
6C H A P T E R

Process
Synchronization

Practice Exercises

6.1 In Section 6.4 we mentioned that disabling interrupts frequently could
affect the system’s clock. Explain why it could and how such effects
could be minimized.
Answer: The system clock is updated at every clock interrupt. If in-
terrupts were disabled—particularly for a long period of time—it is
possible the system clock could easily lose the correct time. The sys-
tem clock is also used for scheduling purposes. For example, the time
quantum for a process is expressed as a number of clock ticks. At every
clock interrupt, the scheduler determines if the time quantum for the
currently running process has expired. If clock interrupts were disabled,
the scheduler could not accurately assign time quantums. This effect can
be minimized by disabling clock interrupts for only very short periods.

6.2 The Cigarette-Smokers Problem. Consider a system with three smoker pro-
cesses and one agent process. Each smoker continuously rolls a cigarette
and then smokes it. But to roll and smoke a cigarette, the smoker needs
three ingredients: tobacco, paper, and matches. One of the smoker pro-
cesses has paper, another has tobacco, and the third has matches. The
agent has an infinite supply of all three materials. The agent places
two of the ingredients on the table. The smoker who has the remaining
ingredient then makes and smokes a cigarette, signaling the agent on
completion. The agent then puts out another two of the three ingredi-
ents, and the cycle repeats. Write a program to synchronize the agent
and the smokers using Java synchronization.
Answer: Please refer to the supporting Web site for source code solution.

6.3 Give the reasons why Solaris, Windows XP, and Linux implement mul-
tiple locking mechanisms. Describe the circumstances under which they

17



18 Chapter 6 Process Synchronization

use spinlocks, mutexes, semaphores, adaptive mutexes, and condition
variables. In each case, explain why the mechanism is needed.
Answer: These operating systems provide different locking mecha-
nisms depending on the application developers’ needs. Spinlocks are
useful for multiprocessor systems where a thread can run in a busy-loop
(for a short period of time) rather than incurring the overhead of being
put in a sleep queue. Mutexes are useful for locking resources. Solaris 2
uses adaptive mutexes, meaning that the mutex is implemented with a
spin lock on multiprocessor machines. Semaphores and condition vari-
ables are more appropriate tools for synchronization when a resource
must be held for a long period of time, since spinning is inefficient for a
long duration.

6.4 Explain the differences, in terms of cost, among the three storage types
volatile, nonvolatile, and stable.
Answer: Volatile storage refers to main and cache memory and is very
fast. However, volatile storage cannot survive system crashes or power-
ing down the system. Nonvolatile storage survives system crashes and
powered-down systems. Disks and tapes are examples of nonvolatile
storage. Recently, USB devices using erasable program read-only mem-
ory (EPROM) have appeared providing nonvolatile storage. Stable stor-
age refers to storage that technically can never be lost as there are redun-
dant backup copies of the data (usually on disk).

6.5 Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? Describe how the frequency of checkpoints
affects:

• System performance when no failure occurs

• The time it takes to recover from a system crash

• The time it takes to recover from a disk crash

Answer: A checkpoint log record indicates that a log record and its
modified data has been written to stable storage and that the transaction
need not to be redone in case of a system crash. Obviously, the more often
checkpoints are performed, the less likely it is that redundant updates
will have to be performed during the recovery process.

• System performance when no failure occurs—If no failures occur,
the system must incur the cost of performing checkpoints that are
essentially unnecessary. In this situation, performing checkpoints
less often will lead to better system performance.

• The time it takes to recover from a system crash—The existence of a
checkpoint record means that an operation will not have to be
redone during system recovery. In this situation, the more often
checkpoints were performed, the faster the recovery time is from a
system crash.

• The time it takes to recover from a disk crash—The existence of a
checkpoint record means that an operation will not have to be
redone during system recovery. In this situation, the more often



Practice Exercises 19

checkpoints were performed, the faster the recovery time is from a
disk crash.

6.6 Explain the concept of transaction atomicity.
Answer: A transaction is a series of read and write operations upon
some data followed by a commit operation. If the series of operations in
a transaction cannot be completed, the transaction must be aborted and
the operations that did take place must be rolled back. It is important
that the series of operations in a transaction appear as one indivisible
operation to ensure the integrity of the data being updated. Otherwise,
data could be compromised if operations from two (or more) different
transactions were intermixed.

6.7 Show that some schedules are possible under the two-phase locking
protocol but not possible under the timestamp protocol, and vice versa.
Answer: A schedule that is allowed in the two-phase locking protocol
but not in the timestamp protocol is:

step T0 T1 Precedence
1 lock-S(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-S(B)
7 read(B) T1 → T0
8 unlock(A)
9 unlock(B)

This schedule is not allowed in the timestamp protocol because at step
7, the W-timestamp of B is 1.
A schedule that is allowed in the timestamp protocol but not in the
two-phase locking protocol is:

step T0 T1 T2
1 write(A)
2 write(A)
3 write(A)
4 write(B)
5 write(B)

This schedule cannot have lock instructions added to make it legal under
two-phase locking protocol because T1 must unlock (A) between steps 2
and 3, and must lock (B) between steps 4 and 5.

6.8 The wait() statement in all Java program examples was part of a while
loop. Explain why you would always need to use a while statement
when using wait() and why you would never use an if statement.
Answer: This is an important issue to emphasize! Java only provides
anonymous notification—you cannot notify a certain thread that a cer-



20 Chapter 6 Process Synchronization

tain condition is true. When a thread is notified, it is its responsibility
to re-check the condition that it is waiting for. If a thread did not re-
check the condition, it might have received the notification without the
condition having been met.


