

BIRZEIT UNIVERSITY
Electrical Engineering Department

ENCS339 Operating Systems

Second Semester, 2018-2019 Instructor: Dr. Adnan H. Yahya,

Quiz1 Wednesday, 26/2/2019 Time 10 minutes

Given the following Critical Section code for two processes:

1. If we both i and j want to enter their critical sections and Process i works first. How will the processes enter their

critical sections: □ I then J, □ J then I, □ I but not J, □ J but not I □ none of the above.

2. If only i wants to enter its critical section (j does not) then allow both processes to work. Mark all that apply:

□ J Can progress if given CPU. □ I Can progress if given CPU. □ Both Can progress if given CPU.

□ None Can progress if given CPU?

3. If interested, Mark all that apply: □ I Can enter its Critical section twice in a row.

□ J Can enter its Critical section twice in a row. □ They have to work alternatively: one then the other.

4. If we allow both processes to work and J is not interested then I will wait indefinitely and cannot finish: □ True

□ False

5. In Test-and-Set instruction: the old variable is copied, the variable new value is set to 1 the action is based on

the old value of the variable. □ True □ False

6. If the cars on an intersection obey the rule: Right of way is given to the car on the right. Deadlock (nobody

moves) is possible when the intersection has (all that apply) □ 2 cars □ 3 cars □ 4 cars

7. Threads are preferable to processes because: (all that apply)

□ Context switching time is low for threads

□ Process Creation time is low for threads

□ Threads communicate faster than processes

□ Processes use more registers than threads

Pj do {

 flag[j] = TRUE;

 turn = i;

 while(flag[i]&& turn == i);

 critical section…..

 flag[j] = FALSE;

 remainder section…..

 } while (1)

Pi do

 flag[i] = TRUE;

 turn = j;

 while(flag[j]&& turn == j);

 critical section…..

 flag[i] = FALSE;

 remainder section…..

 } while (1)

