
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts  – 9th Edition 

Chapter 3:  Processes 



3.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Chapter 3:  Processes 
 Process Concept 
 Process Scheduling 
 Operations on Processes 
 Interprocess Communication 
 Examples of IPC Systems 
 Communication in Client-Server Systems 



3.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Objectives 
 To introduce the notion of a process -- a program in execution, which forms the basis of all 

computation 
 

 To describe the various features of processes, including scheduling, creation and termination, 
and communication 
 

 To explore interprocess communication using shared memory and mes- sage passing 
 

 To describe communication in client-server systems 
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Process Concept 
 An operating system executes a variety of programs: 

 Batch system – jobs 
 Time-shared systems – user programs or tasks 

 Textbook uses the terms job and process almost interchangeably 
 Process – a program in execution; process execution must progress in sequential fashion 
 Multiple parts 

 The program code, also called text section 
 Current activity including program counter, processor registers 
 Stack containing temporary data 

 Function parameters, return addresses, local variables 
 Data section containing global variables 
 Heap containing memory dynamically allocated during run time 

 Program is passive entity stored on disk (executable file), process is active  
 Program becomes process when executable file loaded into memory 

 Execution of program started via GUI mouse clicks, command line entry of its name, etc 
 One program can be several processes 

 Consider multiple users executing the same program 
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Process in Memory 
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Process State 
 As a process executes, it changes state 

 new:  The process is being created 
 running:  Instructions are being executed 
 waiting:  The process is waiting for some event to occur 
 ready:  The process is waiting to be assigned to a processor 
 terminated:  The process has finished execution 
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Diagram of Process State 
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Process Control Block (PCB) 
Information associated with each process  
(also called task control block) 
 Process state – running, waiting, etc 
 Program counter – location of instruction to next execute 
 CPU registers – contents of all process-centric registers 
 CPU scheduling information- priorities, scheduling queue 

pointers 
 Memory-management information – memory allocated to 

the process 
 Accounting information – CPU used, clock time elapsed 

since start, time limits 
 I/O status information – I/O devices allocated to process, list 

of open files 
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CPU Switch From Process to Process 
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Threads 

 So far, process has a single thread of execution 
 Consider having multiple program counters per process 

 Multiple locations can execute at once 
 Multiple threads of control -> threads 

 Must then have storage for thread details, multiple program counters in PCB 
 See next chapter 
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Process Representation in Linux 
 Represented by the C structure task_struct 

pid t_pid; /* process identifier */  
long state; /* state of the process */  
unsigned int time_slice /* scheduling information */  
struct task_struct *parent; /* this process’s parent */  
struct list_head children; /* this process’s children */  
struct files_struct *files; /* list of open files */  
struct mm_struct *mm; /* address space of this process */ 
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Process Scheduling 

 Maximize CPU use, quickly switch processes onto CPU for time sharing 
 Process scheduler selects among available processes for next execution on CPU 
 Maintains scheduling queues of processes 

 Job queue – set of all processes in the system 
 Ready queue – set of all processes residing in main memory, ready and waiting to 

execute 
 Device queues – set of processes waiting for an I/O device 
 Processes migrate among the various queues 
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Ready Queue And Various  
I/O Device Queues 
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Representation of Process Scheduling 

 Queueing diagram represents queues, resources, flows 
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Schedulers 

 Long-term scheduler  (or job scheduler) – selects which processes should be brought into the 
ready queue 

 Short-term scheduler  (or CPU scheduler) – selects which process should be executed next and 
allocates CPU 
 Sometimes the only scheduler in a system 

 Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast) 
 

 Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow) 
 

 The long-term scheduler controls the degree of multiprogramming 
 

 Processes can be described as either: 
 I/O-bound process – spends more time doing I/O than computations, many short CPU 

bursts 
 CPU-bound process – spends more time doing computations; few very long CPU bursts 

 Long-term scheduler strives for good process mix 
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Addition of Medium Term Scheduling 

 Medium-term scheduler  can be added if degree of multiple programming needs to decrease 
 Remove process from memory, store on disk, bring back in from disk to continue execution: 

swapping 
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Multitasking in Mobile Systems 
 Some systems / early systems allow only one process to run, others suspended 
 Due to screen real estate, user interface limits iOS provides for a  

 Single foreground process- controlled via user interface 
 Multiple background processes– in memory, running, but not on the display, and with limits 
 Limits include single, short task, receiving notification of events, specific long-running tasks like 

audio playback 
 

 
 

 Android runs foreground and background, with fewer limits 
 Background process uses a service to perform tasks 
 Service can keep running even if background process is suspended 
 Service has no user interface, small memory use 
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Context Switch 
 When CPU switches to another process, the system must save the state of the old process and load 

the saved state for the new process via a context switch 
 

 Context of a process represented in the PCB 
 

 Context-switch time is overhead; the system does no useful work while switching 
 The more complex the OS and the PCB -> longer the context switch 

 
 Time dependent on hardware support 

 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once 
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Operations on Processes 
 System must provide mechanisms for process creation, termination, and so on as detailed next 
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Process Creation 
 Parent process create children processes, which, in turn create other processes, forming a tree of 

processes 
 

 Generally, process identified and managed via a process identifier (pid) 
 

 Resource sharing options 
 Parent and children share all resources 
 Children share subset of parent’s resources 
 Parent and child share no resources 

 

 Execution options 
 Parent and children execute concurrently 
 Parent waits until children terminate 
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A Tree of Processes in Linux 
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Process Creation (Cont.) 
 Address space 

 Child duplicate of parent 
 Child has a program loaded into it 

 
 UNIX examples 

 fork() system call creates new process 
 exec() system call used after a fork() to replace the process’ memory space with a new program 
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C Program Forking Separate Process 
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Creating a Separate Process via Windows API 
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Process Termination 
 Process executes last statement and asks the operating system to delete it (exit()) 

 Output data from child to parent (via wait()) 

 Process’ resources are deallocated by operating system 
 

 Parent may terminate execution of children processes (abort()) 

 Child has exceeded allocated resources 
 Task assigned to child is no longer required 
 If parent is exiting 

 Some operating systems do not allow child to continue if its parent terminates 
– All children terminated - cascading termination 

 
 Wait for termination, returning the pid: 
pid t_pid; int status;  

pid = wait(&status);  

 If no parent waiting, then terminated process is a zombie 
 If parent terminated, processes are orphans 
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Multiprocess Architecture – Chrome Browser 

 Many web browsers ran as single process (some still do) 
 If one web site causes trouble, entire browser can hang or crash 

 Google Chrome Browser is multiprocess with 3 categories 
 Browser process manages user interface, disk and network I/O 
 Renderer process renders web pages, deals with HTML, Javascript, new one for each website 

opened 
 Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits 

 Plug-in process for each type of plug-in 
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Interprocess Communication 
 Processes within a system may be independent or cooperating 
 Cooperating process can affect or be affected by other processes, including sharing data 
 Reasons for cooperating processes: 

 Information sharing 
 Computation speedup 
 Modularity 
 Convenience  

 Cooperating processes need interprocess communication (IPC) 
 Two models of IPC 

 Shared memory 
 Message passing 
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Communications Models  
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Cooperating Processes 
 Independent process cannot affect or be affected by the execution of another process 

 
 Cooperating process can affect or be affected by the execution of another process 

 
 Advantages of process cooperation 

 Information sharing  
 Computation speed-up 
 Modularity 
 Convenience 
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Producer-Consumer Problem 

 Paradigm for cooperating processes, producer process produces information that is 
consumed by a consumer process 
 unbounded-buffer places no practical limit on the size of the buffer 
 bounded-buffer assumes that there is a fixed buffer size 
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Bounded-Buffer – Shared-Memory Solution 

 Shared data 

#define BUFFER_SIZE 10 

typedef struct { 

 . . . 

} item; 
 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 
 

 Solution is correct, but can only use BUFFER_SIZE-1 elements 
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Bounded-Buffer – Producer 

 
item next_produced;  

while (true) {  

 /* produce an item in next produced */  

 while (((in + 1) % BUFFER_SIZE) == out)  

  ; /* do nothing */  

 buffer[in] = next_produced;  

 in = (in + 1) % BUFFER_SIZE;  

}  
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Bounded Buffer – Consumer 

item next_consumed;  

while (true) { 
 while (in == out)  

  ; /* do nothing */ 
 next_consumed = buffer[out];  

 out = (out + 1) % BUFFER_SIZE; 
 

 /* consume the item in next consumed */  

}  
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Interprocess Communication – Message Passing 

 Mechanism for processes to communicate and to synchronize their actions 
 

 Message system – processes communicate with each other without resorting to shared variables 
 

 IPC facility provides two operations: 
 send(message) – message size fixed or variable  
 receive(message) 

 
 If P and Q wish to communicate, they need to: 

 establish a communication link between them 
 exchange messages via send/receive 

 
 Implementation of communication link 

 physical (e.g., shared memory, hardware bus) 
 logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit buffering) 
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Implementation Questions 
 How are links established? 

 
 Can a link be associated with more than two processes? 

 
 How many links can there be between every pair of communicating processes? 

 
 What is the capacity of a link? 

 
 Is the size of a message that the link can accommodate fixed or variable? 

 
 Is a link unidirectional or bi-directional? 
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Direct Communication 
 Processes must name each other explicitly: 

 send (P, message) – send a message to process P 
 receive(Q, message) – receive a message from process Q 

 
 Properties of communication link 

 Links are established automatically 
 A link is associated with exactly one pair of communicating processes 
 Between each pair there exists exactly one link 
 The link may be unidirectional, but is usually bi-directional 
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Indirect Communication 
 Messages are directed and received from mailboxes (also referred to as ports) 

 Each mailbox has a unique id 
 Processes can communicate only if they share a mailbox 

 
 Properties of communication link 

 Link established only if processes share a common mailbox 
 A link may be associated with many processes 
 Each pair of processes may share several communication links 
 Link may be unidirectional or bi-directional 
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Indirect Communication 
 Operations 

 create a new mailbox 
 send and receive messages through mailbox 
 destroy a mailbox 

 
 Primitives are defined as: 
 send(A, message) – send a message to mailbox A 
 receive(A, message) – receive a message from mailbox A 
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Indirect Communication 
 Mailbox sharing 

 P1, P2, and P3 share mailbox A 
 P1, sends; P2 and P3 receive 
 Who gets the message? 

 
 Solutions 

 Allow a link to be associated with at most two processes 
 Allow only one process at a time to execute a receive operation 
 Allow the system to select arbitrarily the receiver.  Sender is notified who the receiver was. 
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Synchronization 
 Message passing may be either blocking or non-blocking 

 
 Blocking is considered synchronous 

 Blocking send has the sender block until the message is received 
 Blocking receive has the receiver block until a message is available 

 
 Non-blocking is considered asynchronous 

 Non-blocking send has the sender send the message and continue 
 Non-blocking receive has the receiver receive a valid message or null 

}  
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Synchronization (Cont.) 
 Different combinations possible 

 If both send and receive are blocking, we have a rendezvous 
 Producer-consumer becomes trivial 

 

message next_produced;  

while (true) { 
    /* produce an item in next produced */  

   send(next_produced);  

}  

message next_consumed; 
while (true) { 
   receive(next_consumed); 
    
   /* consume the item in next consumed */ 
} 



3.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Buffering 
 Queue of messages attached to the link; implemented in one of three ways 

1. Zero capacity – 0 messages 
Sender must wait for receiver (rendezvous) 

2. Bounded capacity – finite length of n messages 
Sender must wait if link full 

3. Unbounded capacity – infinite length  
Sender never waits 
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Examples of IPC Systems - POSIX 
 POSIX Shared Memory 

 Process first creates shared memory segment 
shm_fd = shm_open(name, O CREAT | O RDWR, 0666); 

 Also used to open an existing segment to share it  
 Set the size of the object 

 ftruncate(shm fd, 4096);  

 Now the process could write to the shared memory 
 sprintf(shared memory, "Writing to shared memory"); 
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IPC POSIX Producer 
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IPC POSIX Consumer 
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Examples of IPC Systems - Mach 
 Mach communication is message based 

 Even system calls are messages 
 Each task gets two mailboxes at creation- Kernel and Notify 
 Only three system calls needed for message transfer 
 msg_send(), msg_receive(), msg_rpc() 

 Mailboxes needed for commuication, created via 
 port_allocate() 

 Send and receive are flexible, for example four options if mailbox full: 
 Wait indefinitely 
 Wait at most n milliseconds 
 Return immediately 
 Temporarily cache a message 
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Examples of IPC Systems – Windows 

 Message-passing centric via advanced local procedure call (LPC) facility 
 Only works between processes on the same system 
 Uses ports (like mailboxes) to establish and maintain communication channels 
 Communication works as follows: 

 The client opens a handle to the subsystem’s connection port object. 
 The client sends a connection request. 
 The server creates two private communication ports and returns the handle to one of them 

to the client. 
 The client and server use the corresponding port handle to send messages or callbacks and 

to listen for replies. 
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Local Procedure Calls in Windows XP 
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Communications in Client-Server Systems 

 Sockets 
 

 Remote Procedure Calls 
 

 Pipes 
 

 Remote Method Invocation (Java) 
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Sockets 
 A socket is defined as an endpoint for communication 

 
 Concatenation of IP address and port – a number included at start of message packet to 

differentiate network services on a host 
 

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8 
 

 Communication consists between a pair of sockets 
 

 All ports below 1024 are well known, used for standard services 
 

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is running 
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Socket Communication 
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Sockets in Java 
 Three types of sockets 

 Connection-oriented (TCP) 
 Connectionless (UDP) 
 MulticastSocket class– data can 

be sent to multiple recipients 
 
 Consider this “Date” server: 
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Remote Procedure Calls 
 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems 

 Again uses ports for service differentiation 
 Stubs – client-side proxy for the actual procedure on the server 
 The client-side stub locates the server and marshalls the parameters 
 The server-side stub receives this message, unpacks the marshalled parameters, and performs the 

procedure on the server 
 On Windows, stub code compile from specification written in Microsoft Interface Definition Language 

(MIDL) 
 Data representation handled via External Data Representation (XDL) format to account for different 

architectures 
 Big-endian and little-endian 

 Remote communication has more failure scenarios than local 
 Messages can be delivered exactly once rather than at most once 

 OS typically provides a rendezvous (or matchmaker) service to connect client and server 
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Execution of RPC 
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Pipes 
 Acts as a conduit allowing two processes to communicate 

 
 Issues 

 Is communication unidirectional or bidirectional? 
 In the case of two-way communication, is it half or full-duplex? 
 Must there exist a relationship (i.e. parent-child) between the communicating processes? 
 Can the pipes be used over a network? 



3.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Ordinary Pipes 
 Ordinary Pipes allow communication in standard producer-consumer style 

 
 Producer writes to one end (the write-end of the pipe) 

 
 Consumer reads from the other end (the read-end of the pipe) 

 
 Ordinary pipes are therefore unidirectional 

 
 Require parent-child relationship between communicating processes 
 

 
 
 
 
 
 
 

 Windows calls these anonymous pipes 
 See Unix and Windows code samples in textbook 
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Named Pipes 
 Named Pipes are more powerful than ordinary pipes 

 
 Communication is bidirectional 

 
 No parent-child relationship is necessary between the communicating processes 

 
 Several processes can use the named pipe for communication 

 
 Provided on both UNIX and Windows systems 
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End of Chapter 3 
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