
Learning Methods

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

What is Learning?

 Most often heard criticisms of AI is that machines cannot be called
intelligent until they are able to learn to do new things and
adapt to new situations, rather than simply doing as they are told
to do.

 Some critics of AI have been saying that computers cannot learn!

 Definitions of Learning: changes in the system that are adaptive in the
sense that they enable the system to do the same task or tasks drawn
from the same population more efficiently and more effectively the
next time.

 Learning covers a wide range of phenomenon:
 Skill refinement : Practice makes skills improve. More you play tennis, better you

get
 Knowledge acquisition: Knowledge is generally acquired through experience

Various learning mechanisms

 Simple storing of computed information or rote learning, is the most
basic learning activity.
 Many computer programs ie., database systems can be said to learn in this

sense although most people would not call such simple storage learning.

 Another way we learn if through taking advice from others. Advice
taking is similar to rote learning, but high-level advice may not be in a
form simple enough for a program to use directly in problem solving.

 People also learn through their own problem-solving experience.

 Learning from examples : we often learn to classify things in the world
without being given explicit rules.

 Learning from examples usually involves a teacher who helps us
classify things by correcting us when we are wrong.

4

An example application

 An emergency room in a hospital measures 17 variables (e.g.,
blood pressure, age, etc) of newly admitted patients.

 A decision is needed: whether to put a new patient in an
intensive-care unit.

 Due to the high cost of ICU, those patients who may survive
less than a month are given higher priority.

 Problem: to predict high-risk patients and discriminate them
from low-risk patients.

5

Another application

 A credit card company receives thousands of applications for
new cards. Each application contains information about an
applicant,
 age

 Marital status

 annual salary

 outstanding debts

 credit rating

 etc.

 Problem: to decide whether an application should approved, or
to classify applications into two categories, approved and not
approved.

Forms of Learning

 supervised learning
 an agent tries to find a function that matches examples from a sample set

 each example provides an input together with the correct output

 a teacher provides feedback on the outcome

 the teacher can be an outside entity, or part of the environment

 unsupervised learning
 the agent tries to learn from patterns without corresponding output values

 reinforcement learning
 the agent does not know the exact output for an input, but it receives

feedback on the desirability of its behavior

 the feedback can come from an outside entity, the environment, or the agent
itself

 the feedback may be delayed, and not follow the respective action immediately

Learning Agent Model

Sensors

Effectors

Performance Element

Critic

Learning Element

Problem Generator

Agent

Environment

Performance
Standard

Feedback

Learning
Goals

Changes

Knowledge

Learning Element Design Issues

 selections of the components of the performance elements

that are to be improved

 representation mechanisms used in those components

 availability of feedback

 availability of prior information

Machine learning

Supervised learning

Aziz M. Qaroush - Birzeit University 9

10

Supervised learning

 Like human learning from past experiences.

 A computer does not have “experiences”.

 A computer system learns from data, which represent some

“past experiences” of an application domain.

 Our focus: learn a target function that can be used to predict

the values of a discrete class attribute, e.g., approve or not-

approved, and high-risk or low risk.

 The task is commonly called: Supervised learning, classification,

or inductive learning.

Example Inductive Learning

x

f(x)

12

 Data: A set of data records (also called examples, instances or

cases) described by

 k attributes: A1, A2, … Ak.

 a class: Each example is labelled with a pre-defined class.

 Goal: To learn a classification model from the data that can be

used to predict the classes of new (future, or test)

cases/instances.

The data and the goal

13

An example: data (loan application)
Approved or not

14

An example: the learning task
 Learn a classification model from the data

 Use the model to classify future loan applications into

 Yes (approved) and

 No (not approved)

 What is the class for following case/instance?

15

Supervised vs. unsupervised Learning

 Supervised learning: classification is seen as supervised learning
from examples.

 Supervision: The data (observations, measurements, etc.) are
labeled with pre-defined classes. It is like that a “teacher” gives the
classes (supervision).

 Test data are classified into these classes too.

 Unsupervised learning (clustering)

 Class labels of the data are unknown

 Given a set of data, the task is to establish the existence of classes or
clusters in the data

16

Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the model

accuracy

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
Accuracy

17

What do we mean by learning?

 Given

 a data set D,

 a task T, and

 a performance measure M,

 a computer system is said to learn from D to perform the task T
if after learning the system’s performance on T improves as
measured by M.

 In other words, the learned model helps the system to perform T
better as compared to no learning.

18

An example

 Data: Loan application data

 Task: Predict whether a loan should be approved or not.

 Performance measure: accuracy.

No learning: classify all future applications (test data) to the

majority class (i.e., Yes):

 Accuracy = 9/15 = 60%.

 We can do better than 60% with learning.

Decision Trees

Aziz M. Qaroush - Birzeit University 19

20

Introduction

 Decision tree learning is one of the most widely used

techniques for classification.

 Its classification accuracy is competitive with other methods, and

 it is very efficient.

 The classification model is a tree, called decision tree.

 C4.5 by Ross Quinlan is perhaps the best known system. It can

be downloaded from the Web.

Boolean Decision Trees

 compute yes/no decisions based on sets of desirable or

undesirable properties of an object or a situation

 each node in the tree reflects one yes/no decision based on a

test of the value of one property of the object

 the root node is the starting point

 leaf nodes represent the possible final decisions

 branches are labeled with possible values

 the learning aspect is to predict the value of a goal predicate

(also called goal concept)

 a hypothesis is formulated as a function that defines the goal

predicate

22

The loan data (reproduced)
Approved or not

Learning Decision Trees

 problem: find a decision tree that agrees with the training set

 trivial solution: construct a tree with one branch for each

sample of the training set

 works perfectly for the samples in the training set

 may not work well for new samples (generalization)

 results in relatively large trees

 better solution: find a concise tree that still agrees with all

samples

 corresponds to the simplest hypothesis that is consistent with

the training set

Constructing Decision Trees - Ockham’s Razor

The most likely hypothesis is the simplest one that is

consistent with all observations.

 general principle for inductive learning

 a simple hypothesis that is consistent with all observations is

more likely to be correct than a complex one

 in general, constructing the smallest possible decision tree is

an intractable problem

 algorithms exist for constructing reasonably small trees

 basic idea: test the most important attribute first

 attribute that makes the most difference for the classification

of an example

 can be determined through information theory

 hopefully will yield the correct classification with few tests

Decision Tree Algorithm

 recursive formulation

 select the best attribute to split positive and negative

examples

 if only positive or only negative examples are left, we are

done

 if no examples are left, no such examples were observers

 return a default value calculated from the majority classification at the

node’s parent

 if we have positive and negative examples left, but no

attributes to split them we are in trouble

 samples have the same description, but different classifications

 may be caused by incorrect data (noise), or by a lack of information, or

by a truly non-deterministic domain

26

A decision tree from the loan data

Decision nodes and leaf nodes (classes)

27

Use the decision tree

No

28

Is the decision tree unique?

No. Here is a simpler tree.

We want smaller tree and accurate tree.

 Easy to understand and perform better.

Finding the best tree is NP-hard.

All current tree building algorithms

are heuristic algorithms

Idea: a good attribute splits the

examples into subsets that are

(ideally) "all positive" or "all

negative"

29

From a decision tree to a set of rules

A decision tree can be

converted to a set of rules

Each path from the root to a

leaf is a rule.

30

Algorithm for decision tree learning

 Basic algorithm (a greedy divide-and-conquer algorithm)

 Assume attributes are categorical now (continuous attributes can be handled
too)

 Tree is constructed in a top-down recursive manner

 At start, all the training examples are at the root

 Examples are partitioned recursively based on selected attributes

 Attributes are selected on the basis of an impurity function (e.g., information
gain)

 Conditions for stopping partitioning

 All examples for a given node belong to the same class

 There are no remaining attributes for further partitioning – majority class is
the leaf

 There are no examples left

31

Decision tree learning algorithm

32

Choose an attribute to partition data

 The key to building a decision tree - which attribute to choose in

order to branch.

 The objective is to reduce impurity or uncertainty in data as much

as possible.

 A subset of data is pure if all instances belong to the same class.

 The heuristic in C4.5 is to choose the attribute with the maximum

Information Gain or Gain Ratio based on information theory.

33

The loan data (reproduced)
Approved or not

34

Two possible roots, which is better?

Fig. (B) seems to be better.

35

Information theory

 Information theory provides a mathematical basis for
measuring the information content.

 To understand the notion of information, think about it as
providing the answer to a question, for example, whether a
coin will come up heads.
 If one already has a good guess about the answer, then the actual

answer is less informative.
 If one already knows that the coin is rigged so that it will come

with heads with probability 0.99, then a message (advanced
information) about the actual outcome of a flip is worth less than
it would be for a honest coin (50-50).

36

Information theory (cont …)

 For a fair (honest) coin, you have no information, and
you are willing to pay more (say in terms of $) for
advanced information - less you know, the more valuable
the information.

 Information theory uses this same intuition, but instead
of measuring the value for information in dollars, it
measures information contents in bits.

 One bit of information is enough to answer a yes/no
question about which one has no idea, such as the flip of
a fair coin

37

Information theory: Entropy measure
 The entropy formula,

 Pr(cj) is the probability of class cj in data set D

 We use entropy as a measure of impurity or disorder of data set

D. (Or, a measure of information in a tree)

,1)Pr(

)Pr(log)Pr()(

||

1

||

1

2

C

j

j

j

C

j

j

c

ccDentropy

38

Entropy measure: let us get a feeling

As the data become purer and purer, the entropy value becomes

smaller and smaller. This is useful to us!

Using information theory

 To implement Choose-Attribute in the DTL

algorithm

 Information Content (Entropy):

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)

 For a training set containing p positive examples and n

negative examples:

np

n

np

n

np

p

np

p

np

n

np

p
I

22 loglog),(

Information gain

 A chosen attribute A divides the training set E into subsets E1, … ,

Ev according to their values for A, where A has v distinct values.

 Information Gain (IG) or reduction in entropy from the attribute

test:

 Choose the attribute with the largest IG

v

i ii

i

ii

iii

np

n

np

p
I

np

np
Aremainder

1

),()(

)(),()(Aremainder
np

n

np

p
IAIG

41

An example

Age Yes No entropy(Di)

young 2 3 0.971

middle 3 2 0.971

old 4 1 0.722

Own_house is the best choice

for the root.

971.0
15

9
log

15

9

15

6
log

15

6
)(22 Dentropy

551.0

918.0
15

9
0

15

6

)(
15

9
)(

15

6
)(21_

 DentropyDentropyDentropy houseOwn

888.0

722.0
15

5
971.0

15

5
971.0

15

5

)(
15

5
)(

15

5
)(

15

5
)(321

 DentropyDentropyDentropyDentropyAge

42

We build the final tree

43

Avoid overfitting in classification

 Ideal goal of classification: Find the simplest decision tree that
fits the data and generalizes to unseen data

 Overfitting: A tree may overfit the training data

 Good accuracy on training data but poor on test data

 Symptoms: tree too deep and too many branches, some may reflect
anomalies due to noise or outliers

 Overfitting results in decision trees that are more complex than
necessary

 Trade-off full consistency for compactness

 Larger decision trees can be more consistent

 Smaller decision trees generalize better

44

An example

Likely to overfit the data

Overfitting due to Noise

Aziz M. Qaroush - Birzeit University 45

Overfitting due to Insufficient Examples

Aziz M. Qaroush - Birzeit University 46

Overfitting and accuracy

Aziz M. Qaroush - Birzeit University 47

Pruning to avoid overfitting

 Prepruning: Stop growing the tree when there is not enough data to
make reliable decisions or when the examples are acceptably
homogenous (ID3)
 Do not split a node if this would result in the goodness measure falling below

a threshold (e.g. InfoGain)
 Difficult to choose an appropriate threshold

 Since we use a hill-climbing search, looking only one step ahead, pre-
pruning might stop too early.

 Postpruning: Grow the full tree, then remove nodes for which there is
not sufficient evidence (C4.5)
 Replace a split (subtree) with a leaf if the predicted validation error is no worse

than the more complex tree (use dataset)

 Prepruning easier, but postpruning works better

 Prepruning ‐ hard to know when to stop

Aziz M. Qaroush - Birzeit University 48

• Advantages:

– Easy to understand (Doctors love them!)

– Easy to generate rules

• Disadvantages:

– May suffer from overfitting.

– Classifies by rectangular partitioning (so does

not handle correlated features very well).

– Can be quite large – pruning is necessary.

– Does not handle streaming data easily

Advantages/Disadvantages of Decision Trees

Supervised learning

Artificial Neural Networks

Aziz M. Qaroush - Birzeit University 50

Artificial neural networks:
Supervised learning

 Introduction, or how the brain works

 The neuron as a simple computing element

 The Perceptron

 Multilayer neural networks

 Accelerated learning in multilayer neural networks

Introduction, or how the brain works

• Machine learning involves adaptive mechanisms

that enable computers to learn from experience,

learn by example and learn by analogy.

• Learning capabilities can improve the performance

of an intelligent system over time.

• The most popular approache to machine learning is

artificial neural networks

 A neural network can be defined as a model of

reasoning based on the human brain. The brain

consists of a densely interconnected set of nerve

cells, or basic information-processing units, called

neurons.

 The human brain incorporates nearly 10 billion

neurons and 60 trillion connections, synapses,

between them. By using multiple neurons

simultaneously, the brain can perform its functions

much faster than the fastest computers in existence

today.

Artificial Neural Networks

 Each neuron has a very simple structure, but an

army of such elements constitutes a tremendous

processing power.

 A neuron consists of a cell body, soma, a number of

fibers called dendrites, and a single long fiber

called the axon.

Artificial Neural Networks

Biological neural network

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

 An artificial neural network consists of a number of

very simple processors, also called neurons, which

are analogous to the biological neurons in the brain.

 The neurons are connected by weighted links

passing signals from one neuron to another.

 The output signal is transmitted through the

neuron’s outgoing connection. The outgoing

connection splits into a number of branches that

transmit the same signal. The outgoing branches

terminate at the incoming connections of other

neurons in the network.

Artificial Neural Network

Architecture of a typical artificial neural network

Input Layer Output Layer

Middle Layer

I
n

 p
 u

 t

 S

 i
 g

 n
 a

 l
 s

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

The neuron as a simple computing element

Diagram of a neuron

Neuron Y

Input Signals

x1

x2

xn

Output Signals

Y

Y

Y

w2

w1

wn

Weights

1x

2x

3x

add

)(taif

1output output
signal

• input signals ‘x’ and coefficients ‘w’ are multiplied

• weights correspond to connection strengths

• signals are added up – if they are enough, FIRE!

else
0output

1w

2w

3w

i

M

i

iwxa

1

incoming

signal

connection

strength
activation

level

output

signal

The neuron as a simple computing element

Sum notation

(just like a loop from 1 to M)

double[] x =

double[] w =

Multiple corresponding

elements and add them up

a

if (activation > threshold) FIRE !

(activation)

i

M

i

iwxa

1

Calculation…

Is this a good decision boundary?

tif 0 else ,1 then outputoutput

i

M

i

iwx
1

w1 = 2.1

w2 = 0.2

t = 0.05

tif 0 else ,1 then outputoutput

i

M

i

iwx
1

w1 = 1.9

w2 = 0.02

t = 0.05

tif 0 else ,1 then outputoutput

i

M

i

iwx
1

Changing the weights/threshold makes the decision boundary move.

Pointless / impossible to do it by hand – only ok for simple 2-D case.

We need an algorithm….

w1 = -0.8

w2 = 0.03

t = 0.05

 The neuron computes the weighted sum of the input

signals and compares the result with a threshold

value, . If the net input is less than the threshold,

the neuron output is –1. But if the net input is greater

than or equal to the threshold, the neuron becomes

activated and its output attains a value +1.

 The neuron uses the following transfer or activation

function:

 This type of activation function is called a sign

function.

n

i

iiwxX

1

X

X
Y

 if ,1

 if ,1

The neuron as a simple computing element

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function

0 if ,0

0 if ,1

X

X
Y step

0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y

1

1 XY linear

Can a single neuron learn a task?

 In 1958, Frank Rosenblatt introduced a training

algorithm that provided the first procedure for

training a simple ANN: a perceptron.

 The perceptron is the simplest form of a neural

network. It consists of a single neuron with

adjustable synaptic weights and a hard limiter.

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner

Single-layer two-input perceptron

The Perceptron

 The operation of Rosenblatt’s perceptron is based

on the McCulloch and Pitts neuron model. The

model consists of a linear combiner followed by a

hard limiter.

 The weighted sum of the inputs is applied to the

hard limiter, which produces an output equal to +1

if its input is positive and 1 if it is negative.

 The aim of the perceptron is to classify inputs,

 x1, x2, . . ., xn, into one of two classes, say

 A1 and A2.

 In the case of an elementary perceptron, the n-

dimensional space is divided by a hyperplane into

two decision regions. The hyperplane is defined by

the linearly separable function:

0

1

n

i

iiwx

The Perceptron

Linear separability in the perceptrons

x1

x2

Class A2

Class A1

1

2

x1w1 + x2w2 = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x2

x1

x3
x1w1 + x2w2 + x3w3 = 0

1
2

• This is done by making small adjustments in the

weights to reduce the difference between the actual

and desired outputs of the perceptron.

• The initial weights are randomly assigned, usually

in the range [0.5, 0.5], and then updated to obtain

the output consistent with the training examples.

How does the perceptron learn its classification

tasks?

 If at iteration p, the actual output is Y(p) and the

desired output is Yd (p), then the error is given by:

 where p = 1, 2, 3, . . .

 Iteration p here refers to the pth training example

presented to the perceptron.

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

)()()(pYpYpe d

How does the perceptron learn its classification

tasks?

The perceptron learning rule

where p = 1, 2, 3, . . .

 is the learning rate, a positive constant less than

unity.

The perceptron learning rule was first proposed by

Rosenblatt in 1960. Using this rule we can derive

the perceptron training algorithm for classification

tasks.

)()()()1(pepxpwpw iii

Step 1: Initialisation

 Set initial weights w1, w2,…, wn and threshold

to random numbers in the range [0.5, 0.5].

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

Perceptron’s tarining algorithm

Step 2: Activation

 Activate the perceptron by applying inputs x1(p),

x2(p),…, xn(p) and desired output Yd (p).

Calculate the actual output at iteration p = 1

 where n is the number of the perceptron inputs,

and step is a step activation function.

Perceptron’s tarining algorithm (continued)

n

i

ii pwpxsteppY

1

)()()(

Step 3: Weight training

 Update the weights of the perceptron

 where is the weight correction at iteration p.

 The weight correction is computed by the delta

rule:

Step 4: Iteration

 Increase iteration p by one, go back to Step 2 and

repeat the process until convergence.

)()()1(pwpwpw iii

Perceptron’s tarining algorithm (continued)

)()()(pepxpw ii

)(pwi

Example of perceptron learning: the logical operation AND
Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired
output

Yd

1

Initial

weights
w1 w2

1

0.3

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0

0

1

0

Actual
output

Y

Error

e

0

0

1

1

Final

weights
w1 w2

0.3

0.3

0.2

0.3

0.1

0.1

0.1

 0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0.3

0.3

0.2

0

0

1

1

0

0

1

0

0.3

0.3

0.2

0.2

 0.0

 0.0

 0.0

 0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

0

0

1

0

0

0

1

1

0.2

0.2

0.1

0.2

 0.0

 0.0

 0.0

 0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

0

1

0

0.2

0.2

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

Threshold: = 0.2; learning rate: = 0.1

Two-dimensional plots of basic logical operations

x1

x2

1

(a) AND (x1 x2)

1

x1

x2

1

1

(b) OR (x1 x2)

x1

x2

1

1

(c) Exclusive-OR

(x1 x2)

00 0

 A perceptron can learn the operations AND and

OR, but not Exclusive-OR.

Multilayer neural networks

 A multilayer perceptron is a feedforward neural

network with one or more hidden layers.

 The network consists of an input layer of source

neurons, at least one middle or hidden layer of

computational neurons, and an output layer of

computational neurons.

 The input signals are propagated in a forward

direction on a layer-by-layer basis.

Multilayer perceptron with two hidden layers

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

What does the middle layer hide?
 A hidden layer “hides” its desired output. Neurons in the

hidden layer cannot be observed through the input/output

behaviour of the network. There is no obvious way to know

what the desired output of the hidden layer should be.

 Neurons in the hidden layer detect the features; the weights of

the neurons represent the features hidden in the input patterns.

These features are then used by the output layer in determining

the output pattern.

 Commercial ANNs incorporate three and sometimes four

layers, including one or two hidden layers. Each layer can

contain from 10 to 1000 neurons. Experimental neural

networks may have five or even six layers, including three or

four hidden layers, and utilise millions of neurons.

Why use hierarchical multi-layered models?

Why use hierarchical multi-layered models?

Neocognitron For Handwritten Text

Back-propagation neural network

 Learning in a multilayer network proceeds the

same way as for a perceptron.

 A training set of input patterns is presented to the

network.

 The network computes its output pattern, and if

there is an error or in other words a difference

between actual and desired output patterns the

weights are adjusted to reduce this error.

 In a back-propagation neural network, the learning

algorithm has two phases.

 First, a training input pattern is presented to the

network input layer. The network propagates the

input pattern from layer to layer until the output

pattern is generated by the output layer.

 If this pattern is different from the desired output,

an error is calculated and then propagated

backwards through the network from the output

layer to the input layer. The weights are modified

as the error is propagated.

Back-propagation neural network

Three-layer back-propagation neural network

Input

layer

xi

x1

x2

xn

1

2

i

n

Output

layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden

layer

wij

1

2

j

m

Step 1: Initialisation

 Set all the weights and threshold levels of the

network to random numbers uniformly

distributed inside a small range:

 where Fi is the total number of inputs of neuron i

in the network. The weight initialisation is done

on a neuron-by-neuron basis.

The back-propagation training algorithm

ii FF

4.2
 ,

4.2

Step 2: Activation

 Activate the back-propagation neural network by

applying inputs x1(p), x2(p),…, xn(p) and desired

outputs yd,1(p), yd,2(p),…, yd,n(p).

 (a) Calculate the actual outputs of the neurons in

the hidden layer:

 where n is the number of inputs of neuron j in the

hidden layer, and sigmoid is the sigmoid activation

function.

j

n

i

ijij pwpxsigmoidpy

1

)()()(

 (b) Calculate the actual outputs of the neurons in

the output layer:

 where m is the number of inputs of neuron k in the

output layer.

k

m

j

jkjkk pwpxsigmoidpy

1

)()()(

Step 2: Activation (continued)

Step 3: Weight training

 Update the weights in the back-propagation network

propagating backward the errors associated with

output neurons.

 (a) Calculate the error gradient for the neurons in the

output layer:

 where

 Calculate the weight corrections:

 Update the weights at the output neurons:

)()(1)()(pepypyp kkkk

)()()(, pypype kkdk

)()()(ppypw kjjk

)()()1(pwpwpw jkjkjk

 (b) Calculate the error gradient for the neurons in

the hidden layer:

 Calculate the weight corrections:

 Update the weights at the hidden neurons:

)()()(1)()(

1

][p wppypyp jk

l

k

kjjj

)()()(ppxpw jiij

)()()1(pwpwpw ijijij

Step 3: Weight training (continued)

Step 4: Iteration

 Increase iteration p by one, go back to Step 2 and

repeat the process until the selected error criterion

is satisfied.

 As an example, we may consider the three-layer

back-propagation network. Suppose that the

network is required to perform logical operation

Exclusive-OR. Recall that a single-layer

perceptron could not do this operation. Now we

will apply the three-layer net.

Three-layer network for solving the

Exclusive-OR operation

y55

x1 31

x2

Input

layer

Output

layer

Hidden layer

42

3

w13

w24

w23

w24

w35

w45

4

5

1

1

1

 The effect of the threshold applied to a neuron in the

hidden or output layer is represented by its weight, ,

connected to a fixed input equal to 1.

 The initial weights and threshold levels are set

randomly as follows:

 w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = 1.2,

w45 = 1.1, 3 = 0.8, 4 = 0.1 and 5 = 0.3.

 We consider a training set where inputs x1 and x2 are

equal to 1 and desired output yd,5 is 0. The actual

outputs of neurons 3 and 4 in the hidden layer are

calculated as

 5250.01 /1)()8.014.015.01(
32321313 ewxwx sigmoidy

 8808.01 /1)()1.010.119.01(
42421414 ewxwx sigmoidy

 Now the actual output of neuron 5 in the output layer

is determined as:

 Thus, the following error is obtained:

 5097.01 /1)()3.011.18808.02.15250.0(
54543535 ewywy sigmoidy

5097.05097.0055, yye d

 The next step is weight training. To update the

weights and threshold levels in our network, we

propagate the error, e, from the output layer

backward to the input layer.

 First, we calculate the error gradient for neuron 5 in

the output layer:

1274.05097).0(0.5097)(1 0.5097)1(555 e y y

 Then we determine the weight corrections assuming

that the learning rate parameter, , is equal to 0.1:

0112.0)1274.0(8808.01.05445 yw

0067.0)1274.0(5250.01.05335 yw

0127.0)1274.0()1(1.0)1(55

 Next we calculate the error gradients for neurons 3

and 4 in the hidden layer:

 We then determine the weight corrections:

0381.0)2.1 (0.1274) (0.5250)(1 0.5250)1(355333 wyy

0.0147.11 4) 0.127 (0.8808)(10.8808)1(455444 wyy

0038.00381.011.03113 xw

0038.00381.011.03223 xw

0038.00381.0)1(1.0)1(33

0015.0)0147.0(11.04114 xw

0015.0)0147.0(11.04224 xw

0015.0)0147.0()1(1.0)1(44

 At last, we update all weights and threshold:

5038 . 0 0038 . 0 5 . 0 13 13 13
 w w w

8985 . 0 0015 . 0 9 . 0 14 14 14
 w w w

4038 . 0 0038 . 0 4 . 0 23 23 23
 w w w

9985 . 0 0015 . 0 0 . 1 24 24 24
 w w w

2067 . 1 0067 . 0 2 . 1 35 35 35
 w w w

0888 . 1 0112 . 0 1 . 1 45 45 45
 w w w

7962 . 0 0038 . 0 8 . 0 3 3 3

0985 . 0 0015 . 0 1 . 0 4 4 4

3127 . 0 0127 . 0 3 . 0 5 5 5

 The training process is repeated until the sum of

squared errors is less than 0.001.

Learning curve for operation Exclusive-OR

0 50 100 150 200

10
1

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Sum-Squared Network Error for 224 Epochs

10
0

10
-1

10
-2

10
-3

10
-4

Final results of three-layer network learning

Inputs

x1 x2

1

0

1

0

1

1

0

0

0

1

1

Desired

output

yd

0

 0.0155

Actual

output

y5

Y

Error

e

Sum of

squared
errors

e
 0.9849

 0.9849

 0.0175

0.0155

 0.0151

 0.0151

0.0175

0.0010

Network represented by McCulloch-Pitts model

for solving the Exclusive-OR operation

y55

x1 31

x2 42

+1.0

1

1

1
+1.0

+1.0

+1.0

+1.5

+1.0

+1.0

+0.5

+0.5

(a) Decision boundary constructed by hidden neuron 3;

(b) Decision boundary constructed by hidden neuron 4;

(c) Decision boundaries constructed by the complete

 three-layer network

x1

x2

1

(a)

1

x2

1

1

(b)

00

x1 + x2 – 1.5 = 0 x1 + x2 – 0.5 = 0

x1 x1

x2

1

1

(c)

0

Decision boundaries

Accelerated learning in multilayer

neural networks

 A multilayer network learns much faster when the

sigmoidal activation function is represented by a

hyperbolic tangent:

 where a and b are constants.

 Suitable values for a and b are:

 a = 1.716 and b = 0.667

a
e

a
Y

bX

htan

1

2

 We also can accelerate training by including a

momentum term in the delta rule:

 where is a positive number (0 1) called the

momentum constant. Typically, the momentum

constant is set to 0.95.

 This equation is called the generalised delta rule.

)()()1()(ppypwpw kjjkjk

Accelerated learning in multilayer

neural networks

Learning with momentum for operation Exclusive-OR

0 20 40 60 80 100 120
10

-4

10
-2

10
0

10
2

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Training for 126 Epochs

0 100 140
-1

-0.5

0

0.5

1

1.5

Epoch

L
e
a
rn

in
g

 R
a
te

10
-3

10
1

10
-1

20 40 60 80 120

Learning with adaptive learning rate

To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Heuristic 1

 If the change of the sum of squared errors has the same

algebraic sign for several consequent epochs, then the

learning rate parameter, , should be increased.

Heuristic 2

 If the algebraic sign of the change of the sum of

squared errors alternates for several consequent

epochs, then the learning rate parameter, , should be

decreased.

 Adapting the learning rate requires some changes

in the back-propagation algorithm.

 If the sum of squared errors at the current epoch

exceeds the previous value by more than a

predefined ratio (typically 1.04), the learning rate

parameter is decreased (typically by multiplying

by 0.7) and new weights and thresholds are

calculated.

 If the error is less than the previous one, the

learning rate is increased (typically by multiplying

by 1.05).

Learning with adaptive learning rate

0 10 20 30 40 50 60 70 80 90 100

Epoch

Training for 103 Epochs

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

L
e
a
rn

in
g

 R
a
te

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

10
-3

10
1

10
-1

Learning with momentum and adaptive learning rate

0 10 20 30 40 50 60 70 80

Epoch

Training for 85 Epochs

0 10 20 30 40 50 60 70 80 90
0

0.5

1

2.5

Epoch

L
e
a
rn

in
g

 R
a
te

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

10
-3

10
1

10
-1

1.5

2

Accelerated learning in multilayer

neural networks

 • Back propagation using gradient descent often converges very slowly
or not at all.

• On large-scale problems its success depends on user-specified learning
rate and momentum parameters.

• Conjugate gradient algorithm is another approach to adjust weight
values using the gradient during the backward propagation of errors
through the network.

• Conjugate gradient algorithm takes a more direct path to the optimal set
of weight values. Usually, conjugate gradient is significantly faster and
more robust than gradient descent. Conjugate gradient also does not
require the user to specify learning rate and momentum parameters.

Accelerated learning in multilayer
neural networks

 • The scaled conjugate gradient algorithm compute the optimal step size

in the search direction without having to perform the computationally

expensive line search used by the traditional conjugate gradient

algorithm.

• Tests performed by Moller show the scaled conjugate gradient

algorithm converging up to twice as fast as traditional conjugate

gradient and up to 20 times as fast as backpropagation using gradient

descent.

• Moller’s tests also showed that scaled conjugate gradient failed to

converge less often than traditional conjugate gradient or

backpropagation using gradient descent.

Limiting network complexity

Number of Hidden Layer

Limiting network complexity

Tricks of the trade

Tricks of the trade

Tricks of the trade

Naïve Bayes Classifier

We will start off with a visual intuition, before looking at the math…

Thomas Bayes

1702 - 1761

A
n

te
n

n
a

L
e
n

g
th

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Grasshoppers Katydids

Abdomen Length

Remember this example?

Let’s get lots more data…

http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg

A
n

te
n

n
a

L

en
g
th

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Katydids

Grasshoppers

With a lot of data, we can build a histogram. Let us

just build one for “Antenna Length” for now…

We can leave the

histograms as they are,

or we can summarize

them with two normal

distributions.

Let us us two normal

distributions for ease

of visualization in the

following slides…

p(cj | d) = probability of class cj, given that we have observed d

3

Antennae length is 3

• We want to classify an insect we have found. Its antennae are 3 units long.

How can we classify it?

• We can just ask ourselves, give the distributions of antennae lengths we have

seen, is it more probable that our insect is a Grasshopper or a Katydid.

• There is a formal way to discuss the most probable classification…

10

2

 P(Grasshopper | 3) = 10 / (10 + 2) = 0.833

 P(Katydid | 3) = 2 / (10 + 2) = 0.166

3

Antennae length is 3

p(cj | d) = probability of class cj, given that we have observed d

9

3

 P(Grasshopper | 7) = 3 / (3 + 9) = 0.250

 P(Katydid | 7) = 9 / (3 + 9) = 0.750

7

Antennae length is 7

p(cj | d) = probability of class cj, given that we have observed d

http://buzz.ifas.ufl.edu/254dmj.jpg

6 6

 P(Grasshopper | 5) = 6 / (6 + 6) = 0.500

 P(Katydid | 5) = 6 / (6 + 6) = 0.500

5

Antennae length is 5

p(cj | d) = probability of class cj, given that we have observed d

http://buzz.ifas.ufl.edu/241dmj.jpg

128

Probability Basics

• Prior, conditional and joint probability for random variables

– Prior probability:

– Conditional probability:

– Joint probability:

– Relationship:

– Independence:

• Bayesian Rule

)| ,)(121 XP(XX|XP 2

)(

)()(
)(

X

X
X

P

CPC|P
|CP

)(XP

))(),,(22 ,XP(XPXX 11 XX

)()|()()|() 2211122 XPXXPXPXXP,XP(X1

)()()),()|(),()|(212121212 XPXP,XP(XXPXXPXPXXP 1

Evidence

PriorLikelihood
Posterior

129

Probabilistic Classification

• Establishing a probabilistic model for classification

– Discriminative model

),, ,)(1 n1L X(Xc,,cC|CP XX

),,,(21 nxxx x

Discriminative

Probabilistic Classifier

1x 2x nx

)|(1 xcP)|(2 xcP)|(xLcP

130

Probabilistic Classification

• Establishing a probabilistic model for classification

(cont.)

– Generative model

),, ,)(1 n1L X(Xc,,cCC|P XX

Generative

Probabilistic Model

for Class 1

)|(1cP x

1x 2x nx

Generative

Probabilistic Model

for Class 2

)|(2cP x

1x 2x nx

Generative

Probabilistic Model

for Class L

)|(LcP x

1x 2x nx

),,,(21 nxxx x

131

Probabilistic Classification

• MAP classification rule

– MAP: Maximum A Posterior

– Assign x to c* if

• Generative classification with the MAP rule

– Apply Bayesian rule to convert them into posterior

probabilities

– Then apply the MAP rule

Lc,,cccc|cCP|cCP 1
** ,)()(xXxX

Li

cCPcC|P

P

cCPcC|P
|cCP

ii

ii
i

,,2,1 for

)()(

)(

)()(
)(

xX

xX

xX
xX

132

Naïve Bayes

• Bayes classification

Difficulty: learning the joint probability

• Naïve Bayes classification

– Assumption that all input features are conditionally

independent!

– MAP classification rule: for

)()|,,()()()(1 CPCXXPCPC|P|CP n XX

)|,,(1 CXXP n

)|()|()|(

)|,,()|(

)|,,(),,,|()|,,,(

21

21

22121

CXPCXPCXP

CXXPCXP

CXXPCXXXPCXXXP

n

n

nnn

Lnn ccccccPcxPcxPcPcxPcxP ,, ,),()]|()|([)()]|()|([1
*

1

1

133

Naïve Bayes

;in examples with)|(estimate)|(ˆ

),1 ;,,1(featureeach of valuefeatureevery For

;in examples with)(estimate)(ˆ

 of t valueeach targeFor 1

S

S

ijkjijkj

jjjk

ii

Lii

cCxXPcCxXP

N,kFj Xx

cCPcCP

)c,,c(c c

Lnn ccccccPcaPcaPcPcaPcaP ,, ,),(ˆ)]|(ˆ)|(ˆ[)(ˆ)]|(ˆ)|(ˆ[1
*

1

1

),,(1 naa X

134

Example

• Example: Play Tennis

135

Example
• Learning Phase

Outlook Play=Yes Play=No

Sunny 2/9 3/5
Overcast 4/9 0/5

Rain 3/9 2/5

Temperatur
e

Play=Yes Play=No

Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

136

Example

• Test Phase

– Given a new instance, predict its label

 x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables achieved in the learning phrase

– Decision making with the MAP rule

P(Outlook=Sunny|Play=No) = 3/5

P(Temperature=Cool|Play==No) = 1/5

P(Huminity=High|Play=No) = 4/5

P(Wind=Strong|Play=No) = 3/5

P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9

P(Temperature=Cool|Play=Yes) = 3/9

P(Huminity=High|Play=Yes) = 3/9

P(Wind=Strong|Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Yes|x’) ≈ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053

P(No|x’) ≈ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

 Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.

• Advantages:

– Fast to train (single scan). Fast to classify

– Not sensitive to irrelevant features

– Handles real and discrete data

– Handles streaming data well

• Disadvantages:

– Assumes independence of features

Advantages/Disadvantages of Naïve Bayes

Performance Evaluation

Aziz M. Qaroush - Birzeit University 138

139

Evaluating classification methods

 Predictive accuracy

 Efficiency
 time to construct the model
 time to use the model

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases

 Interpretability:
 understandable and insight provided by the model

 Compactness of the model: size of the tree, or the number of rules.

140

Evaluation methods

 Holdout set: The available data set D is divided into two
disjoint subsets,
 the training set Dtrain (for learning a model)

 the test set Dtest (for testing the model)

 Important: training set should not be used in testing and the
test set should not be used in learning.
 Unseen test set provides a unbiased estimate of accuracy.

 The test set is also called the holdout set. (the examples in the
original data set D are all labeled with classes.)

 This method is mainly used when the data set D is large.

141

Evaluation methods (cont…)

 n-fold cross-validation: The available data is partitioned into n

equal-size disjoint subsets.

 Use each subset as the test set and combine the rest n-1 subsets as

the training set to learn a classifier.

 The procedure is run n times, which give n accuracies.

 The final estimated accuracy of learning is the average of the n

accuracies.

 10-fold and 5-fold cross-validations are commonly used.

 This method is used when the available data is not large.

142

Evaluation methods (cont…)

 Leave-one-out cross-validation: This method is used when

the data set is very small.

 It is a special case of cross-validation

 Each fold of the cross validation has only a single test example

and all the rest of the data is used in training.

 If the original data has m examples, this is m-fold cross-validation

143

Evaluation methods (cont…)

 Validation set: the available data is divided into three subsets,
 a training set,

 a validation set and

 a test set.

 A validation set is used frequently for estimating parameters in
learning algorithms.

 In such cases, the values that give the best accuracy on the
validation set are used as the final parameter values.

 Cross-validation can be used for parameter estimating as well.

144

Classification measures

 Accuracy is only one measure (error = 1-accuracy).

 Accuracy is not suitable in some applications.

 In text mining, we may only be interested in the documents of a
particular topic, which are only a small portion of a big
document collection.

 In classification involving skewed or highly imbalanced data, e.g.,
network intrusion and financial fraud detections, we are
interested only in the minority class.
 High accuracy does not mean any intrusion is detected.

 E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.

 The class of interest is commonly called the positive class, and
the rest negative classes.

145

Precision and recall measures

 Used in information retrieval and text classification.

 We use a confusion matrix to introduce them.

146

Precision and recall measures (cont…)

Precision p is the number of correctly classified positive

examples divided by the total number of examples that are

classified as positive.

Recall r is the number of correctly classified positive

examples divided by the total number of actual positive

examples in the test set.

. .
FNTP

TP
 r

FPTP

TP
p

147

An example

 This confusion matrix gives

 precision p = 100% and

 recall r = 1%

 because we only classified one positive example correctly and no negative

examples wrongly.

 Note: precision and recall only measure classification on the

positive class.

148

F1-value (also called F1-score)

 It is hard to compare two classifiers using two measures. F1 score combines

precision and recall into one measure

 The harmonic mean of two numbers tends to be closer to the smaller of the

two.

 For F1-value to be large, both p and r much be large.

149

Supervised learning vs. unsupervised learning

 Supervised learning: discover patterns in the data that relate data

attributes with a target (class) attribute.

 These patterns are then utilized to predict the values of the target

attribute in future data instances.

 Unsupervised learning: The data have no target attribute.

 We want to explore the data to find some intrinsic structures in

them.

Clustering

Aziz M. Qaroush - Birzeit University 150

151

Introduction

• Cluster: A collection/group of data objects/points
– similar (or related) to one another within the same group

– dissimilar (or unrelated) to the objects in other groups

• Cluster analysis
– find similarities between data according to characteristics

underlying the data and grouping similar data objects into
clusters

• Clustering Analysis: Unsupervised learning
– no predefined classes for a training data set

– Two general tasks: identify the “natural” clustering number and
properly grouping objects into “sensible” clusters

• Typical applications
– as a stand-alone tool to gain an insight into data distribution

– as a preprocessing step of other algorithms in intelligent
systems

152

Introduction

• Illustrative Example 1: how many clusters?

153

Introduction

• Illustrative Example 2: are they in the same cluster?

Blue shark,
sheep, cat,

dog

Lizard, sparrow,
viper, seagull,

gold fish, frog, red
mullet

1.Two clusters
2.Clustering criterion:

How animals bear
their progeny

Gold fish, red
mullet, blue

shark

Sheep, sparrow,
dog, cat, seagull,
lizard, frog, viper

1.Two clusters
2.Clustering criterion:

Existence of lungs

154

Introduction

• Real Applications: Google News

https://news.google.co.uk/

155

Introduction
• A technique demanded by many real world tasks

– Bank/Internet Security: fraud/spam pattern discovery

– Biology: taxonomy of living things such as kingdom, phylum, class, order,
family, genus and species

– City-planning: Identifying groups of houses according to their house type,
value, and geographical location

– Climate change: understanding earth climate, find patterns of
atmospheric and ocean

– Finance: stock clustering analysis to uncover correlation underlying shares

– Image Compression/segmentation: coherent pixels grouped

– Information retrieval/organisation: Google search, topic-based news

– Land use: Identification of areas of similar land use in an earth
observation database

– Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing
programs

– Social network mining: special interest group automatic discovery

156

Quiz

√

√

157

Aspects of clustering
• A clustering algorithm

– Partitional clustering

– Hierarchical clustering

– …

• A distance (similarity, or dissimilarity) function

• Clustering quality
– Inter-clusters distance maximized

– Intra-clusters distance minimized

• The quality of a clustering result depends on the
algorithm, the distance function, and the application.

158

• Discrete vs. Continuous

– Discrete Feature

• Has only a finite set of values

 e.g., zip codes, rank, or the set of words in a collection of documents

• Sometimes, represented as integer variable

– Continuous Feature

• Has real numbers as feature values

 e.g, temperature, height, or weight

• Practically, real values can only be measured and represented using a

finite number of digits

• Continuous features are typically represented as floating-point

variables

Data Types and Representations

159

Data Types and Representations

• Data representations

– Data matrix (object-by-feature structure)

– Distance/dissimilarity matrix (object-by-object structure)

 n data points (objects) with p
dimensions (features)

 Two modes: row and column
represent different entities

 n data points, but registers

only the distance

 A symmetric/triangular matrix

 Single mode: row and column
for the same entity (distance)

0...)2,()1,(

:::

)2,3()

...ndnd

0dd(3,1

0d(2,1)

0

npx...nfx...n1x

...............

ipx...ifx...i1x

...............

1px...1fx...11x

160

Data Types and Representations

• Examples

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Distance Matrix (i.e., Dissimilarity Matrix) for Euclidean Distance

Data Matrix

161

Distance Measures

• Minkowski Distance (http://en.wikipedia.org/wiki/Minkowski_distance)

 For

– p = 1: Manhattan (city block) distance

– p = 2: Euclidean distance

– Do not confuse p with n, i.e., all these distances are defined based

on all numbers of features (dimensions).

– A generic measure: use appropriate p in different applications

 0 ,||||||),(
1

2211 pyxyxyxd pp

nn

pp
yx

) (and) (2121 nn yyyxxx yx

 ||||||),(2211 nn yxyxyxd yx

 ||||||),(22
22

2
11 nn yxyxyxd yx

http://en.wikipedia.org/wiki/Minkowski_distance
http://en.wikipedia.org/wiki/Minkowski_distance
http://en.wikipedia.org/wiki/Minkowski_distance

162

Distance Measures

• Example: Manhatten and Euclidean distances

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

Distance Matrix for Manhattan Distance

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Distance Matrix for Euclidean Distance Data Matrix

163

Distance Measures

• Cosine Measure (Similarity vs. Distance)

 For

– Property:

– Nonmetric vector objects: keywords in documents, gene
features in micro-arrays, …

– Applications: information retrieval, biologic taxonomy, ...

),cos(1),(

),cos(
22

1

22

1

11

yxyx

yx

d

yyxx

yxyx

nn

nn

2) ,(0 yxd

) (and) (2121 nn yyyxxx yx

164

Distance Measures

• Example: Cosine measure

68.032.01),cos(1),(

32.0
45.248.6

5
),cos(

45.262010001

48.6420025023

520001205000213

)2 0, 1, 0, 0, 1,0,(),0 0, 2, 5, 0, 2, 3,(

2121

21

2222222

2222222

21

xxxx

xx

xx

d

K-means Clustering

166

Introduction
• Partitioning Clustering Approach

– a typical clustering analysis approach via iteratively partitioning

training data set to learn a partition of the given data space

– learning a partition on a data set to produce several non-empty

clusters (usually, the number of clusters given in advance)

– in principle, optimal partition achieved via minimising the sum of

squared distance to its “representative object” in each cluster

2

1

2)(),(knn

N

n

k mxd

mx

),(2

1 kC

K

k dE
k

mxx

e.g., Euclidean distance

167

Introduction

• Given a K, find a partition of K clusters to optimise

the chosen partitioning criterion (cost function)

o global optimum: exhaustively search all partitions

• The K-means algorithm: a heuristic method

o K-means algorithm (MacQueen’67): each cluster is

represented by the centre of the cluster and the

algorithm converges to stable centriods of clusters.

o K-means algorithm is the simplest partitioning method

for clustering analysis and widely used in data mining

applications.

168

 K-means Algorithm

• Given the cluster number K, the K-means algorithm is
carried out in three steps after initialization:

 Initialisation: set seed points (randomly)

1)Assign each object to the cluster of the nearest seed

point measured with a specific distance metric

2)Compute new seed points as the centroids of the

clusters of the current partition (the centroid is the

centre, i.e., mean point, of the cluster)

3)Go back to Step 1), stop when no more new

assignment (i.e., membership in each cluster no longer

changes)

169

An example

+
+

170

An example (cont …)

171

Stopping/convergence criterion

1. no (or minimum) re-assignments of data points to
different clusters,

2. no (or minimum) change of centroids, or

3. minimum decrease in the sum of squared error
(SSE),

– Ci is the jth cluster, mj is the centroid of cluster Cj (the mean
vector of all the data points in Cj), and dist(x, mj) is the
distance between data point x and centroid mj.

k

j
C j

j

distSSE
1

2),(
x

mx
(1)

172

• Problem

Example

Suppose we have 4 types of medicines and each has two attributes (pH and

weight index). Our goal is to group these objects into K=2 group of medicine.

Medicin

e
Weight pH-

Index

A 1 1

B 2 1

C 4 3

D 5 4

A B

C

D

173

Example

• Step 1: Use initial seed points for partitioning

Bc ,Ac 21

24.4)14()25(),(

5)14()15(),(

22
2

22
1

cDd

cDd

Assign each object to the cluster
with the nearest seed point

Euclidean distance

D

C

A B

174

Example

• Step 2: Compute new centroids of the current partition

Knowing the members of
each
cluster, now we compute the
new
centroid of each group based
on
these new memberships.

)
3

8
 ,

3

11
(

3

431
 ,

3

542

)1 ,1(

2

1

c

c

175

Example

• Step 2: Renew membership based on new centroids

Compute the distance of
all objects to the new
centroids

Assign the membership to objects

176

Example

• Step 3: Repeat the first two steps until its convergence

Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

)
2

1
3 ,

2

1
4(

2

43
 ,

2

54

)1 ,
2

1
1(

2

11
 ,

2

21

2

1

c

c

177

Example

• Step 3: Repeat the first two steps until its convergence

Compute the distance of all
objects to the new centroids

Stop due to no new
assignment
Membership in each cluster
no longer change

178

Strengths of k-means

 Strengths:

 Simple: easy to understand and to implement

 Efficient: Time complexity: O(tkn),

 where n is the number of data points,

 k is the number of clusters, and

 t is the number of iterations.

 Since both k and t are small. k-means is considered a linear algorithm.

 K-means is the most popular clustering algorithm.

 Note that: it terminates at a local optimum if SSE is used. The

global optimum is hard to find due to complexity.

179

Weaknesses of k-means

 The algorithm is only applicable if the mean is defined.

 For categorical data, k-mode - the centroid is represented by most

frequent values.

 The user needs to specify k.

 The algorithm is sensitive to outliers

 Outliers are data points that are very far away from other data

points.

 Outliers could be errors in the data recording or some special data

points with very different values.

180

Weaknesses of k-means: Problems

with outliers

181

Weaknesses of k-means: To deal

with outliers

 One method is to remove some data points in the clustering

process that are much further away from the centroids than other

data points.

 To be safe, we may want to monitor these possible outliers over a few

iterations and then decide to remove them.

 Another method is to perform random sampling. Since in

sampling we only choose a small subset of the data points, the

chance of selecting an outlier is very small.

 Assign the rest of the data points to the clusters by distance or similarity

comparison, or classification

182

Weaknesses of k-means (cont …)

 The algorithm is sensitive to initial seeds.

183

Weaknesses of k-means (cont …)
 If we use different seeds: good results

There are some

methods to help

choose good seeds

184

Weaknesses of k-means (cont …)
 The k-means algorithm is not suitable for discovering clusters

that are not hyper-ellipsoids (or hyper-spheres).

+

185

K-means summary

 Despite weaknesses, k-means is still the most popular algorithm
due to its simplicity, efficiency and

 other clustering algorithms have their own lists of weaknesses.

 No clear evidence that any other clustering algorithm performs
better in general

 although they may be more suitable for some specific types of data
or applications.

 Comparing different clustering algorithms is a difficult task. No
one knows the correct clusters!

186

Cluster Evaluation: hard problem

 The quality of a clustering is very hard to evaluate because

 We do not know the correct clusters

 Some methods are used:

 User inspection

 Study centroids, and spreads

 Rules from a decision tree.

 For text documents, one can read some documents in clusters.

187

Cluster evaluation: ground truth

 We use some labeled data (for classification)

 Assumption: Each class is a cluster.

 After clustering, a confusion matrix is constructed. From the

matrix, we compute various measurements, entropy, purity,

precision, recall and F-score.

 Let the classes in the data D be C = (c1, c2, …, ck). The clustering

method produces k clusters, which divides D into k disjoint subsets,

D1, D2, …, Dk.

