
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 3: Processes
 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Objectives
 To introduce the notion of a process -- a program in execution, which forms the basis of all

computation

 To describe the various features of processes, including scheduling, creation and termination,
and communication

 To explore interprocess communication using shared memory and mes- sage passing

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Concept
 An operating system executes a variety of programs:

 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

 Program is passive entity stored on disk (executable file), process is active
 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process State
 As a process executes, it changes state

 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Control Block (PCB)
Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of instruction to next execute
 CPU registers – contents of all process-centric registers
 CPU scheduling information- priorities, scheduling queue

pointers
 Memory-management information – memory allocated to

the process
 Accounting information – CPU used, clock time elapsed

since start, time limits
 I/O status information – I/O devices allocated to process, list

of open files

3.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program counters in PCB
 See next chapter

3.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Representation in Linux
 Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time sharing
 Process scheduler selects among available processes for next execution on CPU
 Maintains scheduling queues of processes

 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main memory, ready and waiting to

execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Ready Queue And Various
I/O Device Queues

3.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the
ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU
 Sometimes the only scheduler in a system

 Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations, many short CPU

bursts
 CPU-bound process – spends more time doing computations; few very long CPU bursts

 Long-term scheduler strives for good process mix

3.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple programming needs to decrease
 Remove process from memory, store on disk, bring back in from disk to continue execution:

swapping

3.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multitasking in Mobile Systems
 Some systems / early systems allow only one process to run, others suspended
 Due to screen real estate, user interface limits iOS provides for a

 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not on the display, and with limits
 Limits include single, short task, receiving notification of events, specific long-running tasks like

audio playback

 Android runs foreground and background, with fewer limits
 Background process uses a service to perform tasks
 Service can keep running even if background process is suspended
 Service has no user interface, small memory use

3.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Context Switch
 When CPU switches to another process, the system must save the state of the old process and load

the saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching
 The more complex the OS and the PCB -> longer the context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

3.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Operations on Processes
 System must provide mechanisms for process creation, termination, and so on as detailed next

3.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Creation
 Parent process create children processes, which, in turn create other processes, forming a tree of

processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

A Tree of Processes in Linux

3.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Creation (Cont.)
 Address space

 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process
 exec() system call used after a fork() to replace the process’ memory space with a new program

3.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

C Program Forking Separate Process

3.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Creating a Separate Process via Windows API

3.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Process Termination
 Process executes last statement and asks the operating system to delete it (exit())

 Output data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort())

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting

 Some operating systems do not allow child to continue if its parent terminates
– All children terminated - cascading termination

 Wait for termination, returning the pid:
pid t_pid; int status;

pid = wait(&status);

 If no parent waiting, then terminated process is a zombie
 If parent terminated, processes are orphans

3.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 categories
 Browser process manages user interface, disk and network I/O
 Renderer process renders web pages, deals with HTML, Javascript, new one for each website

opened
 Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

 Plug-in process for each type of plug-in

3.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Interprocess Communication
 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes, including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Communications Models

3.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Cooperating Processes
 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation

 Information sharing
 Computation speed-up
 Modularity
 Convenience

3.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer
 bounded-buffer assumes that there is a fixed buffer size

3.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

}

3.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

3.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared variables

 IPC facility provides two operations:
 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)
 logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit buffering)

3.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Implementation Questions
 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

3.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Direct Communication
 Processes must name each other explicitly:

 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indirect Communication
 Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indirect Communication
 Operations

 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

3.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Indirect Communication
 Mailbox sharing

 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive operation
 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

3.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Synchronization
 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received
 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue
 Non-blocking receive has the receiver receive a valid message or null

}

3.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Synchronization (Cont.)
 Different combinations possible

 If both send and receive are blocking, we have a rendezvous
 Producer-consumer becomes trivial

message next_produced;

while (true) {
 /* produce an item in next produced */

 send(next_produced);

}

message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

3.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Buffering
 Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Examples of IPC Systems - POSIX
 POSIX Shared Memory

 Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

 Also used to open an existing segment to share it
 Set the size of the object

 ftruncate(shm fd, 4096);

 Now the process could write to the shared memory
 sprintf(shared memory, "Writing to shared memory");

3.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

IPC POSIX Producer

3.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

IPC POSIX Consumer

3.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Examples of IPC Systems - Mach
 Mach communication is message based

 Even system calls are messages
 Each task gets two mailboxes at creation- Kernel and Notify
 Only three system calls needed for message transfer
 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via
 port_allocate()

 Send and receive are flexible, for example four options if mailbox full:
 Wait indefinitely
 Wait at most n milliseconds
 Return immediately
 Temporarily cache a message

3.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Examples of IPC Systems – Windows

 Message-passing centric via advanced local procedure call (LPC) facility
 Only works between processes on the same system
 Uses ports (like mailboxes) to establish and maintain communication channels
 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object.
 The client sends a connection request.
 The server creates two private communication ports and returns the handle to one of them

to the client.
 The client and server use the corresponding port handle to send messages or callbacks and

to listen for replies.

3.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Local Procedure Calls in Windows XP

3.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

3.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Sockets
 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of message packet to

differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

3.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Socket Communication

3.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Sockets in Java
 Three types of sockets

 Connection-oriented (TCP)
 Connectionless (UDP)
 MulticastSocket class– data can

be sent to multiple recipients

 Consider this “Date” server:

3.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Remote Procedure Calls
 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Again uses ports for service differentiation
 Stubs – client-side proxy for the actual procedure on the server
 The client-side stub locates the server and marshalls the parameters
 The server-side stub receives this message, unpacks the marshalled parameters, and performs the

procedure on the server
 On Windows, stub code compile from specification written in Microsoft Interface Definition Language

(MIDL)
 Data representation handled via External Data Representation (XDL) format to account for different

architectures
 Big-endian and little-endian

 Remote communication has more failure scenarios than local
 Messages can be delivered exactly once rather than at most once

 OS typically provides a rendezvous (or matchmaker) service to connect client and server

3.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Execution of RPC

3.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pipes
 Acts as a conduit allowing two processes to communicate

 Issues

 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e. parent-child) between the communicating processes?
 Can the pipes be used over a network?

3.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Ordinary Pipes
 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes
 See Unix and Windows code samples in textbook

3.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Named Pipes
 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

End of Chapter 3

	Chapter 3: Processes
	Chapter 3: Processes
	Objectives
	Process Concept
	Process in Memory
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	CPU Switch From Process to Process
	Threads
	Process Representation in Linux
	Process Scheduling
	Ready Queue And Various �I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Addition of Medium Term Scheduling
	Multitasking in Mobile Systems
	Context Switch
	Operations on Processes
	Process Creation
	A Tree of Processes in Linux
	Process Creation (Cont.)
	C Program Forking Separate Process
	Creating a Separate Process via Windows API
	Process Termination
	Multiprocess Architecture – Chrome Browser
	Interprocess Communication
	Communications Models
	Cooperating Processes
	Producer-Consumer Problem
	Bounded-Buffer – Shared-Memory Solution
	Bounded-Buffer – Producer
	Bounded Buffer – Consumer
	Interprocess Communication – Message Passing
	Implementation Questions
	Direct Communication
	Indirect Communication
	Indirect Communication
	Indirect Communication
	Synchronization
	Synchronization (Cont.)
	Buffering
	Examples of IPC Systems - POSIX
	IPC POSIX Producer
	IPC POSIX Consumer
	Examples of IPC Systems - Mach
	Examples of IPC Systems – Windows
	Local Procedure Calls in Windows XP
	Communications in Client-Server Systems
	Sockets
	Socket Communication
	Sockets in Java
	Remote Procedure Calls
	Execution of RPC
	Pipes
	Ordinary Pipes
	Named Pipes
	End of Chapter 3

