely amcreasethe likelihood.

20.9
a. The probability of a positive exampleisand of a negative example(i$ — ), and the
data are independent, so the probability of the datd {3 — 7)"
b. We havelL =plog 7 + nlog(1 — m); if the derivative is zero, we have
oL p n

or m 1l-n
so the ML value ist=p/(p + n), i.e., the proportion of positive examples in the data.
c. This is the “naive Bayes” probability model.

/%\

' \

d. The likelihood of a single instance is a product of termsr &@ositive examplex
timesq; for each true attribute and — «;) for each negative attribute; for a negative
example (1 — ) timesg; for each true attribute and — 3;) for each negative attribute.

+ - -
Over the whole data set, the likelihoodig(1 — 7)™ [T, of* (1— )™ B (1— ;)™ .
e. The log likelihood is
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L = plogm+nlog(l—m)+, p; log cai+n; log(1—ay)+p; log Bi+n; log(1—3).
Setting the derivatives w.r.&; andg3; to zero, we have

oL :p_;—_izo and OL _ b _ M =0
Ja; o 1—o 9B B 1-p
giving a; = pi/(p + n}), i.e., the fraction of cases whel¥; is true giveny  is true,
andg; = p; /(p; +n; ), i.e., the fraction of cases whe?§ is true givenY is false.
f. In the data set we have=2, n=2, p;/ =1, n; =1, p; =1, n; =1. From our for-
mulae, we obtainr = a1 = ag = 51 = B2 =0.5.

g. Each example is predicted to be positive with probabilify. 0

20.10

a. Consider the ideal case in which the bags were infinitelydao there is no statistical
fluctuation in the sample. With two attributes (s&ygvor and Wrapper), we have five
unknowns:# gives the the relative sizes of the bads; andfg- give the proportion
of cherry candies in each bag, afigh; andéyy» give the proportion of red wrappers in
each bag. In the data, we observe just the flavor and wrappeati candy; there are
four combinations, so three independent numbers can béebtaThis is not enough
to recover five unknowns. With three attributes, there agbtetombinations and seven
numbers can be obtained, enough to recover the seven paramet

b. The computation fof(!) has eight nearly identical expressions and calculatioms,ob

which is shown. The symbolic expression Hﬁf is shown, but not its evaluation,; it
would be reasonable to ask students to write out the expressiterms of the param-
eters, as was done féf!), and calculate the value. The final answers are given in the

chapter.
c. Consider the contribution to the update foirom the 273 red-wrapped cherry candies
with holes:
273 62160 6\ 9(0)

" 0)(0) /(0 0) 4(0) ,(0
1000 450000 + 00Tl — o)
If all of the seven named parameters have valuthis reduces to
273 p* _273p
1000 p* +p3(1—p) 1000
with similar results for the other candy categories. Thhe,rtew value fotheta(® just
ends up beindg000p/1000 = p.

We can check the expression fr, too; for example, the 273 red-wrapped cherry
candies with holes contribute an expected count of

273P(Bag = 1| Flavor; = cherry, Wrapper = red, Holes =1)

0r10w10m10
= 273 =273
O0r10w10m10 4 Op20w20m2(1 — 0) b
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and the 90 green-wrapped cherry candies with no holes botdran expected count of

90P(Bag =1/ Flavor; = cherry, Wrapper = green, Holes =0)
0 Op1(1 —Ow1)(1 —0p1)0
Op1(1 —0w1)(1 —0p1)0 + Opa(1 — Oywa)(1 — Op2)(1 — 0)
= 90p*(1 —p)*/p(1 —p)* = 90p .
Continuing, we find that the new value féF; is 560p/1000p = 0.56, the proportion of
cherry candies in the entire sample.

For 05, the 273 red-wrapped cherry candies with holes contributexpected
count of

273P(Bag = 2| Flavor; = cherry, Wrapper = red, Holes = 1)
Or20w20r2(1 — 0)
Or10w10110 + 0p20w20pm2(1 — 6)

with similar contributions from the other cherry categsriso the new value &60(1 —
p)/1000(1—p) = 0.56, as forf . Similarly, 91(41,)1 = 91(41,)2 = 0.545, the proportion of red
wrappers in the sample, ar@é}i :02; = 0.550, the proportion of candies with holes
in the sample.

Intuitively, this makes sense: because the bag label isibigj labels 1 and 2 a®
priori indistinguishable; initializing all the conditional panaters to the same value (re-
gardless of the bag) provides no means of breaking the symnmidtus, the symmetry
remains.

On the next iteration, we no longer have all the parametdr®oge but we do know
that, for example,

=9

= 273

=273(1 —p)

O0r10w10m1 = Op20w20H2

so those terms cancel top and bottom in the expression fayahibution of the 273
candies t@ 1, and once again the contribution2s3p.

To cut a long story short, all the parameters remain fixedr dfie first iteration,
with @ at its initial valuep and the other parameters at the corresponding empirical
frequencies as indicated above.

. This part takes some time but makes the abstract mathexhexipressions in the chap-
ter very concrete! The one concession to abstraction witheeuse of symbols for the
empirical counts, e.g.,

N¢r1 = N(Flavor = cherry, Wrapper = red, Holes =1) = 273 .

with marginal countsV,, N,1, etc. Thus we havé}lf = N./N =560,/1000.
The log likelihood is given by

L(d) = log P(d) :logHP(dj) = ZlogP(dj)

= Ngplog P(F = cherry, W =red, H=1) +
Njyqlog P(F =lime,W =red, H=1) +
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Nerolog P(F = cherry, W =red, H=0) +
Niyolog P(F =lime, W =red, H=0) +
Neg1log P(F = cherry, W = green, H =1) +
Nigilog P(F = lime, W = green, H =1) +
Negolog P(F = cherry, W = green, H=0) +
Nigolog P(F = lime, W = green, H =0)
Each of these probabilities can be expressed in terms ofetveonk parameters, giving
the following expression fof(d):
Ner1 log(0p10w10m16 + 020w 20m2(1 — 6)) +
Nlrl log((l — 0F1)0W19H10 + (1 — 0F2)0W29H2(1 — 9)) +
NcrO log(9F10Wl(1 — 9[{1)9 + 9F20W2(1 — 0H2)(1 — 9)) +
Ner log((l — 0F1)0W1(1 — 9H1)9 + (1 - 0F2)9W2(1 — 0H2)(1 - 9)) +
Ncgl log(9F1(1 — HWl)0H10 + 9F2(1 — 0W2)9H2(1 — 9)) +
Nigilog((1 — 0p1)(1 — O0w1)0m10 + (1 — Op2)(1 — Ow2)0m2(1 — 0)) +
Nch log(9F1(1 — HWl)(l — HHl)H + 9F2(1 - 9W2)(]. — 9H2)(]. - 9)) +
ngO log((l — 9F1)(1 — 9[/{/1)(1 — HHI)H + (1 — 9F2)(1 — 9W2)(1 — 9[{2)(1 — 9))
HencedL /06 is given by
Or10w10m1 — Op20w20m2
Or10w 1010 + Op20w20p2(1 — 0)
(1 —=0p1)0w10m1 — (1 — Op2)0w20m2
(1 —0p1)0w10m10 + (1 — Op2)0w20pm2(1 — 0)
Or10w1(1 — 0m1) — Op20wa(l — Op2)
9F19W1(1 — HHI)H + 9F29W2(1 — 9H2)(1 — 9)
(1 =0p1)0w1(1 —0m1) — (1 — Op2)0wa(l — Op2)
(1 — 9F1)9W1(1 — GHI)H + (1 — 9F2)9W2(1 — 9[{2)(1 — 9)
Or1(1 — Ow1)0m1 — Or2(1 — Ow2)0m2
Or1(1 — Ow1)0m10 + Op2(1 — Oyw2)0m2(1 — 6)
(1=0p1)(1 = O0w1)0m — (1 — Op2)(1 — Ow2)0m2
(1=0p1)(1 = Ow1)0m10 + (1 — Op2)(1 — Ow2)0r2(1 — 6)
Op1(1 —Ow1)(1 —0m1) — Op2(1 — Ow2)(1 — Opr2)
Or1(1 —0w1)(1 — 0p1)0 + Op2(1 — Owa)(1 — Op2)(1 —0)
(1 —0p)(1 —Ow1)(L — 0m1) — (1 = Op2)(1 — Ow2)(1 — Op)
(1 — HFI)(l — 9[/{/1)(1 — HHI)H + (1 — 0F2)(1 — 9[/{/2)(1 — 9H2)(1 — 9)
By inspection, we can see that whene®@et = 09, Oy1 = Oywo, andfy = 02, the
derivative is identically zero. Moreover, each term in thmwe expression has the
form k/f(0) wherek does not contaid and /() evaluates to zero under these con-

ditions. Thus the second derivativ#& L/960? is a collection of terms of the form
—kf'(0)/(£(0))2, all of which evaluate to zero. In fact, all derivatives exatke to

Ncrl

_Nlrl

+Ncr0

_Nlro

+Ncg1

_ngl

+N, cg0

—ngo
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zero under these conditions, so the likelihood is compldtat with respect td in the
subspace defined W1 = 0p2, Oy1 =0Owo, andfy = 0o. Another way to see this
is to note that, in this subspace, the terms within the loghénexpression for.(d)

simplify to terms of the formprow ¢r6 + dréwén (1 — 0) = bréwém, so that the
likelihood is in fact independent ¢f

A representative partial derivativel /00 is given by

N Ow10m10
T 010w 10510 + Opaby20ro(1 — )
N Ow10m10
—4Virl

(1 =0p1)0w10m0 + (1 — 0p2)0w20m2(1 — 0)
Ow1(1 — 0p1)0
9F19W1(1 — HHl)H + 9F29W2(1 — 0H2)(1 — 9)
N Ow1(1 —0p1)0
(1 =0p1)0w1(1 —0p1)0 + (1 — Op2)0wa(l — Op2)(1 —0)
(1 —Oyw1)0p10
9F1(1 — HWl)HHlﬂ + 9F2(1 — 9W2)9H2(1 — 9)
N (1 —Oyw1)0510
(1 —=0p1)(1 —O0w1)0m160 + (1 — Op2)(1 — Ow2)0m2(l — 0)
(1 —0w1)(1—6m1)0
Op1(1 —Ow1)(1 —0m1)0 + Opa(1 — Owo)(1 — Op2)(1 — 0)
~Nigo (1 —0w1)(1 —0m)o
(1 —=0p1)(1 —0w1)(1 —011)0 + (1 —O0p2)(1 — Owo)(1 — Op2)(1 — 6)
Unlike the previous case, here the individual terms do natuate to zero. Writing
0r1 =02 = N./N, etc., the expression f@rL /00, becomes

+Ncr0

+Nch

Ny N N, N6
" NeN.N10 + NN, N1(1 — 6)
N N N, N0
" (N = NNy N10 + (N — N)N, N1 (1 — 6)
N N N,(N — N,)#
% NN (N = N1)f + NN, (N — Np)(1 - 6)
Nig N N, (N — N,)#
" (N = NJN,(N - N)f + (N — NJN,(N — N)(L - 0)
N N (N — N,)N16
L N(N — N, )N10 + Ne(N — N,)N1 (1 — 6)
N N (N — N,)N16
T N N (N = NN+ (N — No)(N — N,)Ni(1 - 0)
. N (N = N,)(N = Ny)b
“° N.(N = N,)(N = N)0 + N.(N — N,)(N — Ny)(1 - 6)
N (N = N,)(N = Ny)b
—ngo

(N = N)(N = N )(N = N1)0 + (N = Ne)(N = Np ) (N — Ni)(1 = 0)
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This in turn simplifies to
oL (Ncrl +Nc7‘0 +Ncgl +NCQO)N0 (Nlrl +Nlr0 +ng1 +NIQO)N0

901 N, N — N,
_ N.NO (N -NJNO 0
N, N-N.,

Thus, we have a stationary point as expected.
To identify the nature of the stationary point, we need taeixe the second deriva-
tives. We will not do this exhaustively, but will note that

(Ow10m10)*
(OF10w 10810 + 0p20w20p2(1 — 0))?
(Ow10510)>
(1 = 0p1)0w1010 + (1 — Op2)0w20p2(1 — 0))2
with all terms negative, suggesting (possibly) a local maxi in the likelihood sur-
face. A full analysis requires evaluating the Hessian matfisecond derivatives and
calculating its eigenvalues.

0’L)90%, = —Nep

_Nlrl




Solutions for Chapter 21
Reinforcement Learning

21.1 The code repository shows an example of this, implementéukipassive x 3 envi-

ronment. The agents are found unéisp/learning/agents/passive * lisp and
the environment is idisp/learning/domains/4x3-passive-mdp.lisp . (The
MDP is converted to a full-blown environment using the fumetmdp->environment
which can be found itisp/uncertainty/environments/mdp.lisp )

21.2 Consider a world with two state$, and.S;, with two actions in each state: stay still
or move to the other state. Assume the move action is nonrdigtistic—it sometimes fails,
leaving the agent in the same state. Furthermore, assuragéhé starts iy, and thatS; is a
terminal state. If the agent tries several move actions lagyldll fail, the agent may conclude
that 7'(Sy, Move, S1) is 0, and thus may choose a policy witliSy) = Stay, which is an
improper policy. If we wait until the agent reach8g before updating, we won't fall victim
to this problem.

21.3 This question essentially asks for a reimplementation of@egal scheme for asyn-
chronous dynamic programming of which the prioritized spirg algorithm is an exam-
ple (Moore and Atkeson, 1993). Far, there is code for a priority queue in both the Lisp and
Python code repositories. So most of the work is the expertation called for irb.

21.4 This utility estimation function is similar to equation (2}, but adds a term to repre-
sent Euclidean distance on a grid. Using equation (21.h8)update equations are the same
for 6,y through6s, and the new parametég can be calculated by taking the derivative with
respect tds:

Oy — O+« uj(s —[798

(u;(s) (s))
01 — 01+ a(u;(s) / (s)z,
O — 02+ a(uj(s) — Up(s))y,
O3 — 03+ a(ui(s) — Up(s)y/ (z — 29)% + (y — y)?

21.5 Code not shown. Several reinforcement learning agents ige® gn the directory
lisp/learning/agents

21.6 Possible features include:
* Distance to the nearestl terminal state.
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« Distance to the nearestl terminal state.

* Number of adjacent-1 terminal states.

* Number of adjacent-1 terminal states.

* Number of adjacent obstacles.

* Number of obstacles that intersect with a path to the nearéserminal state.

21.7 The madification involves combining elements of the envinent converter for games
(game->environment  inlisp/search/games.lisp )with elements of the function
mdp->environment . The reward signal is just the utility of winning/drawingging and
occurs only at the end of the game. The evaluation functied by each agent is the utility
function it learns through the TD process. It is importankézp the TD learning process
(which is entirely independent of the fact that a game is dpgitayed) distinct from the
game-playing algorithm. Using the evaluation functionhnatdeep search is probably better
because it will help the agents to focus on relevant portajrise search space by improving
the quality of play. There is, however, a tradeoff. the dedlpe search, the more computer
time is used in playing each training game.

21.8 This is a relatively time-consuming exercise. Code not shdav compute three-
dimensional plots. The utility functions are:

a U(x,y) =1—~((10 — z) + (10 — y)) is the true utility, and is linear.

b. Same as in a, except th&(10,1) = —1.

c. The exact utility depends on the exact placement of theaolest. The best approxima-
tion is the same as in a. The features in exercise 21.9 migitowe the approximation.

d. The optimal policy is to head straight for the goal from armjnp on the right side of
the wall, and to head for (5, 10) first (and then for the goaljrfrany point on the left
of the wall. Thus, the exact utility function is:

Ulx,y) = 1-9(10—=z)+(10-y))  (fz=>5)
=1—7(5—-2)+ (10 —y)) — 5y (if x < 5)

Unfortunately, this is not linear in andy, as stated. Fortunately, we can restate the
optimal policy as “head straight up to row 10 first, then heigtitruntil column 10.”
This gives us the same exact utility as in a, and the samer laggaoximation.

e U(z,y) =1—~(5— x|+ |5 —yl|) is the true utility. This is also not linear inandy,
because of the absolute value signs. All can be fixed by intiog the feature — z|
and|5 — yl.

21.9 Code not shown.

21.10 To map evolutionary processes onto the formal model of oec&fment learning, one
must find evolutionary analogs for the reward signal, leagrprocess, and the learned policy.
Let us start with a simple animal that does not learn duriagitn lifetime. This animal’'s
genotype, to the extent that it determines animal’s belnaier its lifetime, can be thought

of as the parametei® of a policy pig. Mutations, crossover, and related processes are the
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part of the learning algorithm—Ilike an empirical gradieighborhood generator in policy
search—that creates new valuegoDne can also imagine a reinforcement learning process
that works on many different copies afsimultaneously, as evolution does; evolution adds
the complication that each copy ofmodifies the environment for other copiesmgfwhereas

in RL the environment dynamics are assumed fixed, indepérafethe policy chosen by
the agent. The most difficult issue, as the question indi¢catethe reward function and
the underlying objective function of the learning process.RL, the objective function is
to find policies that maximize the expected sum of rewards twee. Biologists usually
talk about evolution as maximizing “reproductive fitnedsg., the ability of individuals of

a given genotype to reproduce and thereby propagate thdypento the next generation.
In this simple view, evolution’s “objective function” is tiind the = that generates the most
copies of itself over infinite time. Thus, the “reward sighal positive for creation of new
individuals; deathper se seems to be irrelevant.

Of course, the real story is much more complex. Natural siele@perates not just at
the genotype level but also at the level of individual germas groups of genes; the environ-
ment is certainly multiagent rather than single-agent; aschoted in the case of Baldwinian
evolution in Chapter 4, evolution may result in organisnet tiave hardwired reward signals
that are related to the fitness reward and may use those signlglarn during their lifetimes.

As far as we know there has been no careful and philosophicalld attempt to map
evolution onto the formal model of reinforcement learniagy such attempt must be careful
not to assumehat such a mapping is possible orascribea goal to evolution; at best, one
may be able to interpret what evolution tends teaddf it were the result of some maximizing
process, and ask what it is that is being maximized.



Solutions for Chapter 22
Natural Language Processing

22.1 Code not shown. The distribution of words should fall alongigfian distribution: a
straight line on a log-log scale. The generated languageldto® similar to the examples in
the chapter.

22.2 Using a unigram language model, the probability of a segatiemt of a strings;.x
into £ nonempty words = wy ... wy is Hle Py, (w;) where P, is the unigram language
model. This is not normalized without a distribution ovee thumber of wordg:, but let’s
ignore this for now.

To see that we can find the most probable segmentation ofrey si5i dynamic pro-
gramming, letp(i) be the maximum probability of any segmentationsgfy into words.
Thenp(N +1) =1and

p(i) = max Pyn(si;j)p(j +1)

because any segmentation fy starts with a single word spanning.; and a segmenta-
tion of the rest of the string;, .. Because we are using a unigram model, the optimal

segmentation of;, 1.y does not depend on the earlier parts of the string.

Using the techniques of this chapter to form a unigram modetssed by the function
prob_word(word) , the following Python code solves the above dynamic progi@output
an optimal segmentation:

def segment(text):
length = len(text)
max_prob = [0] * (length+1)
max_prob[length] = 1
split_idx = [-1] * (length+1)
for start in range(length,-1,-1):
for split in range(start+1,length+1):
p = max_prob[split] * prob_word(text[start:split])
if p > max_prob[start]:
max_prob[start] = p
split_idx[start] = split
i=0
words = ]
while i < length:
words.append(text[i:split_idx][i]])
i = split_idx[i]
if i == -1:
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return None # for text with zero probability
return words

One caveat is the language model must assign probabilitiesknown words based on their
length, otherwise sufficiently long strings will be segrmezhas single unknown words. One
natural option is to fit an exponential distribution to therds lengths of a corpus. Alter-
natively, one could learn a distribution over the number @irdg in a string based on its
length, add aP(k) term to the probability of a segmentation, and modify theadgit pro-
gram to handle this (i.e., to compuiéi, k) the maximum probability of segmenting  into

k words).

22.3 Code not shown. The approach suggested here will work in smses, for authors
with distinct vocabularies. For more similar authors, otfeatures such as bigrams, average
word and sentence length, parts of speech, and punctuaigim help. Accuracy will also
depend on how many authors are being distinguished. Onestiteg way to make the task
easier is to group authors into male and female, and try tndigish the sex of an author not
previously seen. This was suggested by the work of Shlomabap.

22.4 Code not shown. There are now several open-source proas Bayesian spam
filtering, so beware if you assign this exercise.

22.5 Doing the evaluation is easy, if a bit tedious (requiring J&@e evaluations for the
complete 10 documents 3 enginesx 5 queries). Explaining the differences is more diffi-
cult. Some things to check are whether the good results ireagae are even in the other
engines at all (by searching for unique phrases on the papegrk whether the results are
commercially sponsored, are produced by human editors;ecalgorithmically determined
by a search ranking algorithm; check whether each enging tthesfeatures mentioned in the
next exercise.

22.6 One good way to do this is to first find a search that yields deipgge (or a few pages)
by searching for rare words or phrases on the page. Then rhaksetirch more difficult by
adding a variant of one of the words on the page—a word wifledint case, different suffix,
different spelling, or a synonym for one of the words on thggyand see if the page is still
returned. (Make sure that the search engine requires adstes match for this technique to
work.)

22.7 Code not shown. The simplest approach is to look for a stringapitalized words,
followed by “Inc” or “Co.” or “Ltd.” or similar markers. A moe complex approach is to
get a list of company names (e.g. from an online stock séexvioek for those names as
exact matches, and also extract patterns from them. Regascall and precision requires a
clearly-defined corpus.

22.8

A. Use the precision on the first 20 documents returned.

B. Use the reciprocal rank of the first relevant document.ust fhe rank, considered as a
cost function (large is bad).

C. Use the recall.
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D.

E.

Score this as 1 if the first 100 documents retrieved cordaieast one relevant to the
query and 0 otherwise.

Score this as ${(R + I) + BR — NC) whereR is the number of relevant documents
retrieved, I is the number of irrelevant documents retrieved, @hds the number of
relevant documents not retrieved.

. One model would be a probabilistic one, in which, if therusas seenR relevant

documents and irrelevant ones, she will continue searching with probgbip(R, I)
for some functiorp, to be specified. The measure of quality is then the expectedbar
of relevant documents examined.



Solutions for Chapter 23
Natural Language for Communication

23.1 No answer required; just read the passage.

23.2 The prior is represented by rules such as
P(Ny=A): S—ASx

whereS 4 means “rest of sentence after 4rf Transitions are represented as, for example,
P(Nyy1=B| N;=A): Sy — B Sp

and the sensor model is just the lexical rules such as
PW,=is| Ny=A): A—is.

23.3

a. (i).
b. This has two parses. The first usé® — V P Adverb, VP — Copula Adjective,
Copula — is, Adjective — well, Adverb — well. Its probability is
0.2x0.2x0.8x0.5x0.5=0.008.

The second uségP — V P Adverb twice,VP — Verb, Verb — is, andAdverb —
well twice. Its probability is

0.2x0.2x0.1x0.5x%x0.5x0.5=0.0005.

The total probability is 0.0085.

c. It exhibits both lexical and syntactic ambiguity.

d. True. There can only be finitely many ways to generate thesfjnmany strings of 10
words.

23.4 The purpose of this exercise is to get the student thinkingietthe properties of natural
language. There is a wide variety of acceptable answers aterours:

« Grammar and Syntax Java: formally defined in a reference book. Grammaticatity i
crucial; ungrammatical programs are not accepted. Englisknown, never formally
defined, constantly changing. Most communication is madle Wwingrammatical” ut-
terances. There is a notion of graded acceptability: soteeawices are judged slightly
ungrammatical or a little odd, while others are clearly tighwrong.
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« SemanticsJava: the semantics of a program is formally defined by thguage spec-
ification. More pragmatically, one can say that the meanihg particular program
is the JVM code emitted by the compiler. English: no formahaatics, meaning is
context dependent.

* Pragmatics and Context-Dependencdava: some small parts of a program are left
undefined in the language specification, and are dependahtearomputer on which
the program is run. English: almost everything about arrariee is dependent on the
situation of use.

« Compositionality Java: almost all compositional. The meaning of “A + B” is clga
derived from the meaning of “A” and the meaning of “B” in isttm. English: some
compositional parts, but many non-compositional depecidsn

 Lexical Ambiguity Java: a symbol such as “Avg” can be locally ambiguous as ihimig
refer to a variable, a class, or a function. The ambiguity lbarresolved simply by
checking the declaration; declarations therefore fulfilla very exact way the role
played by background knowledge and grammatical contexngligh. English: much
lexical ambiguity.

« Syntactic Ambiguity Java: the syntax of the language resolves ambiguity. Fanexa
ple, in “if (X) if (Y) A; else B;” one might think it is ambiguos whether the “else”
belongs to the first or second “if,” but the language is spedifio that it always belongs
to the second. English: much syntactic ambiguity.

» ReferenceJava: there is a pronoun “this” to refer to the object on wtdahethod was
invoked. Other than that, there are no pronouns or other megimdexical reference;
no “it,” no “that.” (Compare this to stack-based languageshsas Forth, where the
stack pointer operates as a sort of implicit “it.”") There ééarence by name, however.
Note that ambiguities are determined by scope—if therevaoedr more declarations
of the variable “X”, then a use of X refers to the one in the imnest scope surrounding
the use. English: many techniques for reference.

» Background KnowledgeJava: none needed to interpret a program, although a local
“context” is built up as declarations are processed. Ehglisuch needed to do disam-
biguation.

« Understanding Java: understanding a program means translating it to JViil dgde.
English: understanding an utterance means (among otimgsthiesponding to it appro-
priately; participating in a dialog (or choosing not to pefate, but having the potential
ability to do so).

As a follow-up question, you might want to compare differlamguages, for example: En-
glish, Java, Morse code, the SQL database query languagPgostscript document descrip-
tion language, mathematics, etc.

23.5 The purpose of this exercise is to get some experience withlsigrammars, and to

see how context-sensitive grammars are more complicatedcbntext-free. One approach to
writing grammars is to write down the strings of the languagan orderly fashion, and then

see how a progression from one string to the next could beeziday recursive application

of rules. For example:
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a. The language™b™: The strings are, ab, aabb, ... (wheree indicates the null string).
Each member of this sequence can be derived from the prebipuwgapping amn at
the start and & at the end. Therefore a grammar is:

S — €
S — aSh

b. The palindrome language: Let's assume the alphabet iajbsindc. (In general, the
size of the grammar will be proportional to the size of thehalpet. There is no way to
write a context-free grammar without specifying the alpgtdbxicon.) The strings of
the language include, a, b, c, aa, bb, cc, aaa, aba, aca, bab, bbb, bcb, In general,
a string can be formed by bracketing any previous string tthcopies of any member
of the alphabet. So a grammar is:

S —e€|lalb|lclaSalbSb| cSc
c. The duplicate language: For the moment, assume that thatap is justab. (It is
straightforward to extend to a larger alphabet.) The dapdidanguage consists of the

strings:e, aa, bb, aaaa, abab, bbbb, baba, ... Note that all strings are of even length.
One strategy for creating strings in this language is this:

« Start with markers for the front and middle of the string: wen use the non-
terminal F' for the front andM for the middle. So at this point we have the string
FM.

» Generate items at the front of the string: generate &wilowed by anA, or ab
followed by aB. Eventually we get, sayi'aAaAbBM. Then we no longer need
the F marker and can delete it, leaviagla AbBM .

* Move the non-terminalsl and B down the line until just before th&/. We end
up withaabAABM.

* Hop the As andBs over theM, converting each to a terminad ©r b) as we go.
Then we delete thé/, and are left with the end resuliabaab.

Here is a grammar to implement this strategy:

S — FM  (starting markers)
F — FaA (introduce symbols)

F — FbB

F — € (delete theF marker)

Aa — aA (move non-terminals down to the)
Ab — b A

Ba — aB

Bb — bB

AM — M a (hopoverM and convert to terminal)
BM — Mb

M — € (delete theM marker)

Here is a trace of the grammar derivingbaab:

S
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FM
FbBM
FaAbBM
FaAaAbBM
aAaAbBM
aaAAbLBM
aaAbABM
aabAABM
aabAAMb
aabAMab
aabMaab

aabaab

23.6 Grammar (A) does not work, because there is no way for the ‘weatked” followed
by the adverb “slowly” and the prepositional phrase “to thpermarket” to be parsed as a
verb phrase. A verb phrase in (A) must have either two adveribe just a verb. Here is the
parse under grammar (B):

S---NP-+-Pro---Someone
I-VP-+-V---WaIked
I-Vmod-+-Adv-—-sIowa
I-Vmod---Adv---PP---Prep-+-t0
:-N P-+-Det---the
I

|-NP---Noun---supermarket

Here is the parse under grammar (C):

S---NP-+-Pro---Someone
I-VP-+-V---WaIked
I-Adv-+-Adv---sIOWIy
:-Adv---PP---Prep-+-to
I-NP—+-Det---the
I

|-NP---Noun---supermarket

23.7 Here is a start of a grammar:

Time => DigitHour ":" DigitMinute
| "midnight" | "noon" | "12 midnight" | "12 noon”
| ClockHour "o’clock”
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— NP VP

| S Conj S’
S’ — NP VP

|  SConj S’
SConj — S’ Conj
NP me| you| || it] ...
John | Mary | Boston| ...
stench| breeze| wumpus| pits| ...
Article Noun
ArticleAdjs Noun
Digit Digit
NP PP
NP RelClause
Article Adjs

b —m————

ArticleAdss
VP is| feel| smells| stinks| ...

VP NP

VP Adjective

VP PP

VP Adverb

——

Adjs right | dead| smelly| breezy...
Adjective Adjs
Prep NP

RelPro VP

ppP
RelClause

L=

Figure S23.1 The final result after turning, into CNF (omitting probabilities).

| Difference BeforeAfter ExtendedHour

DigitHour => 0 | 1 | ... | 23

DigitMinute => 1 | 2 | ... | 60

HalfDigitMinute => 1 | 2 | ... | 29

ClockHour => ClockDigitHour | ClockWordHour

ClockDigitHour => 1 | 2 | ... | 12

ClockWordHour => "one" | ... | "twelve"

BeforeAfter => "to" | "past" | "before" | "after"

Difference => HalfDigitMinute "minutes" | ShortDifferenc e

ShortDifference => "five" | "ten" | "twenty" | "twenty-five " | "quarter" | "half"

ExtendedHour => ClockHour | "midnight" | "noon"

The grammar is not perfect; for example, it allows “ten befeix” and “quarter past noon,” which are a little
odd-sounding, and “half before six,” which is not really OK.
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23.8 The final grammar is shown in Figure S23.1. (Note that in ganilytings, the question
asked for the rul&s’” — S to be added.) In stegh, students may be tempted to drop the rules
(Y —...), which fails immediately.

S — NP(Subjective, number, person) VP (number, person) | ...
NP(case, number, person) — Pronoun(case, number, person)
NP(case, number, Third) — Name(number) | Noun(number) | ...
VP(number, person) — VP(number, person) NP(Objective, _,_) | ...
PP — Preposition NP(Objective, _, _)

Pronoun(Subjective, Singular, First) — |

Pronoun(Subjective, Singular, Second) — you
Pronoun(Subjective, Singular, Third) — he| she| it
Pronoun(Subjective, Plural, First) — we
Pronoun(Subjective, Plural, Second) — you
Pronoun(Subjective, Plural, Third) — they

Pronoun(Objective, Singular, First) — me

Pronoun(Objective, Singular, Second) — you
Pronoun(Objective, Singular, Third) — him | her | it
Pronoun(Objective, Plural, First) — us

Pronoun(Objective, Plural, Second) — Yyou
Pronoun(Objective, Plural, Third) — them

Verb(Singular, First) — smell

Verb(Singular, Second) — smell

Verb(Singular, Third) — smells

Verb(Plural, ) — smell

o~~~ o~~~ o~

Figure S23.2 A partial DCG for &, modified to handle subject—verb number/perso
agreementas in Ex. 22.2.

=

23.9 See Figure S23.2 for a partial DCG. We include both persomanaber annotation al-
though English really only differentiates the third persamgular for verb agreement (except
for the verbbe).

23.10 One parse captures the meaning “I am able to fish” and the 8tpat fish in cans.”
Both have the left branchP — Pronoun — |, which has probability 0.16.

» The first has the right branchP — Modal Verd (0.2) with Modal — can(0.3) and
Verb — fish (0.1), so its prior probability is

0.16 x 0.2 x 0.3 x 0.1 =0.00096 .

» The second has the right branéP — Verb NP (0.8) with Verb — can(0.1) and
NP — Noun — fish (0.6 x 0.3), so its prior probability is

0.16 x 0.8 x 0.1 x 0.6 x 0.3=10.002304 .
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As these are the only two parses, and the conditional prbtyabi the string given the parse
is 1, their conditional probabilities given the string aregortional to their priors and sum to
1: 0.294 and 0.706.

23.11 Therule ford is
A(n') — aA(n) {n’ = SUCCESSORn)}
A1) — a

The rules forB and C are similar.

NP(case, number, Third) — Name(number)

NP(case, Plural, Third) — Noun(Plural)

NP(case, number, Third) — Article(number) Noun(number)
Article(Singular) — a| an| the

Article(Plural) — the | some| many

Figure S23.3 A partial DCG for &, modified to handle article—noun agreement as in
Ex. 22.3.

23.12 See Figure S23.3
23.13

a. Webster's New Collegiate Dictionary (9th edn.) lists ripit meaning for all these
words except “multibillion” and “curtailing”.

b. The attachment of all the propositional phrases is amhigue.g. does “from . .. loans”
attach to “struggling” or “recover”? Does “of money” attatd “depriving” or “com-
panies”? The coordination of “and hiring” is also ambiguoissit coordinated with
“expansion” or with “curtailing” and “depriving” (using Biish punctuation).

c. The most clear-cut case is “healthy companies” as an exaoffHEALTH for IN A
GOOD FINANCIAL STATE. Other possible metaphors include t#a ...recover”
(same metaphor as “healthy”), “banks struggling” (PHYSICAFFORT for WORK),
and “expansion” (SPATIAL VOLUME for AMOUNT OF ACTIVITY); inthese cases,
the line between metaphor and polysemy is vague.

23.14 This is a very difficult exercise—most readers have no idea tooanswer the ques-
tions (except perhaps to remember that “too few” is bettantttoo many”). This is the
whole point of the exercise, as we will see in exercise 23.14.

23.15 The main point of this exercise is to show that current traiinsh software is far from
perfect. The mistakes made are often amusing for students.

23.16 It's not true in general. With two phrases of length 1 whick avertedf,, f1, we
haved; = 0 andd; =1 — 2 — 1 = —2 which don’t sum to zero.

23.17
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a. “l have never seen a better programming language” is easydst people to see.

b. “John loves mary” seems to be prefered to “Mary loves Jobn"Google, by a margin
of 2240 to 499, and by a similar margin on a small sample ofamedpnts), but both are
of course acceptable.

c. This one is quite difficult. The first sentence of the secoarthgraph of Chapter 22
is “Communication is the intentional exchange of inforroatibrought about by the
production and perception of signs drawn from a shared sysfeconventional signs.”
However, this cannot be reliably recovered from the strihgvords given here. Code
not shown for testing the probabilities of permutations.

d. This one is easy for students of US history, being the béginaf the second sentence
of the Declaration of Independence: “We hold these truthiset@elf-evident, that all
men are created equal.”

23.18

To solve questions like this more generally one can use ttegbialgorithm. However,
observe that the first two states must be onset, as onset athetate which can output
C1 and(Cs. Similarly the last two state must be end. The third statetiee onset or mid,
and the fourth and fifth are either mid or end. Having reduceeight possibilities, we can
exhaustively enumerate to find the most likely sequencetammabability.

First we compute the joint probabilities of the hidden stated output sequence:

P(1234466, OOOMMEE) = 0.5 x 0.2 x 0.3 x 0.7 x 0.7 x 0.5 x 0.5
x0.3x0.3.7x09x%x01x04

= 8.335x107°

P(1234466, 000OMEEE) = 5.292 x 1077
P(1234466, 000EMEE) = 0
P(1234466, 000EEEE) = 0

P(1234466, 0OOMMMEE) = 1.667 x 107°

P(1234466, 00OMMEEE) = 1.058 x 107°
P(1234466, O0OMEMEE) = 0

P(1234466, 00M EEEE) = 6.720 x 1078

We find the most likely sequence was O, M, M, M, E, E. Normalizing, we find this
has probability 0.6253.

23.19 Now we can answer the difficult questions of 22.7:

» The steps are sorting the clothes into piles (e.g., whiteored); going to the washing
machine (optional); taking the clothes out and sorting ipifes (e.g., socks versus
shirts); putting the piles away in the closet or bureau.

» The actual running of the washing machine is never explioitentioned, so that is one
possible answer. One could also say that drying the clothasriissing step.

« The material is clothes and perhaps other washables.
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 Putting too many clothes together can cause some colowmntonto other clothes.
* Itis better to do too few.

» So they won't run; so they get thoroughly cleaned; so thaytdmuse the machine to
become unbalanced.



Solutions for Chapter 24
Perception

24.1 The small spaces between leaves act as pinhole camerasn&aas that the circular
light spots you see are actually images of the circular suwu ¢an test this theory next time
there is a solar eclipse: the circular light spots will hawaescent bite taken out of them as
the eclipse progresses. (Eclipse or not, the light spoteaseer to see on a sheet of paper
than on the rough forest floor.)

24.2 Consider the set of light rays passing through the centerajégtion (the pinhole or
the lens center), and tangent to the surface of the spheeseldefine a double cone whose
apex is the center of projection. Note that the outline ofgpleere on the image plane is just
the cross section corresponding to the intersection ofdbie with the image plane of the
camera. We know from geometry that such a conic section ypictlly be an ellipse. It is

a circle in the special case that the sphere is directly intfad the camera (its center lies on
the optical axis).

While on a planar retina, the image of an off-axis sphere dodeed be an ellipse, the
human visual system tries to infer what is in the three-disimmal scene, and here the most
likely solution is that one is looking at a sphere.

Some students might note that the eye’s retina is not plamaglbser to spherical. On
a perfectly spherical retina the image of a sphere will beutér. The point of the question
remains valid, however.

24.3 Recall thatthe image brightness of a Lambertian surfacge({g43) is given by (z, y) =
kn(x,y).s. Here the light source directiogis along ther-axis. It is sufficient to consider a
horizontal cross-section (in the-z plane) of the cylinder as shown in Figure S24.1(a). Then,
the brightnesd (x) = k cos #(x) for all the points on the right half of the cylinder. The left
half is in shadow. As: = r cos 6, we can rewrite the brightness function&s) = £ which
reveals that the isobrightness contours in the lit part efdylinder must be equally spaced.
The view from thez-axis is shown in Figure S24.1(b).

24.4 We list the four classes and give two or three examples of:each

a. depth Between the top of the computer monitor and the wall behin®etween the
side of the clock tower and the sky behind it. Between the evliieets of paper in the
foreground and the book and keyboard behind them.

b. surface normal At the near corner of the pages of the book on the desk. Atities ©f
the keys on the keyboard.

212
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X illumination y

N |

z X
viewer (@) (b)

Figure S24.1 (a) Geometry of the scene as viewed from alonggttexis. (b) The scene
from thez-axis, showing the evenly spaced isobrightness contours.

c. reflectance Between the white paper and the black lines on it. Betweeridblden”
bridge in the picture and the blue sky behind it.

d. illumination: On the windowsill, the shadow from the center glass panigl€iivOn the
paper with Greek text, the shadow along the left from the papetop of it. On the
computer monitor, the edge between the white window and it Wwindow is caused
by different illumination by the CRT.

24.5 Before answering this exercise, we draw a diagram of therapys (top view), shown

in Figure S24.2. Notice that we make the approximation thatfdcal length is the distance
from the lens to the image plane; this is valid for objects #ra far away. Notice that this
question asks nothing about thecoordinates of points; we might as well have a single line
of 512 pixels in each camera.

a. Solve this by constructing similar triangles: whose hgpoise is the dotted line from
object to lens, and whose height is 0.5 meters and width 1@&mnefThis is similar
to a triangle of width 16cm whose hypotenuse projects ongairttage plane; we can
compute that its height must be 0.5cm; this is the offset ftbencenter of the image
plane. The other camera will have an offset of 0.5cm in theosjpe direction. Thus the
total disparity is 1.0cm, or, at 512 pixels/10cm, a disgaot 51.2 pixels, or 51, since
there are no fractional pixels. Objects that are fartheryawidl have smaller disparity.
Writing this as an equation, whetkis the disparity in pixels and’ is the distance to
the object, we have:

512 pixels « 16 cm x 0.5m
10 cm

b. In other words, this question is asking how much furthenth&m could an object be,
and still occupy the same pixels in the image plane? Redmngiige formula above by
swappingd and Z, and plugging in values of 51 and 52 pixels torwe get values of
Z of 16.06 and 15.75 meters, for a difference of 31cm (a litlera foot). This is the
range resolution at 16 meters.

c¢. In other words, this question is asking how far away wouldbject be to generate a
disparity of one pixel? Objects farther than this are in@ffeut of range; we can’t say

d=2x
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where they are located. Rearranging the formula above bpmwad and Z we get
51.2 meters.

10cm 16cm

_—
_—

10cm

pixels ™

-
16m -
£ -
0 ——
o ////
y—-

I 512x512

— Object

=i
Y

Figure S24.2 Top view of the setup for stereo viewing (Exercise 24.6).

24.6

a. False. This can be quite difficult, particularly when soms@pare occluded from one
eye but not the other.

b. True. The grid creates an apparent texture whose distogiMes good information as
to surface orientation.

c. False.
d. False. A disk viewed edge-on appears as a straight line.

24.7 A, B, C can be viewed in stereo and hence their depths can beumeeh allowing
the viewer to determine that B is nearest, A and C are eqaitlistnd slightly further away.
Neither D nor E can be seen by both cameras, so stereo canngelde Looking at the
figure, it appears that the botitecludes from Y and E from X, so D and E must be further
away than A, B, C, but their relative depths cannot be detezthi There is, however, another
possibility (noticed by Alex Fabrikant). Remember thatteaamera sees the camera’s-eye
view not the bird’s-eye view. X sees DABC and Y sees ABCE. jpassible that D is very
close to camera X, so close that it falls outside the field eiwof camera Y; similarly, E
might be very close to Y and be outside the field of view of X. Eernunless the cameras
have a 180-degree field of view—probably impossible—thgreiway to determine whether
D and E are in front of or behind the bottle.



Solutions for Chapter 25
Robotics

25.1 To answer this question, consider all possibilities for ithméal samples before and
after resampling. This can be done because there are origlfimany states. The following
C++ program calculates the results for finite The result forNV = oo is simply the posterior,
calculated using Bayes rule.

int

main(int arge, char argv) /I increment counter

/I parse command line argument for (int i = 0; i < numSamples && i != -1;{
if (arge 1= 3){ samplesli]++;

cerr << "Usage: " << argv[0] << " <number of samples>" if (samples[i] >= numStates)
<" .<nu|.nher of states>" << endl; samples[i++] = 0;

exit(0); else
} )

i=-1
int numSamples = atoi(argv[1]); if (i == numSamples)
int numStates = atoi(argv[2]); done = 1;
cerr << “number of samples: " << numSamples << endl }
<< "number of states: " << numStates << endl; }

assert(numSamples >= 1);
assert(numStates >= 1); X
/I print result

/I generate counter cout << "Result:

int samples[numSamples]; _ for (int i = 0; i < numStates; i++)

for (int i = 0; i < numSamples; i++) cout << " " << posteriorProblil;
samples[i] = 0; ’

cout << endl;
/I set up probability tables

assert(numStates == 4); // presently defined for 4 states

double condProbOfZ[4] = {0.8, 0.4, 0.1, 0.1}, /I calculate asymptotic expectation
double posteriorProb[numStates]; double totalWeight = 0.0;

for (int i = 0; i < numStates; i++) :

for (int i = 0; i < numStates; i++)

teriorProb[i] = 0.0; . .
posteriorProbl totalWeight += condProbOfZ[i];

double eventProb = 1.0 / pow(numStates, numSamples);

/Noop through all possibilities cout << "Unbiased:";
for (int done = 0; !done; X for (int i = 0; i < numStates; i++)
cout << " " << condProbOfZ[i] / totalWeight;

/I compute importance weights (is probability distribution) cout << end:

double weightinumSamples], totalWeight = 0.0;

for (int i = 0; i < numSamples; i++)
totalWeight += weight[i] = condProbOfZ[samplesli]; /I calculate KL divergence
/I normalize them double kI = 0.0;
for (int i = 0; i < numSamples; i++) for (int i = 0; i < numStates; i++)
weightfil /= totalweight; kI += posteriorProb[i] * (log(posteriorProbl[i]) -
/I calculate contribution to posterior probability Iog(condP(obOth] / totalWeight));
for (int i = 0; i < numSamples; i++) cout << "KL divergence: " << kl << endl;

posteriorProb[samples[i]] += eventProb * weight[i]; }
(a) (b)

Figure S25.1 Code to calculate answer to exercise 25.1.

a. The program (correctly) calculates the following posierdistributions for the four
states, as a function of the number of samp¥es\ote that forV = 1, the measurement
is ignored entirely! The correct posterior fof = o~ is calculated using Bayes rule.

215
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N p(sample ak;) p(sample ak;) p(sample aks) p(sample at,)
N=1 0.25 0.25 0.25 0.25
N=2 0.368056 0.304167 0.163889 0.163889
N=3 0.430182 0.314463 0.127677 0.127677
N=4 0.466106 0.314147 0.109874 0.109874
N=5 0.488602 0.311471 0.0999636 0.0999636
N=6 0.503652 0.308591 0.0938788 0.0938788
N=7 0.514279 0.306032 0.0898447 0.0898447
N =38 0.522118 0.303872 0.0870047 0.0870047
N=9 0.528112 0.30207 0.0849091 0.0849091
N =10| 0.532829 0.300562 0.0833042 0.0833042
N =o00| 0571429 0.285714 0.0714286 0.0714286

b. Plugging the posterior foN = oo into the definition of the Kullback Liebler Diver-
gence gives us:

N | KL(p,p) N | KL(p,p)
N =1 0.386329 N =7 [0.00804982
N =2/ 0.129343 N =8 [0.00593024
N =3/ 0.056319 N =9 [0.00454205
N = 4] 0.029475 N = 100.00358663
N =5[0.0175705 N=c 0

c. The proof forV = 1 is trivial, since the re-weighting ignores the measurenpeaba-
bility entirely. Therefore, the probability for generagim sample in any of the locations
in S is given by the initial distribution, which is uniform.

For N = 2, a proof is easily obtained by considering 2fl = 16 ways in which
initial samples are generated:

number| samples probability p(z|s) weights probability of resampling
of sample setfor each samplefor each sampleé for each location it
T 0o % |t 3 |3 % |® 00 0
N CHE T A T R A R P
302 & |H 4 |3 3 & 0k o
4 oz g k4 55 |k 0 0 g
N L T T N R
R CURE T A T E R S R S AT B
AR E ST R T ECRE S R T T
N COR T T T S T
o |2 o & |t & |5 4 & 0k o
10 2 1| g 2 & |E b o g% & o
11 2 2 = = = 1 1 o o % 0
12 203 g | % |3 3 oo g g
13 Js o | & |f & |5 |k 0 0 o
14 31| 25 |E b o o% 0 g
15 Js 2| & | & |35 [0 0 & 4
16 3 3 1 i 5 z 1 0O 0 O 1
sum of all probabilities = 0 22 2=
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A quick check should convince you that these numbers aredtime s above. Placing
this into the definition of the Kullback Liebler divergencethvthe correct posterior
distribution, gives u$.129343.

For N = oo we know that the sampler is unbiased. Hence, the probabiligen-
erating a sample is the same as the posterior distributitouleéed by Bayes filters.
Those are given above as well.

d. Here are two possible modifications. First, if the initiabot location is known with
absolute certainty, the sampler above will always be uebiassecond, if the sensor
measurement is equally likely for all states, that is(z|s1) = p(z|s2) = p(z|s3) =
p(z|s4), it will also be unbiased. Amvalid answer, which we frequently encountered
in class, pertains to the algorithm (instead of the problermfilation). For example,
replacing particle filters by the exact discrete Bayes fitlgnedies the problem but is
not a legitimate answer to this question. Neither is the disefioitely many particles.

25.2 Implementing Monte Carlo localization requires a lot of Wwbut is a premiere way to
gain insights into the basic workings of probabilistic aigams in robotics, and the intricacies
inherent in real data. We have used this exercise in manysesuand students consistently
expressed having learned a lot. We strongly recommend xbigise!

The implementation is not as straightforward as it may appefirst glance. Common
problems include:

* The sensor model models too little noise, or the wrong tyfpeoise. For example, a
simple Gaussian will not work here.

* The motion model assumes too little or too much noise, onmtteng type of noise.
Here a Gaussian will work fine though.

« The implementation may introduce unnecessarily highavene¢ in the resulting sam-
pling set, by sampling too often, or by sampling in the wroraywT his problem man-
ifests itself by diversity disappearing prematurely, oftgith the wrong samples sur-
viving. While the basic MCL algorithm, as stated in the boslggests that sampling
should occur after each motion update, implementationt ghmple less frequently
tend to yield superior results. Further, drawing sampleependently of each other
is inferior to so-called low variance samplers. Here is aiogr of low variance sam-
pling, in which X’ denotes the particles aidl their importance weights. The resulting
resampled particles reside in the $ét

function Low-VARIANCE-WEIGHTED-SAMPLE-WITH-REPLACEMENT(S, W):

S'={}
b=, Wi
r = rand(0; b)

forn =1to N do
i = argmin; an:l Wim| > r
adds(i| to S’
r = (r 4+ rand(0; ¢)) modulob
return S’
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Figure S25.2 Robot configuration.

The parametetr determines the speed at which we cycle through the sampleVéele
each sample’s probability remains the same as if it were Ethipdependently, the re-
sulting samples are dependent, and the variance of the saetdl’ is lower (assuming
c < b). As a pleasant side effect, the low-variance samples sedsily implemented
in O(N) time, which is more difficult for the independent sampler.

« Samples are started in the occupied or unknown parts of tqg or are allowed into
those parts during the forward sampling (motion predigtgtep of the MCL algorithm.

* Too few samples are used. A few thousand should do the jobwahtindred will
probably not.

The algorithm can be sped up by pre-caching all noise-fressorements, for alt-y-0 poses
that the robot might assume. For that, it is convenient tandedi grid over the space of all
poses, with 10 centimeters spatial and 2 degrees angutduties. One might then compute
the noise-free measurements for the centers of those dt&l dée sensor model is clearly
just a function of those correct measurements; and congpthivse takes the bulk of time in
MCL.

25.3 See Figure S25.2.
25.4

A. Hill climbing down the potential moves manipulator B dowe rod to the point where
the derivative of the term “square of distance from currexsifpon of B to goal position”
is exactly the negative of the derivative of the term “1/3guaf distance from A to B”.
This is a local minimum of the potential function, becausis & minimum of the sum
of those two terms, with A held fixed, and small movements ofcAndt change the
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value of the term “1/square of distance from A to B”, and omigrease the value of the
term “square of distance from current position of A to goasigon”

B. Add a term of the form “1/square of distance between thaeresf A and the center
of B.” Now the stopping configuration of part A is no longer adb minimum because
moving A to the left decreases this term. (Moving A to the ties also increase the
value of the term “square of distance from current positib @o goal position”, but
that term is at a local minimum, so its derivative is zero,lsdain outweighs the loss,
at least for a while.) For the right combination of linear ffmgent, hill climbing will
find its way to a correct solution.

25.5 Leta be the shoulder and be the elbow angle. The coordinates of the end effector are
then given by the following expression. Heres the height and: the horizontal displacement
between the end effector and the robot’s base (origin of tloedinate system):

x Ocm sin & sin(a + )
(z) - (60cm) + (cosa) + 40cm + (cos(a—i—ﬁ) ) 40em
Notice that this is only one way to define the kinematics. Té®ositions of the angles
« andg can be anywhere, and the motors may turn clockwise or catlotdmwise. Here we
chose define these angles in a way that the arm points stigightty = 3 = 0; furthermore,
increasingx and g makes the corresponding joint rotate counterclockwise.

Inverse kinematicgs the problem of computing and S from the end effector coordi-
natesx andz. For that, we observe that the elbow anglés uniquely determined by the
Euclidean distance between the shoulder joint and the dadtef. Let us call this distance
d. The shoulder joint is locate@Dcm above the origin of the coordinate system; hence, the
distanced is given byd = /22 + (z — 60cm)2. An alternative way to calculaté is by
recovering it from the elbow anglg and the two connected joints (each of whichligm
long): d = 2 - 40cm - cos g The reader can easily derive this from basic trigonomegxy,
ploiting the fact that both the elbow and the shoulder areqoiélength. Equating these two
different derivations ofl with each other gives us

V2 + (z — 60cm)? = 80cm - cos g (25.1)
or

8 = +2-arccos \/;L-2 + (2~ 60cm)?
80cm

In most casesj3 can assume two symmetric configurations, one pointing dowehane
pointing up. We will discuss exceptions below.

To recover the angle, we note that the angle between the shoulder (the base) and th

end effector is given byirctan 2(x, z — 60cm). Herearctan 2 is the common generalization
of the arcus tangens to all four quadrants (check it out—# fanction in C). The angle:

is how obtained by addiné, again exploiting that the shoulder and the elbow are of lequa
length:

(25.2)

a = arctan2(z,z — 60cm) — g (25.3)

Of course, the actual value of depends on the actual choice of the valugsofwith the
exception of singularities3 can take on exactly two values.
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The inverse kinematics isiqueif 5 assumes a single value; as a consequence, so does

alpha. For this to be the case, we need that

arccos Va2 + ( — 60cm)? =0 (25.4)
80cm

This is the case exactly when the argument of dh&os is 1, that is, when the distance
d = 80cm and the arm is fully stretched. The end poimts then lie on a circle defined by
V72 + (2 — 60cm)? = 80cm. If the distancel > 80cm, there is no solution to the inverse
kinematic problem: the point is simply too far away to be redile by the robot arm.

Unfortunately, configurations like these are numericalhgtable, as the quotient may
be slightly larger than one (due to truncation errors). Sumints are commonly callesingu-
larities, and they can cause major problems for robot motion planaiggrithms. A second
singularity occurs when the robot is “folded up,” that is= 180°. Here the end effector’'s
position is identical with that of the robot elbow, regas#ieof the anglex: x = 0cm and
z = 60cm. This is an important singularity, as there améinitely many solutions to the
inverse kinematics. As long as = 180°, the value ofa can be arbitrary. Thus, this sim-
ple robot arm gives us an example where the inverse kinemedio yield zero, one, two, or
infinitely many solutions.

25.6 Code not shown.
25.7
a. The configurations of the robots are shown by the black doEgure S25.3.

\

Figure S25.3 Configuration of the robots.

b. Figure S25.3 also answers the second part of this exeritiseows the configuration
space of the robot arm constrained by the self-collisionstraint and the constraint
imposed by the obstacle.

c. The three workspace obstacles are shown in Figure S25.4.
d. This question is a great mind teaser that illustrates tfieculty of robot motion plan-

ning! Unfortunately, for an arbitrary robot, a planar olu$tecan decompose the workspace

into any number of disconnected subspaces. To see, imagine a 1-Q@dFabot that
moves on a horizontal rod, and possesSegpward-pointing fingers, like a giant fork.



221

A single planar obstacle protruding vertically into one loé tfree-spaces between the
fingers could effectively separate the configuration spate/V + 1 disjoint subspaces.
A second DOF will not change this.

More interesting is the robot arm used as an example thraugthis book. By
slightly extending the vertical obstacles protruding itlte robot’s workspace we can
decompose the configuration space into five disjoint regiohise following figures
show the configuration space along with representative gor#iions for each of the
five regions.

Is five the maximum for any planar object that protrudes ihworkspace of this

L

i

Figure S25.4 Workspace obstacles.

x
Tl [J1[3
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|

Figure S25.5 Configuration space for each of the five regions.
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particular robot arm? We honestly do not know; but we offella&vard for the first
person who presents to us a solution that decomposes thguatibn space into six,
seven, eight, nine, or ten disjoint regions. For the rewaltktclaimed, all these regions
must be clearly disjoint, and they must be a two-dimensionahifold in the robot’'s
configuration space.

For non-planar objects, the configuration space is easidpm@osed into any num-
ber of regions. A circular object may force the elbow to bet jasout maximally
bent; the resulting workspace would then be a very narrow fiat leave the shoulder
largely unconstrained, but confines the elbow to a narrogeaithis pipe is then easily
chopped into pieces by small dents in the circular objeetnilimber of such dents can
be increased without bounds.

25.8

A. z=1-cos(60°) + 2 - cos(85°)
y=1-5in(60°) 4 2 - sin(85°)
¢ =90°

B. The minimal value of is 1 - cos(70°) + 2 - cos(105°) = —0.176
achieved when the first rotation is actually® and the second is actualbp®.

The maximal value of is 1 - cos(50°) 4+ 2 - cos(65°) = 1.488

achieved when the first rotation is actualy® and the second is actually°.

The minimal value of is 1 - sin(50°) + 2 - sin(65°) = 2.579

achieved when the first rotation is actualy® and the second is actually°.

The maximal value of is 1 - sin(70°) + 2 - sin(90°) = 2.94

achieved when the first rotation is actualy® and the second is actual?p°.

The minimal value ofp is 65° achieved when the first rotation is actually® and the
second is actually5°.

The maximal value of is 105° achieved when the first rotation is actualy® and the
second is actuallg5°.

C. The maximal possiblg-coordinate (1.0) is achieved when the rotation is execated
exactly90°. Since it is the maximal possible value, it cannot be the nvadure. Since
there is a maximal possible value, the distribution canrotibGaussian, which has
non-zero (though small) probabilities for all values.

25.9 A simple deliberate controller might work as follows: laiize the robot's map with
an empty map, in which all states are assumed to be navigablege. Then iterate the
following loop: Find the shortest path from the current piosi to the goal position in the
map using A*; execute the first step of this path; sense; angdifiynthe map in accordance
with the sensed obstacles. If the robot reaches the godirdesuccess. The robot declares
failure when A* fails to find a path to the goal. It is easy to $leat this approach is both
complete and correct. The robot always find a path to a goalefexists. If no such path
exists, the approach detects this through failure of thi pitnner. When it declares failure,
it is indeed correct in that no path exists.
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A common reactive algorithm, which has the same correctardssompleteness prop-
erty as the deliberate approach, is known as the BUG algoritfihe BUG algorithm dis-
tinguishes two modes, the boundary-following and the ggetal mode. The robot starts in
go-to-goal mode. In this mode, the robot always advancdsetadjacent grid cell closest to
the goal. If this is impossible because the cell is blockedibpbstacle, the robot switches to
the boundary-following mode. In this mode, the robot foldothe boundary of the obstacle
until it reaches a point on the boundary that is a local miminto the straight-line distance
to the goal. If such a point is reached, the robot returns eéathrto-goal mode. If the robot
reaches the goal, it declares success. It declares failuea the same point is reached twice,
which can only occur in the boundary-following mode. It isg#0 see that the BUG algo-
rithm is correct and complete. If a path to the goal exists, rbot will find it. When the
robot declares failure, no path to the goal may exist. If nchspath exists, the robot will
ultimately reach the same location twice and detect itsifaul

Both algorithms can cope with continuous state spacesg®evhat they can accurately
perceive obstacles, plan paths around them (deliberatigitom) or follow their boundary
(reactive algorithm). Noise in motion can cause failuresbimh algorithms, especially if the
robot has to move through a narrow opening to reach the gaailaBly, noise in perception
destroys both completeness and correctness: In both deseskiot may erroneously con-
clude a goal cannot be reached, just because its percepiismoeise. However, a deliberate
algorithm might build a probabilistic map, accommodatihg tincertainty that arises from
the noisy sensors. Neither algorithm as stated can copeunkhown goal locations; how-
ever, the deliberate algorithm is easily converted int@gplorationalgorithm by which the
robot always moves to the nearest unexplored location. Saethigorithm would be complete
and correct (in the noise-free case). In particular, it wdog guaranteed to find and reach
the goal when reachable. The BUG algorithm, however, woatde applicable. A common
reactive technique for finding a goal whose location is umkmés random motion; this algo-
rithm will with probability one find a goal if it is reachablépwever, it is unable to determine
when to give up, and it may be highly inefficient. Moving ole$s will cause problems for
both the deliberate and the reactive approach; in fact,easy to design an adversarial case
where the obstacle always moves into the robot’s way. Fer-shmving obstacles, a common
deliberate technique is to attach a timer to obstacles igtige and erase them after a certain
number of time steps. Such an approach often has a good cbbsgeceeding.

25.10 There are a number of ways to extend the single-leg AFSM inrgi@5.22(b) into

a set of AFSMs for controlling a hexapod. A straightforwasdemsion—though not nec-
essarily the most efficient one—is shown in the followinggi#an. Here the set of legs is
divided into two, named A and B, and legs are assigned to thetsdn alternating sequence.
The top level controller, shown on the left, goes throughsiages. Each stage lifts a set
of legs, pushes the ones still on the ground backwards, avdltdwers the legs that have
previously been lifted. The same sequence is then repeatatid other set of legs. The
corresponding single-leg controller is essentially thmeas in Figure 25.22(b), but with
added wait-steps for synchronization with the coordirpttF=SM. The low-level AFSM is
replicated six times, once for each leg.
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retract, lift higher

move
initially: forward no
A-legs in s,
B-legs in s,
S A-legs . -
Wait until send U to A-legs Wait until lift up
B-legsins, A-legsins,
X
send D to B-legs send P to B-legs Wait Wait
sen, o B-legs i send P to B-legs until U until D
received received|
Wait until Wait until
A-legsin's, B-legs in s,
7'y set down
send P to A-legs send D to A-legs
4 push backward | Wait

until P
received

‘Wait until
A-legsins,

Wait until
B-legsins,

send U to B-legs
(a) (b)
Figure S25.6  Controller for a hexapod robot.

For showing that this controller is stable, we show that aste@ne leg group is on the
ground at all times. If this condition is fulfilled, the rototenter of gravity will always be
above the imaginary triangle defined by the three legs onitvengl. The condition is easily
proven by analyzing the top level AFSM. When one group of legs, (or on the way tos,
from s3), the other is either ir, or s1, both of which are on the ground. However, this proof
only establishes that the robot does not fall over when omgftaind; it makes no assertions
about the robot’s performance on non-flat terrain. Our tdsdlso restricted tstatic stabil-
ity, that is, it ignores all dynamic effects such as inertia. &&ast-moving hexapod, asking
that its center of gravity be enclosed in the triangle of swpmay be insufficient.

25.11 We have used this exercise in class to great effect. Thersidet a clearer picture
of why it is hard to do robotics. The only drawback is that ititot of fun to play, and thus
the students want to spend a lot of time on it, and the ones whust observing feel like
they are missing out. If you have laboratory or TA sectior gan do the exercise there.

Bear in mind that being the Brain is a very stressful job. it take an hour just to stack
three boxes. Choose someone who is not likely to panic orlshed by student derision.
Help the Brain out by suggesting useful strategies such fagintg a mutually agreed Hand-
centric coordinate system so that commands are unambigudasost certainly, the Brain
will start by issuing absolute commands such as “Move thé Hahd 12 inches positive y
direction” or “Move the Left Hand to (24,36).” Such actiondlwever work. The most useful
“invention” that students will suggest is the guarded motiiscussed in Section 25.5—that
is, macro-operators such as “Move the Left Hand in the p@sitidirection until the eyes say
the red and green boxes are level.” This gets the Brain olneolttop, so to speak, and speeds
things up enormously.

We have also used a related exercise to show why roboticsriicydar and algorithm
design in general is difficult. The instructor uses as propslh a table, a diaper and some
safety pins, and asks the class to come up with an algorithimputiing the diaper on the
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baby. The instructor then follows the algorithm, but intetpg it in the least cooperative
way possible: putting the diaper on the doll’'s head unleksdtherwise, dropping the doll
on the floor if possible, and so on.



Solutions for Chapter 26
Philosophical Foundations

26.1 We will take the disabilities (see page 949) one at a timeeNtwt this exercise might
be better as a class discussion rather than written work.

a.

be kind Certainly there are programs that are polite and helpfutl fdobe kind requires
an intentional state, so this one is problematic.

. resourceful Resourceful means “clever at finding ways of doing thingglany pro-

grams meet this criteria to some degree: a compiler can beraeaking an optimiza-

tion that the programmer might not ever have thought of; afzte program might
cleverly create an index to make retrievals faster; a chsoiebackgammon program
learns to play as well as any human. One could argue whetben#thines are “re-

ally” clever or just seem to be, but most people would agréergquirement has been
achieved.

beautiful Its not clear if Turing meant to be beautiful or to creatediganor is it clear
whether he meant physical or inner beauty. Certainly theynaghustrial artifacts in
the New York Museum of Modern Art, for example, are evideritat 2 machine can
be beautiful. There are also programs that have createdl be.best known of these
is chronicled inAaron’s code: Meta-art, artificial intelligence, and the skaf Harold
Cohen(McCorduck, 1991).

d. friendly This appears to fall under the same categoriiag.
e. have initiativelnterestingly, there is now a serious debate whether softsaould take

initiative. The whole field of software agents says that tgh; critics such as Ben
Schneiderman say that to achieve predictability, softvelu@uld only be an assistant,
not an autonomous agent. Notice that the debate over whedtfirareshouldhave
initiative presupposes thath@sinitiative.

. have a sense of humuve know of no major effort to produce humorous works. How-

ever, this seems to be achievable in principle. All it wowke is someone like Harold
Cohen who is willing to spend a long time tuning a humor-pdg machine. We note
that humorous text is probably easier to produce than otteeliam

tell right from wrongThere is considerable research in applying Al to legal ressp
and there are now tools that assist the lawyer in decidingaaad doing research. One
could argue whether following legal precedents is the sasrtelting right from wrong,
and in any case this has a problematic conscious aspect to it.

226
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h. make mistakeét this stage, every computer user is familiar with softwtrat makes
mistakes! It is interesting to think back to what the worldswike in Turing’s day,
when some people thought it would be difficult or impossilded machine to make
mistakes.

i. fall in love This is one of the cases that clearly requires consciousihse that while
some people claim that their pets love them, and some claitptits are not conscious,
| don’t know of anybody who makes both claims.

j. enjoy strawberries and creaifhere are two parts to this. First, there has been little to
no work on taste perception in Al (although there has beetedlwork in the food and
perfume industries; see http://198.80.36.88/popmectt&450.html for one such ar-
tificial nose), so we're nowhere near a breakthrough on t8econd, the “enjoy” part
clearly requires consciousness.

k. make someone fall in love withThis criteria is actually not too hard to achieve; ma-
chines such as dolls and teddy bears have been doing it tirehifor centuries. Ma-
chines that talk and have more sophisticated behaviordhpwst a larger advantage in
achieving this.

|. learn from experienc@art VI shows that this has been achieved many times in Al.

m. use words properlNo program uses words perfectly, but there have been manyahat
language programs that use words properly and effectivéhima limited domain (see
Chapters 22-23).

n. be the subject of its own thoughhe problematic word here is “thought.” Many pro-
grams can process themselves, as when a compiler comgigds iPerhaps closer to
human self-examination is the case where a program has aarfigep representation
of itself. One anecdote of this involves Doug Lenat's Ewigkogram. It used to run
for long periods of time, and periodically needed to gatméorimation from outside
sources. It “knew” that if a person were available, it couytde out a question at the
console, and wait for a reply. Late one night it saw that neemwas logged on, so it
couldn't ask the question it needed to know. But it knew thatigko itself was up and
running, and decided it would modify the representation ofigko so that it inherits
from “Person,” and then proceeded to ask itself the quélstion

0. have as much diversity of behavior as m@iearly, no machine has achieved this, al-
though there is no principled reason why one could not.

p. do something really newhis seems to be just an extension of the idea of learning
from experience: if you learn enough, you can do somethiafiyr@ew. “Really” is
subjective, and some would say that no machine has achibiegdt. On the other
hand, professional backgammon players seem unanimousiimbilief that TDGam-
mon (Tesauro, 1992), an entirely self-taught backgammogram, has revolutionized
the opening theory of the game with its discoveries.

26.2 This exercise depends on what happens to have been publatiegd The NEWS
and MAGS databases, available on many online library cgtajstems, can be searched
for keywords such as Penrose, Searle, Chinese Room, Dregtitis We found about 90
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reviews of Penrose’s books. Here are some excerpts fromrlg tgpical one, by Adam
Schulman (1995).

Roger Penrose, the distinguished mathematical phydigistagain entered the lists to rid
the world of a terrible dragon. The name of this dragon isdisty artificial intelligence.”
Strong Al, as its defenders call it, is both a widely held stiec thesis and an ongoing
technological program. The thesis holds that the human mindthing but a fancy calcu-
lating machine-"-a computer made of meat"—and that allkimg is merely computation;
the program is to build faster and more powerful computeasiwhill eventually be able to
do everything the human mind can do and more. Penrose bglibaethe thesis is false
and the program unrealizable, and he is confident that hercame these assertions..

In Part | of Shadows of the Mind Penrose makes his rigorous tteeg human conscious-
ness cannot be fully understood in computational termsdow does Penrose prove that
there is more to consciousness than mere computation? Mogl@will already find it
inherently implausible that the diverse faculties of hurnansciousness—self-awareness,
understanding, willing, imagining, feeling—differ onlg complexity from the workings
of, say, an IBM PC.

Students should have no problem finding things in this andradlticles with which to dis-
agree. The&eomp.ai Newsnet group is also a good source of rash opinions.

Dubious claims also emerge from the interaction betweemglists’ desire to write
entertaining and controversial articles and academicsireléo achieve prominence and to be
viewed as ahead of the curve. Here’s one typical resui-Nature’s Way The Best Way?
Omni, February 1995, p. 62:

Artificial intelligence has been one of the least successfséarch areas in computer
science. That’s because in the past, researchers triedply apnventional computer
programming to abstract human problems, such as recogngtiapes or speaking in
sentences. But researchers at MIT’s Media Lab and Bostovelsity’s Center for Adap-
tive Systems focus on applying paradigms of intelligenoset to what nature designed
for humans, which include evolution, feedback, and adaptaare used to produce com-
puter programs that communicate among themselves anchitetann from their mistakes.
Profiles In Artificial Intelligence, David Freedman

This is not an argument that Al is impossible, just that it baen unsuccessful. The full
text of the article is not given, but it is implied that the angent is that evolution worked
for humans, therefore it is a better approach for programas ik “conventional computer
programming.” This is a common argument, but one that igndine fact that (a) there are
many possible solutions to a problem; one that has workelgepast may not be the best in
the present (b) we don't have a good theory of evolution, sonag not be able to duplicate
human evolution, (c) natural evolution takes millions ofye and for almost all animals
does not result in intelligence; there is no guarantee thiical evolution will do better (d)
artificial evolution (or genetic algorithms, ALife, neunaéts, etc.) is not the only approach
that involves feedback, adaptation and learning. “Corigaat” Al does this as well.

26.3 Yes, this is a legitimate objection. Remember, the poinésforing the brain to normal
(page 957) is to be able to ask “What was it like during the apen?” and be sure of
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getting a “human” answer, not a mechanical one. But the gkeph point out that it will not
do to replace each electronic device with the correspondagon that has been carefully
kept aside, because this neuron will not have been modifiedfect the experiences that
occurred while the electronic device was in the loop. Ondd:éin the argument by saying,
for example, that each neuron has a single activation enbkagyepresents its “memory,” and
that we set this level in the electronic device when we ingesind then when we remove it,
we read off the new activation energy, and somehow set thggirethe neuron that we put
back in. The details, of course, depend on your theory of whimportant in the functional
and conscious functioning of neurons and the brain; a thewiis not well-developed so
far.

26.4 To some extent this question illustrates the slipperinéssamy of the concepts used
in philosophical discussions of Al. Here is our best guesgoasow a philosopher would
answer this question. Remember that “wide content” referse¢aning ascribed by an outside
observer with access to both brain and world, while narronteat refers to the brain state
only. So the obvious answer seems to be that under wide daterstates of the running
program correspond to “having the goal of proving citizepsif the user,” “having the goal
of establishing the country of birth of the user,” “knowingetuser was born in the Isle of
Man,” and so on; and under narrow content, the program saaggsist arbitrary collections of
bits with no obvious semantics in commonsense terms. (Aftethe same compiled program
might arise from an isomorphic set of rules about whetherhma@ms are poisonous.) Many
philosophers might object, however, that even under widgera the program has no such
semantics because it never had the right kinds of causalections to experience of the
world that underpins concepts such as birth and citizenship

26.5 The progress that has been made so far — a limited class dgttedtcognitive activi-
ties can be carried out on a computer, some much better thraarig) most much worse than
humans — is very little evidence. If all cognitive activiiean be explained in computational
terms, then that would at least establish that cognitiors dwerequire the involvement of
anything beyond physical processes. Of course, it woulldbgtipossible that something of
the kind isactuallyinvolved in human cognition, but this would certainly inase the burden
of proof on those who claim that it is.

26.6 The impact of Al has thus far been extremely small, by congoai In fact, the social
impact ofall technological advances between 1958 and 2008 has beenleaidy smaller
than the technological advances between 1890 and 1940.chim@an idea that we live in a
world where technological change advances ever more sajgidiut-dated.

26.7 This question asks whether our obsession with intelligeneeely reflects our view of
ourselves as distinct due to our intelligence. One may mdpo two ways. First, note that
we already have ultrafast and ultrastrong machines (famgk@, aircraft and cranes) but they
have not changed everything—only those aspects of life foclvraw speed and strength are
important. Good’s argument is based on the view that igtetice is important in all aspects
of life, since all aspects involve choosing how to act. Segamte that ultraintelligent ma-
chines have the special property that they can easily cudta#dast and ultrastrong machines
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as needed, whereas the converse is not true.

26.8 lItis hard to give a definitive answer to this question, bu&it provoke some interesting
essays. Many of the threats are actually problems of commdinology or industrial society
in general, with some components that can be magnified by Abmgles include loss of
privacy to surveillance, and the concentration of power aedlth in the hands of the most
powerful. As discussed in the text, the prospect of robdtstpover the world does not
appear to be a serious threat in the foreseeable future.

26.9 Biological and nuclear technologies provide mush more idiate threats of weapons,
yielded either by states or by small groups. Nanotechnlbgyatens to produce rapidly re-
producing threats, either as weapons or accidently, buetmability of this technology is still
quite hypothetical. As discussed in the text and in the previexercise, computer technology
such as centralized databases, network-attached caraath§PS-guided weapons seem to
pose a more serious portfolio of threats than Al technolagjieast as of today.

26.10 To decide if Al is impossible, we must first define it. In thisao we've chosen a
definition that makes it easy to show it is possible in theofgra given architecture, we
just enumerate all programs and choose the best. In prathisemight still be infeasible,
but recent history shows steady progress at a wide varietgséls. Now if we define Al as
the production of agents that act indistinguishably formafdeast as intellgiently as) human
beings on any task, then one would have to say that littlerpssghas been made, and some,
such as Marvin Minsky, bemoan the fact that few attempts\aa being made. Others think
it is quite appropriate to address component tasks rattzar the “whole agent” problem.
Our feeling is that Al is neither impossible nor a ooming #ireBut it would be perfectly
consistent for someone to ffel that Al is most likely doomedadilure, but still that the risks
of possible success are so great that it should not be pefsutsgr of success.
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