
CHAPTER 6 
 
A cooperating process is one that can affect or be affected by other processes executing in the system. 
Cooperating processes can either directly share a logical address space (that is, both code and data) or be 
allowed to share data only through files or messages. The former case is achieved through the use of threads, 
discussed in Chapter 4. Concurrent access to shared data may result in data inconsistency, however. In this 
chapter, we discuss various mechanisms to ensure the orderly execution of cooperating processes that share 
a logical address space, so that data consistency is maintained. 

 
Exercises 
 
6.1 Race conditions are possible in many computer systems. Consider a banking system with two methods: 

deposit(amount) and withdraw( amount). These two methods are passed the amount that is to 
be deposited or withdrawn from a bank account. Assume that a husband and wife share a bank account and 

that concurrently the husband calls the withdraw() method and the wife calls deposit(). Describe 
how a race condition is possible and what might be done to prevent the race condition from occurring. 
Answer: 
Assume the balance in the account is 250.00 and the husband calls withdraw(50) and the wife calls 
deposit(100). Obviously the correct value should be 300.00 Since these two transactions will be 
serialized, the local value of balance for the husband becomes 200.00, but before he can commit the 
transaction, the deposit(100) operation takes place and updates the shared value of balance to 300.00 
We then switch back to the husband and the value of the shared balance is set to 200.00 - obviously an 
incorrect value. 
 
6.2 The first known correct software solution to the critical-section problem for two processes was developed 
by Dekker. The two processes, P0 and P1, share the following variables: 
 

boolean flag[2]; /* initially false */ 

int turn; 

 

The structure of process Pi (i == 0 or 1) is shown in Figure 6.21; the other process is Pj (j == 1 or 0). Prove 
that the algorithm satisfies all three requirements for the critical-section problem. 
Answer: 
This algorithm satisfies the three conditions of mutual exclusion. (1) Mutual exclusion is ensured through the 
use of the flag and turn variables. If both processes set their flag to true, only one will succeed, 
namely, the process whose turn it is. The waiting process can only enter its critical section when the other 

process updates the value of turn. (2) Progress is provided, again through the flag and turn variables. This 
algorithm does not provide strict alternation. Rather, if a process wishes to access their critical section, it can 
set their flag variable to true and enter their critical section. It sets turn to the value of the other process 
only upon exiting its critical section. If this process wishes to enter its critical section again—before the other 
process—it repeats the process of entering its critical section and setting turn to the other process upon 
exiting. (3) Bounded waiting is preserved through the use of the TTturn variable. Assume two processes wish 

to enter their respective critical sections. They both set their value of flag to true; however, only the thread 
whose turn it is can proceed; the other thread waits. If bounded waiting were not preserved, it would 
therefore be possible that the waiting process would have to wait indefinitely while the first process 
repeatedly entered—and exited—its critical section. However, Dekker’s algorithm has a process set the value 
of turn to the other process, thereby ensuring that the other process will enter its critical section next. 
 



6.3 The first known correct software solution to the critical-section problem for n processes with a lower 
bound on waiting of n − 1 turns was presented by Eisenberg and McGuire. The processes share the following 
variables: 

enum pstate {idle, want_in, in_cs}; 

pstate flag[n]; 

int turn; 

 
All the elements of flag are initially idle; the initial value of turn is immaterial (between 0 and n-1). 
The structure of process Pi is shown in Figure 6.22. Prove that the algorithm satisfies all three requirements 
for the critical-section problem. 
Answer: 
This algorithm satisfies the three conditions. Before we show that the three conditions are satisfied, we give 
a brief explanation of what the algorithm does to ensure mutual exclusion. When a process i requires access 

to critical section, it first sets its flag variable to want_in to indicate its desire. It then performs the 

following steps: (1) It ensures that all processes whose index lies between turn and i are idle. (2) If so, it 
updates its flag to in_cs and checks whether there is already some other process that has updated its flag 
to in cs. (3) If not and if it is this process’s turn to enter the critical section or if the process indicated by the 

turn variable is idle, it enters the critical section. Given the above description, we can reason about how the 
algorithm satisfies the requirements in the following manner: 

a. Mutual exclusion is ensured:Notice that a process enters the critical section only if the following 
requirements is satisfied: no other process has its flag variable set to in_cs. Since the process sets 

its own flag variable set to in_cs before checking the status of other processes, we are guaranteed 
that no two processes will enter the critical section simultaneously. 

b. Progress requirement is satisfied: Consider the situation where multiple processes simultaneously 

set their flag variables to in_cs and then check whether there is any other process has the flag 
variable set to in cs. When this happens, all processes realize that there are competing processes, 
enter the next iteration of the outer while(1) loop and reset their flag variables to want_in. Now 

the only process that will set its turn variable to in_cs is the process whose index is closest to turn. 
It is however possible that new processes whose index values are even closer to turn might decide 
to enter the critical section at this point and therefore might be able to simultaneously set its flag 
to in_cs. These processes would then realize there are competing processes and might restart the 
process of entering the critical section. However, at each iteration, the index values of processes that 

set their flag variables to in_cs become closer to turn and eventually we reach the following 
condition: only one process (say k) sets its flag to in_cs and no other process whose index lies 
between turn and k has set its flag to in_cs. This process then gets to enter the critical section. 

c. Bounded-waiting requirement is met: The bounded waiting requirement is satisfied by the fact that 

when a process k desires to enter the critical section, its flag is no longer set to idle. Therefore, any 
process whose index does not lie between turn and k cannot enter the critical section. In the 
meantime, all processes whose index falls between turn and k and desire to enter the critical 
section would indeed enter the critical section (due to the fact that the system always makes 
progress) and the turn value monotonically becomes closer to k. Eventually, either turn becomes k 

or there are no processes whose index values lie between turn and k, and therefore process k gets 
to enter the critical section. 

 
6.4 Explain why implementing synchronization primitives by disabling interrupts is not appropriate in a single-
processor system if the synchronization primitives are to be used in user-level programs. 
Answer: 
If a user-level program is given the ability to disable interrupts, then it can disable the timer interrupt and 
prevent context switching from taking place, thereby allowing it to use the processor without letting other 
processes execute. 



 
6.5 Explain why interrupts are not appropriate for implementing synchronization primitives in multiprocessor 
systems. 
Answer: 
Interrupts are not sufficient in multiprocessor systems since disabling interrupts only prevents other 
processes from executing on the processor in which interrupts were disabled; there are no limitations on 
what processes could be executing on other processors and therefore the process disabling interrupts cannot 
guarantee mutually exclusive access to program state. 
 
6.6 The Linux kernel has a policy that a process cannot hold a spinlock while attempting to acquire a 
semaphore. Explain why this policy is in place. 
Answer: 
Because acquiring a semaphore may put the process to sleep while it is waiting for the semaphore to become 
available. Spinlocks are to only be held for short durations and a process that is sleeping may hold the 
spinlock for too long a period. 
 
6.7 Describe two kernel data structures in which race conditions are possible. Be sure to include a description 
of how a race condition can occur. 
Answer: 
There are many answers to this question. Some kernel data structures include a process id (pid) management 
system, kernel process table, and scheduling queues. With a pid management system, it is possible two 
processes may be created at the same time and there is a race condition assigning each process a unique pid. 
The same type of race condition can occur in the kernel process table: two processes are created at the same 
time and there is a race assigning them a location in the kernel process table. With scheduling queues, it is 
possible one process has been waiting for IO which is now available. Another process is being context-
switched out. These two processes are being moved to the Runnable queue at the same time. Hence there is 
a race condition in the Runnable queue. 
 

6.8 Describe how the compare_and_swap() instruction can be used to provide mutual exclusion that 
satisfies the bounded-waiting requirement. 
Answer: 
Please see Figure 6.1 
 
6.9 Consider how to implement a mutex lock using an atomic hardware instruction. Assume that the 
following structure defining the mutex lock is available: 
 

typedef struct { 

int available; 

} lock; 

 

do {waiting[i] = TRUE; key = TRUE; 

while (waiting[i] && key) key = Swap(&lock, &key); 

 

waiting[i] = FALSE; 

 

/* critical section */ 

 

j = (i+1) % n; while ((j != i) && !waiting[j]) 

j = (j+1) % n; 

if (j == i) lock = FALSE; else waiting[j] = FALSE; 

 



n/* remainder section */ 

while (TRUE); 

} 

 
Figure 6.1 Program for Exercise 6.8. 
 

where (available == 0) indicates the lock is available; a value of 1 indicates the lock is unavailable. 
Using this struct, illustrate how the following functions may be implemented using the test_and_set() 
and compare_and_swap() instructions. 

• void acquire(lock *mutex) 

• void release(lock *mutex) 

Be sure to include any initialization that may be necessary. 
Answer: 
Please see Figure 6.2 
 
6.10 The implementation of mutex locks provided in Section 6.5 suffers from busy waiting. Describe what 
changes would be necessary so that a process waiting to acquire a mutex lock would be blocked and placed 
into a waiting queue until the lock became available. 
Answer: 
This would be very similar to the changes made in the description of the semaphore. Associated with each 
mutex lock would be a queue of waiting processes. When a process determines the lock is unavailable, they 
are placed into the queue. When a process releases the lock, it removes and awakens the first process from 
the list of waiting processes. 
 
6.11 Assume that a system has multiple processing cores. For each of the following scenarios, describe which 
is a better locking mechanism—a spinlock or a mutex lock where waiting processes sleep while waiting for 
the lock to become available: 

• The lock is to be held for a short duration. 
• The lock is to be held for a long duration. 
• The thread may be put to sleep while holding the lock. 

 
// initialization 

mutex->available = 0; 

 

// acquire using compare_and_swap() 

void acquire(lock *mutex) { 

while (compare_and_swap(&mutex->available, 0, 1) != 0) 

; 

return; 

} 

 

// acquire using test_and_set() 

void acquire(lock *mutex) { 

while (test_and_set(&mutex->available) != 0) 

; 

return; 

} 

 

void release(lock *mutex) { 

mutex->available = 0; 

 

return; 



} 

 
Figure 5.2 Program for Exercise 6.9. 
 
Answer: 

• Spinlock 
• Mutex lock 
• Mutex lock 

 
6.12 Assume a context switch takes T time. Ssuggest an upper bound (in terms of T) for holding a spin lock 
and that if the spin lock is held for any longer duration, a mutex lock (where waiting threads are put to sleep) 
is a better alternative. 
Answer: 
The spinlock should be held for < 2xT. Any longer than this duration it would be faster to put the thread to 
sleep (requiring one context switch) and then subsequently awaken it (requiring a second context switch.) 
 
6.13 A multithreaded web server wishes to keep track of the number of requests it services (known as hits.) 
Consider the following two strategies to prevent a race condition on the variable hits. The first strategy is 

to use a basic mutex lock when updating hits: 
 

int hits; 

mutex_lock hit_lock; 

 

hit_lock.acquire(); 

hits++; 

hit_lock.release(); 

 
A second strategy is to use an atomic integer: 
 

Atomic_t hits; 

Atomic_inc(&hits); 

 

Explain which of these two strategies is more efficient. 
Answer: 
The use of locks is overkill in this situation. Locking generally requires a system call and possibly putting a 
process to sleep (and thus requiring a context switch) if the lock is unavailable. (Awakening the process will 
similarly require another subsequent context switch.) On the other hand, the atomic integer provides an 
atomic update of the hits variable and ensures no race condition on hits. This can be accomplished with 
no kernel intervention and therefore the second approach is more efficient. 
 
6.14 Consider the code example for allocating and releasing processes shown in Figure 6.23. 

a. Identify the race condition(s). 

b. Assume you have a mutex lock named mutex with the operations acquire() and release(). 
Indicate where the locking needs to be placed to prevent the race condition(s). 

c. Could we replace the integer variable  
int number_of_processes = 0  

with the atomic integer  
atomic_t number_of_processes = 0  

to prevent the race condition(s)? 
Answer: 

a. There is a race condition on the variable number_of_processes. 



b. A call to acquire() must be placed upon entering each function and a call to release() 
immediately before exiting each function. 

c. No, it would not help. The reason is because the race occurs in the allocate_process() 

function where number_of_processes is first tested in the if statement, yet is updated 
afterwards, based upon the value of the test. it is possible that number_of_processes = 254 
at the time of the test, yet because of the race condition, is set to 255 by another thread before it is 
incremented yet again. 

 
6.15 Servers can be designed to limit the number of open connections. For example, a server may wish to 
have only N socket connections at any point in time. As soon as N connections are made, the server will not 
accept another incoming connection until an existing connection is released. Explain how semaphores can be 
used by a server to limit the number of concurrent connections. 
Answer: 
A semaphore is initialized to the number of allowable open socket connections. When a connection is 
accepted, the acquire() method is called; when a connection is released, the release() method is 

called. If the system reaches the number of allowable socket connections, subsequent calls to acquire() 
will block until an existing connection is terminated and the release method is invoked. 
 
6.16 Windows Vista provides a new lightweight synchronization tool called a slim reader–writer lock. 
Whereas most implementations of reader–writer locks favor either readers or writers, or perhaps order 
waiting threads using a FIFO policy, slim reader–writer locks favor neither readers nor writers and do not 
order waiting threads in a FIFO queue. Explain the benefits of providing such a synchronization tool. 
Answer: 
Simplicity. IF RW locks provide fairness or favor readers or writers, there is more overhead to the lock. By 
providing such a simple synchronization mechanism, access to the lock is fast. Usage of this lock may be most 
appropriate for situations where reader–locks are needed, but quickly acquiring and releasing the lock is 
similarly important. 
 
6.17 Show how to implement the wait() and signal() semaphore operations in multiprocessor 

environments using the test_and_set() instruction. The solution should exhibit minimal busy waiting. 
Answer: 
Here is the pseudocode for implementing the operations: 
Please see Figure 6.3 
 
6.18 Exercise 4.26 requires the parent thread to wait for the child thread to finish its execution before 
printing out the computed values. If we let the parent thread access the Fibonacci numbers as soon as they 
have been computed by the child thread—rather than waiting for the child thread to terminate—what 
changes would be necessary to the solution for this exercise? Implement your modified solution. 
Answer: 
A counting sempahore or condition variable works fine. The semaphore would be initialized to zero, and the 

parent would call the wait() function. When completed, the child would invoke signal(), thereby 
notifying the parent. If a condition variable is used, the parent thread will invoke wait() and the child will 
call signal() when completed. In both instances, the idea is that the parent thread waits for the child for 
notification that its data is available. 
 
int guard = 0; 

int semaphore_value = 0; 

 

wait() 

{ 



while (TestAndSet(&guard) == 1); 

if (semaphore_value == 0) { 

atomically add process to a queue of processes 

waiting for the semaphore and set guard to 0; 

}else { 

semaphore_value--; 

guard = 0; 

} 

} 

 

signal() 

{ 

while (TestAndSet(&guard) == 1); 

if (semaphore_value == 0 && 

there is a process on the wait queue) 

wake up the first process in the queue 

of waiting processes 

else 

semaphore_value++; 

guard = 0; 

} 

 
Figure 6.3 Program for Exercise 6.17. 
 
6.19 Demonstrate that monitors and semaphores are equivalent insofar as they can be used to implement 
the same types of synchronization problems. 
Answer: 
A semaphore can be implemented using the following monitor code: 
Please see Figure 6.4 
A monitor could be implemented using a semaphore in the following manner. Each condition variable is 
represented by a queue of threads waiting for the condition. Each thread has a semaphore associated with its 
queue entry. When a thread performs a wait operation, it creates a new semaphore (initialized to zero), 
appends the semaphore to the queue associated with the condition variable, and performs a blocking 
semaphore decrement operation on the newly created semaphore. When a thread performs a signal on a 
condition variable, the first process in the queue is awakened by performing an increment on the 
corresponding semaphore. 
 
monitor semaphore { 

int value = 0; 

condition c; 

 

semaphore_increment() { 

value++; 

c.signal(); 

} 

 

semaphore_decrement() { 

while (value == 0) 

c.wait(); 

value--; 

} 

} 

 



Figure 6.4 Program for Exercise 6.19. 
 
6.20 Design an algorithm for a bounded-buffer monitor in which the buffers (portions) are embedded within 
the monitor itself. 
Answer: 
Please see Figure 6.5 
 
6.21 The strict mutual exclusion within a monitor makes the bounded-buffer monitor of Exercise 6.20 mainly 
suitable for small portions. 

a. Explain why this is true. 
b. Design a new scheme that is suitable for larger portions. 

Answer: 
The solution to the bounded buffer problem given above copies the produced value into the monitor’s local 
buffer and copies it back from the monitor’s local buffer to the consumer. These copy operations could be 
expensive if one were using large extents of memory for each buffer region. The increased cost of copy 
operation means that the monitor is held for a longer period of time while a process is in the produce or 
consume operation. This decreases the overall throughput of the system. This problem could be alleviated by 
storing pointers to buffer regions within the monitor instead of storing the buffer regions themselves. 
Consequently, one could modify the code given above to simply copy the pointer to the buffer region into 
and out of the monitor’s state. This operation should be relatively inexpensive and therefore the period of 
time that the monitor is being held will be much shorter, thereby increasing the throughput of the monitor. 
 
monitor bounded_buffer { 

int items[MAX_ITEMS]; 

int numItems = 0; 

condition full, empty; 

 

void produce(int v) { 

while (numItems == MAX_ITEMS) full.wait(); 

items[numItems++] = v; 

empty.signal(); 

} 

 

int consume() { 

int retVal; 

while (numItems == 0) empty.wait(); 

retVal = items[--numItems]; 

full.signal(); 

return retVal; 

} 

} 

 
Figure 6.5 Program for Exercise 6.20. 
 
6.22 Discuss the tradeoff between fairness and throughput of operations in the readers-writers problem. 
Propose a method for solving the readers-writers problem without causing starvation. 
Answer: 
Throughput in the readers-writers problem is increased by favoring multiple readers as opposed to allowing a 
single writer to exclusively access the shared values. On the other hand, favoring readers could result in 
starvation for writers. The starvation in the readers-writers problem could be avoided by keeping timestamps 
associated with waiting processes. When a writer is finished with its task, it would wake up the process that 



has been waiting for the longest duration. When a reader arrives and notices that another reader is accessing 
the database, then it would enter the critical section only if there are no waiting writers. These restrictions 
would guarantee fairness. 
 

6.23 How does the signal() operation associated with monitors differ from the corresponding operation 
defined for semaphores? 
Answer: 
The signal() operation associated with monitors is not persistent in the following sense: if a signal is 
performed and if there are no waiting threads, then the signal is simply ignored and the system does not 
remember that the signal took place. If a subsequent wait operation is performed, then the corresponding 
thread simply blocks. In semaphores, on the other hand, every signal results in a corresponding increment of 
the semaphore value even if there are no waiting threads. A future wait operation would immediately 
succeed because of the earlier increment. 
 
monitor printers { 

int num_avail = 3; 

int waiting_processes[MAX_PROCS]; 

int num_waiting; 

condition c; 

 

void request_printer(int proc_number) { 

if (num_avail > 0) { 

num_avail--; 

return; 

} 

Waiting_processes[num_waiting] = proc_number; 

Num_waiting++; 

sort(waiting_processes); 

while (num_avail == 0 && 

waiting_processes[0] != proc_number) 

c.wait(); 

waiting_processes[0] = 

waiting_processes[num_waiting-1]; 

num_waiting--; 

sort(waiting_processes); 

num_avail--; 

} 

 

void release_printer() { 

num_avail++; 

c.broadcast(); 

} 

} 

 
Figure 6.6 Program for Exercise 6.25. 
 

6.24 Suppose the signal() statement can appear only as the last statement in a monitor procedure. 
Suggest how the implementation described in Section 6.8 can be simplified in this situation. 
Answer: 
If the signal operation were the last statement, then the lock could be transferred from the signalling process 
to the process that is the recipient of the signal. Otherwise, the signalling process would have to explicitly 



release the lock and the recipient of the signal would have to compete with all other processes to obtain the 
lock to make progress. 
 
6.25 Consider a system consisting of processes P1, P2, ..., Pn, each of which has a unique priority number. 
Write a monitor that allocates three identical line printers to these processes, using the priority numbers for 
deciding the order of allocation. 
Answer: 
The pseudocode is presented in Figure 6.6 
 
6.26 A file is to be shared among different processes, each of which has a unique number. The file can be 
accessed simultaneously by several 
 
monitor file_access { 

int curr_sum = 0; 

int n; 

condition c; 

 

void access_file(int my_num) { 

while (curr_sum + my_num >= n) 

c.wait(); 

curr_sum += my_num; 

} 

 

void finish_access(int my_num) { 

curr_sum -= my_num; 

c.broadcast(); 

} 

} 

 
Figure 6.7 Program for Exercise 6.26. 
 
processes, subject to the following constraint: The sum of all unique numbers associated with all the 
processes currently accessing the file must be less than n. Write a monitor to coordinate access to the file. 
Answer: 
The pseudocode is presented in Figure 6.7. 
 
6.27 When a signal is performed on a condition inside a monitor, the signaling process can either continue its 
execution or transfer control to the process that is signaled. How would the solution to the preceding 
exercise differ with these two different ways of performing signaling? 
Answer: 
The solution to the previous exercise is correct under both situations. However, it could suffer from the 
problem that a process might be awakened only to find that it is still not possible for it to make forward 
progress either because there was not sufficient slack to begin with when a process was awakened or if an 
intervening process gets control, obtains the monitor and starts accessing the file. Also, note that the 
broadcast operation wakes up all of the waiting processes. If the signal also transfers control and the monitor 
from the current thread to the target, then one could check whether the target would indeed be able to 
make forward progress and perform the signal only if it were possible. Then the “while” loop for the waiting 
thread could be replaced by an “if” condition since it is guaranteed that the condition will be satisfied when 
the process is woken up. 
 



6.28 Suppose we replace the wait() and signal() operations of monitors with a single construct 

await(B), where B is a general Boolean expression that causes the process executing it to wait until B 
becomes true. 

a. Write a monitor using this scheme to implement the readers–writers problem. 
b. Explain why, in general, this construct cannot be implemented efficiently. 
c. What restrictions need to be put on the await statement so that it can be implemented efficiently? 

(Hint: Restrict the generality of B; see Kessels [1977].) 
Answer: 

a. The readers–writers problem could be modified with the following more generate await 
statements:  

A reader can perform “await(active_writers == 0 && waiting_writers == 0)” to 
check that there are no active writers and there are no waiting writers before it enters the critical 
section. The writer can perform a “await(active_writers == 0 && active_readers 

== 0)” check to ensure mutually exclusive access. 
b. The system would have to check which one of the waiting threads have to be awakened by checking 

which one of their waiting conditions are satisfied after a signal. This requires considerable 
complexity and might require some interaction with the compiler to evaluate the conditions at 
different points in time. One could restrict the Boolean condition to be a disjunction of conjunctions 
with each component being a simple check (equality or inequality with respect to a static value) on a 
program variable. In that case, the Boolean condition could be communicated to the run-time 
system, which could perform the check every time it needs to determine which thread to be 
awakened. 

c. Please see Kessels [1977]. 
 
6.29 Design an algorithm for a monitor that implements an alarm clock that enables a calling program to 
delay itself for a specified number of time units (ticks). You may assume the existence of a real hardware 
clock that invokes a function tick() in your monitor at regular intervals. 
Answer: 
A pseudocode for implementing this is presented in Figure 6.8 
 
monitor alarm { 

condition c; 

 

void delay(int ticks) { 

int begin_time = read_clock(); 

while (read_clock() < begin_time + ticks) 

c.wait(); 

} 

 

void tick() { 

c.broadcast(); 

} 

} 

 
Figure 6.8 Program for Exercise 6.29. 
 


