

BIRZEIT UNIVERSITY

Electrical and Computer Engineering Department

ENCS339 Operating Systems 1st Semester 2018/2019

Midterm Exam Instructor: Dr. Adnan H. Yahya Time: 90min

Student Name:___________________________ Student Number: ___________

Please answer all questions using the exam sheets ONLY.

 Please show all steps of your solutions. Max grade is:107.

Question 1 (18%) A computer system has only 32GB of physical memory (RAM). The system has a 16KB

page size and 48-bit logical address space. CPU generated addresses are 6 bytes each[yes: not a power of 2!].

(a) 2% Indicate on the diagram below which of the bits of the logical address of 48 bits are used for page

number (p) and for offset (d). Most significant (MSB) is bit #0 and least significant (LSB) is bit #47

16KB=2**14 Bytes, thus 14 bits [34:47] are used for offset (displacement) and

(b) 2% How many frames are there in the RAM?

RAM is 32GB, each frame is 16KB, # of Frames= 32GB/16KB=2MFrames [addressable using 21 bits]

(c). 2% Ignoring page table overhead and OS needs, how many pages can a process have (max) to be runnable

in contiguous memory allocation mode?

32GB=2MPages (2 mega pages)

(d). 2% How many bits are minimally needed for frame number of this computer in page map tables (PMTs)?

21 bits to address the 2MFrames,

(e) 2% Given a 4GB Process what is the size of the Page Map Table (PMT) in bytes and pages if the PMT is

flat (one level)?

Flat means the table has 4GB/16KB= 1/4MPages= 256Kpages. Each page needs 21 bits or 4bytes for

addresses of frames for a total of 256x4K=1MB. 1MB =1MB/16KB=2**20/2**14=2**6=64 pages.

(f) 2% Given the 4GB Process: how many levels are needed for the PMT using multi-level paging of PMT, if

needed?

First level has 16KB/4Bytes=4KPages=4K*16KB=64MB.

Second level has 4K*4KPages=16M*16KB=256GB.

So we have only 2 levels.

(g)3% With a two level paging of PMT, find the maximum size (address space, in bytes) that a job can have?

256GM, as shown earlier.

 (h) 3% How many levels of page tables would be required to map a full 48 bit virtual address space (top

level: one page max)? Explain.

2 levels gave 256GB or 2**38B, 3 Levels will give (2**38) x 4K=(2**38) x (2**14)=2**52Bytes; So we

need 3 levels.

Another way: Each page has 4K entries. Needs 14 bits. So 14bits for displacement, 12bits for first level,

12 for second for a total of 14+12+12=38bits. The last 10 bits are for the third level! Note that size of such

job with these 3 levels (last level has only 1K entries out of 4K) is 2**48B= 256TB

Q ABET Max Earned

Q1 e 18

Q2 e 15

Q3 a 16

Q4 c 20

Q5 c 18

Q6 20

∑ 107

0 10 20 30 34 47

 ++++Displacement++

2 ENCS339 Operating Systems, Midterm Exam, First Semester, 2018-2019, Dr. Adnan Yahya,

--

Question 2 (15%) Consider a computer system involving 5 processes (P1, P2, P3, P4, P5) and 4 different types

of resources (R1,R2,R3,R4). The current state of the processes and resources is reflected in the tables below.

Currently Available Resources

R1 R2 R3 R4

 1 4 2 0

 Current Allocation Max Need Still Needs
Process R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 1 1 2 0 3 1 2 0 2 0 0

P2 1 0 0 0 1 7 5 0 0 7 5 0

P3 1 3 5 4 2 3 5 6 1 0 0 2

P4 0 6 3 2 0 6 5 2 0 0 2 0

P5 0 0 1 4 0 6 5 6 0 6 4 2

 (a) 5% Use Banker’s algorithm to check if this system is currently deadlocked, or can any process become

deadlocked if it continues working from the current state? Why or why not? If not deadlocked, give an

execution order

Deadlocked □YES □ NO

P1  [1,5,3,2]P3[2,8,8,6]P2[3,8,8,6]P4[3,14,11,8]P5[3,14,12,12] Order: smallest index first

P1  [1,5,3,2]P4P2P3P5; P1  [1,5,3,2]P4P2P3P5; ..

P4  [1,10,5,2]P1[1,11,6,4]P2[2,11,6,4]P3[3,14,11,8]P5[3,14,12,12] Order: P4 THEN smallest

index first More exist

If Not deadlocked: Execution Order is (just add indices): P1 P3 P2 P4 P5

2% Fill the following table:

Total Resources in the System

R1 R2 R3 R4

 3 14 12 12

 (b)4% If a request from process P1 asks for the resource vector (0, 2, 0, 1).

Can the request be immediately granted? Why or why not? If yes, show an execution order. Explain your

answer.

Request Can be Granted: □YES □ NO

Exceeds max of resource R4

If granted, Execution Order is (just add indices): P___ P___ P____ P___ P___

(c)4% If instead of (b), process P2 asks for the resource vector (0, 3, 2, 0), can the request be immediately

granted? Why or why not? If yes, show an execution order. Explain your answer.

If (0, 3, 2, 0) is granted, Available becomes: [1,1,0,0], Still needs P2=[1,4,3,0]; Available is less than still needs

for all. None can start. None can finish.

Request Can be Granted: □YES □ NO If granted Available= []]]]]]]]]]]]]]]]

P1  [1,5,3,2]P3[2,8,8,6]P2[3,8,8,6]P4[3,14,11,8]P5[3,14,12,12] Order: smallest index first

No process can finish.

If granted, Execution Order is (just add indices): P___ P___ P____ P___ P___

3 ENCS339 Operating Systems, Midterm Exam, First Semester, 2018-2019, Dr. Adnan Yahya,

--

Question 3 (16%: 4% each) Consider a dynamic (contiguous) partitioning system in which the (free) memory

consists of the following list of holes (free partitions), sorted by increasing memory address (all sizes are in

Megabytes):

4 12 18 8 9 13 21 19

Suppose a new process Pa requiring 11 MB arrives, followed by a process Pb needing 9MB of memory. Show

the list of holes after both of these processes are placed in memory for each of the following algorithms (start

with the original list of holes for each algorithm). Assume that the hole List Start Pointer is moved to the

closest hole to the allocated (or to the newly created after each allocation): from left to right and circular.

 i) First Fit-5%:

4 1 18 8 9 13 21 19

4 1 9 8 9 13 21 19

 ii) Worst Fit -5%:

4 12 18 8 9 13 10 19

4 12 18 8 9 13 10 10

 iii) Best Fit-:

4 1 18 8 9 13 21 19

4 1 18 8 X 13 21 19

iv) Best Fit Plus 3- meaning best fit but each process gets exactly (size +3) hole:

4 X 4 8 9 13 21 19

Question 4 (20%, 5% each) Consider the following process arrival, CPU burst (in milli-seconds) and explicit

priorities of the processes A, B, C and D. Assume that 5 represents highest (preferred) priority and 1 lowest.

4 12 4 8 9 13 21 19

Hole List Start Pointer (HLPTR)

4 ENCS339 Operating Systems, Midterm Exam, First Semester, 2018-2019, Dr. Adnan Yahya,

--

Draw the Gantt charts for and compute the turnaround and wait times and fill the table entries.

F: Finish Time, TA: TurnAround Time, W: Wait Tim

Proce

ss

Arrival

time

CPU burst

time

Prio

rity
Priority/P FCFS SJF SRTF

F TA W F TA W F TA W F TA W

A 3 10 1 34 31 21 34 31 21 20 17 7 20 17 7

B 14 10 1 44 30 20 44 30 20 30 16 6 30 16 6

C 0 10 5 10 10 0 10 10 0 10 10 0 10 10 0

D 2 15 5 24 22 7 24 22 7 44 42 27 44 42 27

Avge X 23.25 12 X 23.25 12 X 21.25 10 X 21.25 10

(a) Priority/preemptive:

 0

Time 910 24 34 44

Process CCCCCC DDDDDDDDD AAAAAAAAABBBBBBBBBBBB

(b) FCFS (First Come First Served).

0

Time 910 24 34 44

Process CCCCCC DDDDDDDDD AAAAAAAAABBBBBBBBBBBB

(c) SJF (Shortest Job First).

0

Time 910 20 30 44

Process CCCCCC AAAAAAAAABBBBBBBBB DDDDDDDDD

CCCCCC BBBBBBBBB AAAAAAAAA DDDDDDDDD

(d) SRTF (Shortest Remaining Time First).

0

Time 910 20 30 44

Process CCCCCC AAAAAAAAABBBBBBBBB DDDDDDDDD

CCCCCC BBBBBBBBB AAAAAAAAA DDDDDDDDD

5 ENCS339 Operating Systems, Midterm Exam, First Semester, 2018-2019, Dr. Adnan Yahya,

--

Question 5 (18%) The producer-consumer problem is a common example of cooperating processes. A

producer process produces information that is consumed by a consumer process. Here, the producer process

and the consumer process communicate using a bounded buffer implemented in shared memory.

Producer Process Consumer Process

Memory region shared by both processes:
#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

1:

2:

3:

4:

5:

6:

7:

8:

9:

item nextProduced;

while (1) {

 /* produce an item in nextProduced

*/

 while (((in + 1) % BUFFERSIZE) ==

out)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

}

1:

2:

3:

4:

5:

6:

7:

8:

9:

item nextConsumed;

while (1) {

 while (in == out)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in

nextConsumed */

}

a. (5%)Assume that the Consumer Process happens to be the first to run. Assume that the Consumer

Process is allowed to run for a long time. Select what happens. Explain your answer.

1- The Consumer will be busy waiting 2- The buffer is full which produces an exception (fault).

3- Buffer will be filled due to the long time 4- Control will be passed immediately to Producer process.

in=out=0 and nothing can happen except busy waiting (2% for explanation)

b. (5%) Assume that the Consumer Process eventually is swapped out (or the very long time quantum is

finished), and the Producer Process gets its chance to run. Assume that the Producer Process is allowed

to run for a long time, (enough time to fill the buffer). Select what happens. Explain your answer.

1- The producer process will be busy waiting 2- Control will passed immediately to Producer process.

3-Buffer will be filled due to the long time then process goes to busy waiting.

4-The buffer will overflow and an exception (interrupt) will be generated.

After the buffer is full. (in+1) % BUFFERSIZE=out and nothing can happen except busy waiting (2% for

explanation)

c. (4%)For this part of the problem, assume we have re-started both processes, so they are just ready to

start, with the shared memory variable having their values as initialized in the code. Describe one very

fortunate (optimistic) sequence of executions which allows the processes to keep doing useful work.

Your answer might take the form: Producer process runs until _once__ then Consumer process runs

once until _OR Producer process runs until _buffer is full then Consumer process runs until Buffer is

empty (or any alternating arrangement: add 2 remove 2, add 3 remove 3 and so on).

d. (4%)Is this program in need of improvement? If so, Suggest at least one way to improve performance.

YES, E.g. remove busy waiting for example by sleep awake,

6 ENCS339 Operating Systems, Midterm Exam, First Semester, 2018-2019, Dr. Adnan Yahya,

--

Question 6 (20%) True or false, add a line (only one) of explanation as to WHY. Fill the table (-

3% if not), (-3% max for no explanations)

1. □True □False: An operating system is a program that acts as an intermediary between the user of

a computer and the computer hardware Users cannot access hardware except through OS

2. □True □False: A user-level process cannot modify its own page table entries OS task

3. □True □False: Context switch time on modern hardware is small enough to be ignored entirely

when designing a CPU scheduler. All is relative: context switch time needs to compare to time quantum

4. □True □False: Races happen in processes when the final result is affected by execution order.

5. □True □False: In a multiprocessor system with enough CPUs (cores) a process gets assigned to a

given processor (core) permanently to avoid context switches. No relation. Context switch even 1 core

6. □True □False: Paging avoids the problem of external fragmentation of memory in a multi-

programming environment but has internal fragmentation. Any frame can be used, so no external

fragmentation. Can have 1 Byte or Full

7. □True □False: A process can move form a ready state to the waiting state, say if a device it

needs becomes available. Through Running State

8. □True □False: In a symmetric multiprocessor, threads cannot always be run on any processor.

Symmetric means equal power/capability.

9. □True □False: An atomic operation is a machine instruction or a sequence of instructions that

must be executed to completion without interruption. Finished in full in one go.

10. □True □False: Shortest Job First and Priority scheduling algorithms can lead to starvation? Short

jobs keep coming all the time preventing longer jobs from being scheduled.

11. □True □False: Two processes reading from the same physical address access the same contents.

One way of sharing

12. □True □False: A SJF scheduler may preempt a previously running longer job. Only after finishing

previously running jobs we invoke the SJF scheduler.

13. □True □False: If all jobs have identical run lengths, a RR scheduler (with a time-slice much

shorter than the jobs’ run lengths) provides better average turnaround time than FIFO. Take much

longer to finish, all jobs.

14. □True □False: The longer the time slice, the more RR scheduler looks like a FIFO scheduler.

Most jobs will finish within one time quantum, if not all: FCFS.

15. □True □False: If a physical address is 32 bits and each page is 4KB, the top (Most Significant) 18

bits exactly designate the physical page number. 4KB needs 12 bits and leaves 20 not 18 for page#

16. □True □False: Paging approaches suffer from internal fragmentation, which decreases as the size

of a page decreases. Any frame can be used, so no external fragmentation. Can have 1 Byte or Full

17. □True □False: Threads that are part of the same process share the same stack. Different

stacks/scratchpads for different threads.

18. □True □False: With kernel-level threads, multiple threads from the same process can be

scheduled on multiple CPUs simultaneously. Of course: parallelism is a good product of threading.

19. □True □False: With producer/consumer relationships and a finite-sized circular shared buffer,

producing threads must wait until there is an empty element of the buffer. No writing to a full

buffer: basic synchronization premise.

20. □True □False: A thread can hold only one lock at a time. As many.
Keys are for resources. A thred can have many locks.

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

□T

□F

