33 R e
BIRZEIT UNIVERSITY

Electrical and Computer Engineering

Computer Design Lab — ENCS4110

ARM Basic I/O

Introduction
A microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-
sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a
PC).
A microcontroller is a single integrated circuit, commonly with the following features:
» Central processing unit (CPU) - ranging from small and simple 4-bit processors to
sophisticated 32- or 64-bit processors

Memory (SRAM and Flash memory)

Input/output interfaces such as serial ports (UARTYS)

Peripherals such as timers and watchdog

Many include analog-to-digital converters

Clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit

vV V V VYV VY

Microcontroller versus Microprocessor

A microcontroller differs from a microprocessor in many ways. The first and most important difference
is its functionality. In order that the microprocessor may be used, other components such as memory
must be added to it. Even though the microprocessors are considered to be powerful computing
machines, their weak point is that they are not adjusted to communicating to peripheral equipment. On
the other hand, the microcontroller is designed to be all of that in one. No other specialized external
components are needed for its application because all necessary circuits are already built into it.

Data bus
CPU I CPU RAM [ROM
General- Serial
Purpose RAM | |[ROM | [YO [|Timer} | cOM
Micro- Port Port I/0 Timer | Serial
processor COM
Port
Address bus

{a) General-Purpose Microprocessor System (b)Y Microcontroller

Figurel-1. Microcontroller versus Microprocessor

ARM Processor

ARM-Advanced RISC Machine, is one of a family CPUs based on a reduced instruction set computer
(RISC) architecture developed by British company ARM Holdings. A RISC-based computer design
approach means ARM processors require significantly fewer transistors than typical processors in
average computers. This approach reduces costs, heat and power use. These are desirable traits for
light, portable, battery-powered devices—including smart phones, laptops, tablet and notepad
computers), and other embedded systems.

Memory Unit

[0 Flash memory

The contents of this memory can be written and cleared practically an unlimited number of times, the
microcontrollers with Flash ROM are ideal for learning, experimentation and small-scale manufacture.

[0 Random Access Memory(RAM)

Once the power supply is off the contents of RAM (Random Access Memory) is cleared. It is used for
temporary storing data and intermediate results created and used during the operation of the
microcontroller.

[0 Electrically Erasable Programmable ROM (EEPROM)

The contents of the EEPROM may be changed during operation (similar to RAM), but remains
permanently saved even upon the power supply goes off (similar to ROM). Accordingly, an EEPROM is
often used to store values, created during operation, which must be permanently saved.

LPC21xx Microcontrollers

The LPC2131/2132/2134/2136/2138 microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU

with real-time emulation and embedded trace support, that combines the microcontroller with 32 kB,
64 kB, 128 kB, 256 kB and 512 kB of embedded high speed Flash memory. A 128-bit wide memory
interface and a unique accelerator architecture enable 32-bit code execution at maximum clock rate.

2

Due to their tiny size and low power consumption, these microcontrollers are ideal for applications
where miniaturization is a key requirement, such as access control and point-of-sale. With a wide range
of serial communications interfaces and on-chip SRAM options of 8/16/32 kB, they are very well
suited for communication gateways and protocol converters, soft modems, voice recognition and low
end imaging, providing both large buffer size and high processing power. Various 32-bit timers, single
or dual 10-bit 8 channel ADC(s), 10-bit DAC, PWM channels and 47 GPIO lines with up to nine edge
or level sensitive external interrupt pins make these microcontrollers particularly suitable for industrial
control and medical systems.

LPC2138 Microcontroller

This is the microcontroller we are going to use during our lab. This microcontroller has the following
main features :

1 an ARM7TDMI-S based high-performance 32-bit RISC Microcontroller
[1512KB on-chip Flash ROM

1 32KB RAM

[1 Two 8-ch 10bit ADC

] Two UARTS

[1 Single 10-bit DAC

[1 Two 12C serial interfaces

[1 Two SPI serial interfaces

[1 Three 32-bit timers

[Watchdog Timer

[1 Vectored Interrupt Controller

[1 In-System Programming (ISP)

1 In-Application Programming (IAP)

[1 Up to 47 general purpose /O pins.

[CPU clock up to 60 MHz

1 On-chip crystal oscillator and On-chip PLL.

Pin Diagram

na 3
e =
- wx = = & w
o zub ophaiif
SpFi8gafpaszes 5
s fkkafrlbarrrea £83
[=1 (=] =] [=] [=] [=] [#] [5] [#] [#] [#] [=] [# [=] [=]
PO_21/PWMSIAD1 &/CAP1.3 [1 | O [48] P1_20/TRACESYNC
P0.22/AD1 TICAPD.OMATO.0 [2] [47] PO.17/CAP1 2/SCKIMAT1.2
rRTxC1 [3 | [46] Po.16/EINTOMATO.2/CAPD.2
P119TRACEPKTS [4 | [45] PO1S/IRIVEINT2IADY S
RTxC2 [5 | [44] P121/PIPESTATD
vas [6] [43] Voo
Vooa [T [42] vss
P1.18TRACEPKTZ [@ | [41] PO.14/DCDV/EINT1/SDAY
P0.25/AD0.4/A0UT [9 | LPCHIYT2E [40] P122/PIPESTATY
P0.26/AD0.5 [10] [30] PO.13/DTR1I/MAT1. 174D 1.4
P0.27/AD0.0ICAPO. 1MATO.1 [11] [38] PO.12/DSRIMAT1.0/AD1.3
P17 TRACEPKT1 [12] [37] Po.1vCTSICAP1. ISCLY
PO_28/AD0_1/CAPO.2MATO 2 [13] [36] P1 2a/PPESTATZ
PO.29/AD0_2/CAPO.AMATO.3 [14] [35] PO.10/RTSWCAP1.O/AD1 2
PO.30/ADO. S/EINTHCAPO.0 [15] [34] PO.W/RXD1/PWME/EINTS
P1.16/TRACEPKTO [16] [33] PO.ATXD1/PWMAIAD1.1

===l RIESRRISES] acasor
E,S‘s'g E §=ggza§§
& 2 & zﬁﬁ«ﬁg_
] 5] ES"ES a8
T g ég _ggm
jr] = =
& 8 Z2g¢&

Software Tools
These programs are the backbone of the microprocessor and microcontroller based systems; since using

Keil we can build the software of the project using C, and then we can simulate the project virtually
using Proteus, finally we can download the program on the microcontroller and see the practical
results.

Keil Legacy Device Database

In order to have NXP LPC2138 controller in the device selection when creating new project with the Keil
uversion, you need to download and install Keil.LPC1700 DFP.2.7.0.pack

https://armkeil.blob.core.windows.net/legacy/MDK79525.EXE
rSeIect Device for Target 'Targel_

oz

Device |
ILegacy Device Database [no RTE] LI

Vendor: NXP

Device: LPC2138

Toolsst: ARM

Search: |LPC2138

Description:
=% NXP ARM7TDMI-5 based high-performance 32-bit RISC Microcontroller with =

£3 LpCa13s/01

512KB on-chip Fash ROM with In-System Programming {ISP) and In-Ap
3ZKB RAM, Vectored Intemupt Controller,

Two UARTS, one with full modem interface.

Two |2C senial interfaces, Two SP| serial interfaces

Three 32-bit timers. Watchdog Timer,

Real Time Clock with optional battery backup,

Brown out detect circuit

General purpose /0 pins.

CPU clock up to 60 MHz, On-chip crystal escillater and On-chip PLL

< | [il} 2

—
oD oo

https://armkeil.blob.core.windows.net/legacy/MDK79525.EXE

Create a new project with Keil MDK

Create new project using LPC2138 controller and copy the following c code into a new c file. This is a simple
program to toggle the LED on the LPC2138 microcontroller

kA FAARM-Projectsi\Labl_Project\Blinky.uvproj - pVision)
File Edit View Project Flash Debug Peripherals Tools SV(S Window Help

SHF| s B9« |B | == |
@mlﬂl@ |?§|Target1 E|£\|£
Project a @ _] Blinky.c
&% Project: Blinky 1 #include <LPC213X.E>
g Targetl .
=5 Source Group1 3 [[void msDelay (int d){
J Startup.s 4 int 1,37
) 5 long c = 0»
] Blinky.c & d = d=2;
T for(i=0:;i<d;i++){
SE for (j=0;3<1000:3++) {
a [t
i - H
11 |
1z
13
s i
15 int main(){
1s IDODIR &= (~(1l<<18)):
17 TIOIDIR |= (1<<28);
iz while (1) {
13 [if (! (IC1PIN & (l<<l€))){
20 msDelay (50)
21 IO1PIN ~= (1<<28) ;|
22 H
23
24 L

Generate the Hex file machine code

1- Right click on the “Source Group1” and choose “Options for Target “Target 1”. Or simply choose “Option for
Target” icon as shown.

LA FAARM-Projects\Labl_Project\Blinky.uvproj - u\Visicn
File Edit WView Project Flash Debug Peripherals Tools SWCS Window Help

=" - @] 9 | = = | P | o= = NE)
£ (5] 3 & | LI?“;‘ Target 1 =@' -, |
Project =B] Blinky.c A Or From Here |
[=-*1% Project: Blinky >
=% Targetl 3 E|"."Cld msDelay (int d) {
=k Source Group 1 - ITHC LTr1r ———
] Startup. AX Options for Group 'Source Group 1°... At+F7 D>
_—#‘
=[] Blinky.c

Add New Item to Group ‘Source Group 1'...
Add Existing Files to Group ‘Source Group 1°...

Remove Group 'Source Group 1° and its Files

Open Build Log
Rebuild all target files
Build Target F7

Manage Project Items...

< EE

Show Include File Dependencies

2- Next, from the ”Options for Target “Target 17 dialog, click on “Output” from the upper menu bar and check on
“create HEX file” and press “Ok” button.

ﬂ Options for Target 'Target 1' ﬁ

Device] Target Listng | User] C/CH—l Asm ‘ Linker] Debug I Ltilties 1

Select Folder for Objects. .. ‘ Name of Executable: |B|\nky

(¥ Create Executable: \Objects'\Blinky

[v Debug Information [Create Batch File

[V Browse Information

(" Create Library: \Objects\Blinky lib

‘: | Cancel | | Defaults Help

3- Click on “Rebuild” to rebuild the file to create a hex file.

kA F\ARM-ProjectsiLabl_Project\Blinky.uvpraj - pVision
File Edit Wiew Project Flash Debug Peripherals Tools SWIS

B9 e | |

LoD - 4
| 53| Target 1 E£\| dh %
Project %% Rebuild _] Blinky.c
=% Projed Repuild all target files 2
-3 Targef 1 3 Hwvoid msDelay (int
=5 Source Group 1 4 int 1,3:
B Startup.s < long ¢ = 07
. & d = d#2;
w7 Rlinku.r _ _ S

Proteus Program

Proteus is a simulation program used to simulate hardware connections and check that they are error-
free before connecting them.

Installation of Proteus

1- Run the “Proteus 8 professionals sp0 build 15417 as an administrator.

2- Press next until you reach the window which asks for the key.

3- From browse for key; browse until you find the file where the key exist.

4- Then click on Grassington North Yorkshire.Ixk and then press install.

5- Then choose yes and close the window, after that press Next and choose Typical install to install the program.

6- After installation, for Crack, copy (“PIN”,”Models”,”Help”,”LICENCE”) and past them on the folder where the
Protues installed in your PC.

7- Run the LICENCE and press install.

8- Finally, Choose “Ok” and then “Close”

Create a new project with Proteus

1- Open Proteus and click on “New Project” button.

& UNTITLED - Proteus 8 Professional - Home Page e e o — oy
File Systern Help

DEHY AEE<QRE - |0
/ﬁHomePage x

—

%= PROTEUS DESIGN SUITE 8.0

L —

Getting Started |

Schematic Capture o

PCB Layout E|
Simulation

Open Project Import Le: Design | Open Sample

Recent Projects
C-\Wsers\Ibtesam Majdi\Documents\New Project pdspr,

Miaration Guide

@ Help Home
@ Schematic Capture E|
@ PCB Layout

2- Name your project with suitable name and click “Next”.

.
Project Name
ﬁ_
| e (=)
Path C:Wsers\Ibtesam Majdi\Documents Browse

@ MNew Project (7 From Development Board Blank Project

3- Choose “Creat a schematic from the selected template” and click “Next”.

4- Click ““ Next”.

5- Click “Next”.

-

I & Mew Project Wizard: Schematic Design ————————

o ot cipat

- reate a schematic from the selected lempl_al_Z)

Design Templates

DEFAULT
Landscape AD
Landscape A1
Landscape A2
Landscape A3
Landscape A4
Landscape US A
Landscape US B
Landscape US C
Poitrait &0
Partrait 41

Poitrait 42
Poitrait 43
Portrait 44 I
Portrait LIS &
Poitrait S B
Portrait S C
Sample Desian

C:\ProgramD atahLabeenter Electionics\Prateus 8 ProfestionalhTemplatesh\DEFAULT.DTF

o e,
o ree) ce][e

I! New Project Wizard: PCB Layout

Do not create a PCE lapout,
Create a PCB layout from the selected template.

Layout Templates

DEFALLT

Double Euocard (2 Layer)

| Double Ewrocard (4 Layer]
Estended D ouble Eurocard (2 Layer]
Extended Double Eurocard (4 Layer)
Generic Single Layer

Single Eurocard [2 Layer)

Single Eurocard (4 Layer]

Single Euracard with Connector

C:4ProgramD stahLabcenter ElectranicshPrateus B ProtessianalsTemplates\DEFAULT.LTF

Back Cancel Help
—

.

3 Mew Project Wiza

No Firmware Project

Create Firmware Project

Family 8051 -
| | contoler 80C31 -
Compiler ASEM-51 (Proteus) = | | compikers...

Create Quick Start Files

(e)

Help

6- Click “Finish”. And now your workspace is ready.

2 New Project Wizard: Summal M
Summary

| Saving As: C:\Users\Ibtesam Majdi\Documents'\Lab 1. pdsprj
W Schematic
Layout

Firmyeare
Details
Schematic template: C:\ProgramData\Labcenter Electronics\Proteus 8 Professional\Templates\DEFAULT.DTF

Mo PCE layout
Mo Firmware Project

'
e G M ea) =
N

7- Press the “Component mode” to choose the components from “P” icon

& UNTITLED - Proteus 8 Professional - Schematic Captun
File Edit View Tool Design Graph Debug Lib

NEEHR AEEEGEER - | @

[E8 Schematic Capture

ot

Compenent Mode

DEVICES

o

8- As an Example, we deal with “LPC2138 Microcontroller” in this lab, from the Keyword field we write the
keyword “LPC2138” and choose it then press “Ok” button.

1\ Graph Uebug Library

lemplate System Help

GEE=0 B+ +A48Q% D¢ 4ok SEEE QL [0k EES R

[E5 Pick Devices

PR

Kepwords:

Match Whole Words?
Shaw only parts with models?

Categary.

Results (1]

o] esciiption

A

Sub-categony:

Manufacturer:

LPC2138 Preview:

Schematic Model [LPCZ13<] E

PCB Praview:

=1

11.4mm

[QFF’EDP1 200-1200160-64 -
——

C oDl

Cancel

9- From “Terminal Mode” we can find the “Power” and the “Ground”.

& UNTITLED - Proteus 8 Professional - Schematic Capture

File Edit View Tool

Design

DEEY dEEE@EE -0

B8 Schematic Capture x |

Graph Debug Library Template

XY

System

Q

c
3)
Pl 1

LeBEL

R ¥
>
+*

=

R d
':::iﬁ

TERMINALS

DEFALLT
IMFUT
auTrPUT
EIDIR

.
3
remna ode

10- To install your program to the microcontroller, double click on the “LPC2138”, then from the “Edit

Component” dialog click on “search file” field and br

"
B8 Edit Component

Fart Beference: um

P e—

owse for your .hex file and then press “OK”.

Hidden: []

il

oK]
Heilp

PCE Package

Other Eroperties:

[] Exelude fram Simulation
[] Exclude fram PCE Layout
[] Exclude from Eill of Materials

Part Walue: LPC2132 Hidder: []
Blement -
LIS Model File: LPC21 3 Hide Al - E dit Firmware
Program File: MprojObjectsitogale-Led. hex [i 4 I) | [mccncciem)
Clock Frequency: < 2MHz Hide Al -

QFPS0P1 2001 200<160-6 ~ Hide &l -

[&ttach hisrarchy module
Hide commo pits
[T] Edit all properties as text

10

11- You can run the simulation as shown.

® I} " [& Mo Messages ¢ Root sheet 1

BasicI/0

Generally, every microcontroller has at minimum two registers associated with each of 1/0 port. They
are Data Register and Direction Register. The Direction register is used to make the pin either input or
output. After the Direction register is properly configured, then we use the Data register to actually
write to the pin or read data from the pin. For example, suppose you want your device to turn three
signal LEDs and simultaneously monitor the logic state of five sensors or push buttons. Some of ports
need to be configured so that there are three outputs (connected to the LEDs) and five inputs
(connected to sensors).

LPC2138 GPIO Programming
LPC2138 MCU has 2 ports, port0 and portl.

(] Port 0 is a 32-bit I/O port with individual direction controls for each bit.

Total of 31 pins of the Port 0 can be used as a general purpose bi-directional digital 1/0Os while P0.31 is
output only pin. The operation of port 0 pins depends upon the pin function selected via the pin connect
block.Pin P0.24 is not available.

] Portl is a 32-bit bi-directional 1/0 port with individual direction controls for each bit. The operation
of port 1 pins depends upon the pin function selected via the pin connect block. Pins 0 through 15 of
port 1 are not available.

In LPC2138 MCU most of the pins are Multiplexed i.e. these pins can be configured to provide
different functions. we’ll explain this in upcoming labs. For now, just keep in mind that by default all
functional pins are set as GPIO so we can direclty use them when learning GPI1O usage. Also note, All
GPIO pins are configured as Input after Reset by default

There are 4 registers we need to understand to program these ports.

1. IOXPIN (x=port number) : This register can be used to Read or Write values directly to the pins.
Regardless of the direction set for the particular pins it gives the current state of the GP1O pin when
read.

2. IOxDIR : This is the GPIO direction control register. Setting a bit to 0 in this register will configure
the corresponding pin to be used as an Input while setting it to 1 will configure it as Output.

3. IOXSET: This register can be used to drive an output configured pin to logic 1. Writing Zero does
NOT have any effect and hence it cannot be used to drive a pin to Logic 0.

4. IOXCLR: This register can be used to drive an output configured pin to logic 0. Writing Zero does
NOT have any effect and hence it cannot be used to drive a pin to Logic 1.
11

Now setting Pin 2 of Port 0 as output can be done in various ways as show :

CASE 1. I00DIR = (1<<2); //direct assign: other pins set to 0)

CASE 2. IO0DIR | = 0x0000004; //direct assign: other pins not affected)

CASE 3. I00DIR | = (1<<2); //(binary — OR and assign: other pins not

] Case 1 must be avoided since we are directly assigning a value to the register. So while we are
making P0.2 ‘1’ others are forced to be assigned a ‘0’ which can be avoided by ORing and then
assigning Value.

(] Case 2 can be used when bits need to be changed in bulk.

(] Case 3 when some or single bit needs to be changed.
For example, Consider that we want to configure Pin 19 of Port 0 as output and want to drive it a high
logic, this can be done as:

IOODIR |= (1<<19); //Config P0.19 as output, other pins not affected
IOOSET = (1<<19); // Make output High for P0.19

Also Consider that we want to configuring P0.13 and P0.19 as output and setting them high:

IOODIR |=(1<<13) | (1<<19); // Config P0.13 and P0.19 as output
IOOSET = (1<<13) | (1<<19); // Make output High for P0.13 and P0.19

Switches and Buttons

Switches and buttons are the basic input devices used to supply certain voltage level for
microcontrollers. Button/switch is a mechanical component, which connects or disconnects two points
A and B over its contacts. By function, button/switch contacts can be normally open or normally closed

®sSwi®
20_| Sy |
};’- -) l
.J) o —— ©
o —_—
e —
? Vo — -0
=1 =
o ——
Vi -
— —-——
DIPSW_10
BUTTON NO DIP SWITCH SWITCH

Buttons can be connected to the microcontroller in one of two ways:
) Button with pull down resistor
- When the button is presses, it will supply logical one (+5V) to MCU.

- When the button is not pressed, the pull down resistor will supply logical zero(Ov) to the MCU.
12

[Button with pull up resistor
- When the button is presses, it will supply logical zero(Ov) to the MCU.

- When the button is not pressed, the pull up resistor will supply logical one (+5V) to MCU.

These ways are used in order to avoid unknown case (Not Zero & Not 5V), so one of these ways are

used to give ‘0’ or ‘1’ state normally. In LPC2138 the internal Pull-ups are enabled and implemented in
portl from pin 16 to 25, the default state of the pins configured as Input will be always high unless it is
explicitly made low by connecting it to Ground

Microcontroller vee

J

i "%
| GPDK‘;:M = :L

() Using Pufl-cp Rasistor

|||'—

Microcontroller

bitn

vce
L T

GFIOx_PDIR

Rewrvoow

(b Using Pm-down Resisior

Lab Work:

> Lab Work 1
You are going to use these keywords when you search for parts in Proteus:

Part Keyword
Microcontroller LPC2138
Resistor res
Switch dipsw
LEDs led-
Button Push

A. Write and simulate a program that reads data from port0 and send it to port1.

Keil

1
2
3:
4
5
6
78
8

9.
10 |}
11t

#include <LPC213X.H>

int main() {
0x000F0000;

while (1) { /* Run forever*/
IOIPIN = IOOPIN; // Write port0 data to portl

Configuration
IO0DIR &= ~(0x000F0000); // Config P0.16..19 defined as inputs
// Config P1.16..19 defined as outputs

Protues

FULTTAC |57 AR APSCLT
P0A2DSRMAT1 0/AD1 3

PO.13DTR1MAT1 1/AD1 4
PO14DCD1ENT1SDAT
POASRNEINT2(A01 5 S e
o[C
PO T0 20CAP02 il el
PO17/CAP1 2/SCK1 MAT1 .2 5 -_—
POABICAPT 3MISOTMATT 3 o w1
POASMATE 2MOSH ICAP 2 -_—
PO20AMAT! B/SSEL1/ENT3
PO.21/PVWMSIADT BICAPT 3 ?‘D,Q‘Nfa
P0.22/8D1 7 ICAPO.OMATO.0 - FreRl®

P0.25/4D0.4/80UT
P0.26/AD0 5

FO.27/AD0 0ICAPOA MATO.1
P0.28/AD0 1 ICAPD 2MATO.2
P0.28/4D0 2/CAPD.3MATD.3
433v PD 30/AD0 3/EINT3ICAPD O

R[] Re[| RS
10 10| | 10ef [101
cEbasekel fredel Lrevr
a wf uf u

FFEEFEF EFFRFFRE BEEE]

P31 D1
R1
P1ABTRACEPKTO -
P1ATITRACEPKT1 220
42 vear P11BTRACEPKT2 Lrext» LED-GREEN
= P1ABITRACEPKTS | STEXT
2 vrer P1 20TRACESYNG [D2
= v P1.21/PPESTATD | R2
v Pl 22FIPESTATI (= -
va P4 23PPESTAT2
2 va P1 28/TRACECLIC ﬁ LED-GREEN
a P125EXTIND = ST
vssa P12BRTCK [=2d D3
0 vss P1277DO =it
O
22 vss Pi28ml |20
£ vss Pi2gcK 22
5] Yss P1.30/TMS (o250
VsS P1.317TRST
C2138
TEXT
L]
== «TEXT> LED-GREEN P —
<TEXT=

B. Write a program that toggles a LED when clicking on a push button.

Note:

The needed time for the user to press the push button is approximately 200 ms, the speed of the LPC’s
work is very high, so ‘while true’ loop will be executed a lot of times through this period (200 ms),
which means that the button has been pressed many times, but in fact the user did it just once!.

So we need some delay after button clicking detection.

14

Keil

1 #include <LPC213X.H>|
2
3avoid msDelay (int d) {
4 int 1i,7;
3 long ¢ = 0;
6 d = d*2;
7 e for(i=0;1<d;i++) {
8¢ for (J=0;3)<1000;J++) {
9 C++;
10 + }
11 }
12 |}
13t
14oint main () {
15
16 IOIDIR &= (~(1<<16)); /* config P1l.16 as Input*/
17 IOIDIR |= (1<<28); /* config P1.28 as output*/
18
198 while (1) {
20
210 1f('(IO1PIN & (l<<le))){ /* 1if button is clicked*/
22 msDelay (50);
23 TO1PIN ~= 0x10000000; /* Toggle led*/
24 | }
25+)
Protues
+33V LNV TR L R D!Lr!‘\;OUSU1 n 1 ?
15 P4 16TRACEPKTO f=2C 15 ok
F1ATITRACEPKT1
49 L ygat F1 18TRACEFKT2 :3
A F1I9TRACEPKTZ e
= WREF P11 20MRACESYNC .—44
= WaA F12UPIPESTATO G
WA P1.22/FIPESTATI
‘2‘3 V3 F1 23PIPESTATZ :—g’g
WA P11 24 TRACEC LK o
FA 25EXTING
2 ussa P1IGRTCHK (=2t D
=1 ¥s5 F127TDO |2 R1
VS5 P1 28D —1
£ 1 vss P129TCK 225 20 -
VSS F13TMs == ETEAT= LED-GREEN
B 1vss P131ARST 2% <TEXT= o
J_ LFCZ138 1
<TEXT>

15

> Lab Work 2
You are going to use these keywords when you are search for parts in Proteus:

Part Keyword
Microcontroller LPC2138
7 segments 7seg

Button Push

Write and simulate a program that increments a 7-segment by one with every click (range 0 to 9).

o Keil

i F¥include<lpcZl3Ix.h>

=2

3 (Fvoid msDelay(int dA) { .,/ ms delay at 12 MHZ
< dmte d; s

S l1ong < = 0O;

L) d = da~z2;

T = foxr(i=0;i<d;i++) {

8 %—% Ffoxr(3=0:3<31000:23++) {
2 L

1ia - >

X |- 3

B >

A -

14 int dec to 7Tseg(int numbexr) {
e [— switch (number) {

16 case 0O ©: return Ox3F:
2 case 1 :: return O0x0&6;>
is case 2 : returmn OxX5B:
19 case 3 : return Ox4F:
20 case 4 z returmn Ox66;
231 case 5 :: retcturn Ox6D;
22 case 6 ¢ rrecturn O0x7TD;
23 case 7 : rTreturm Ox07:
249 case 8 @ return Ox7TF:
s case 9 : rreturn Ox6F .
26 default: return Ox00:
2 |- 3

28 >

29 L

32 Hint main() {

3 int counter = 0;

34 IOODIR |= 0Ox000000FF; // config P0.0..7 as output
35 I0O1DIR &= (~(1l<<x1le)): // config P1.16 as input

36 IOOCLR = 0x000000FF; // turn-on 7-3eg, clear number
37

38 - while (1){
39

40 if (! (IO1PIN & (1<<16))){ // if button is clicked

41 msDelay (50);

42 IOOCLR = 0x0000007F; // clear prev. number

43 IO0PIN |= dec_to_ T7seg(counter):; // load current number
44 counter++;

45 if (counter » %) counter = 0;

46 - }

47 - }

48 }

S

16

Proteus

1J1
% XTAL1 PO.O/TXDOPWM1 ;f
LI S AP PO 1/RXDDPWM3/EINTO |—=
4 PO 2ISCLOICAPO.0 |2
2 rrxct PO 3ISDAOMATO. Q/EINT1 22
RTXC2 PO.4/SCKO/CAPD 1/AD0.8 (=20
o PO.SMISOO/MATD. 1/ADD.7 | =20
578 | ReT PO.6MOSIDICAPD.2/A01.0 | =22
PO.7ISSELDPWM2IEINT2 |21
PO.STXD1PWM4/AD.1 |22
PO B/RXD1PWMEIEINTS (22
POLIDRTS1/CAP1 0/AD1.2 [=2
PO1ICTSH/CAP1ISCLY (22T
PO.12DSR1MAT1 AD1.3 = o
PO.13DTR/MAT1.1/AD1.4 [
PO.14/DCD1/EINTI/SDAT {—a1
PD.1&/RIVEINTZ/AD1.5
45
PO.AS/EINTOMATD.2/CAPD.2 oo
PO.17/CAP1 2/SCK1MAT1.2 (27
PO.1B/CAP1 AMISO1MAT1.3 =22
PO.18/MAT1 2MOSI1/CAP1.2 | = %
PO 20/MAT1 YSSELUEINTS |2
PO.21/PWMSIAD1 B/CAP1.3 (o -
PO.22/AD1.7/CAPO. OMATO.0 |52
P0.23 [
PO.25/AD0.4/AQUT %
PO.26/ADO5 o1
P0.27/ADO.0/CAPO 1MATD.1 | o1t
P0.28/AD0. 1/CAPO. 2MATO.2 |o—=
PO.20/AD0.2/CAPD.AMATD.3 o2
PO.30/ADD S/EINTI/CAPD.0 |1
+3.3v PO 21
i
P1.18TRACEPKTD :12 = o c.'

- P117/TRACEPKT1 | =

VBAT P1.18/TRACEPKT2 [0 —

C) s R ACE KT vas I

7-Segment Multiplexin
The simplest way to drive a display is via a display driver. These are available for up to 4 displays.

Alternatively displays can be driven by a microcontroller and if more than one display is required, the
method of driving them is called "multiplexing".

If a single display is to be driven from a microcontroller, 7 lines will be needed plus one for the
decimal point. For each additional display, only one extra line is needed.

To produce a 4, 5 or 6 digit display, all the 7- segment displays are connected in parallel. The common
line (the common-cathode line) is taken out separately and this line is taken low for a short period of
time to turn on the display. Each display is turned on at a rate above 100 times per second, and it will
appear that all the displays are turned on at the same time. As each display is turned on, the appropriate

17

information must be delivered to it so that it will give the correct reading. Up to 6 displays can be
accessed like this without the brightness of each display being affected.

> Lab Work 3
You are going to use these keywords when you search for parts in Proteus:

Part Keyword
Microcontroller LPC2138
/-segments /seg
Keil
1 #Finclude<lpcZ2l3x.h>
2
3 Hwoid msDelay(int d){ // ms delay at 12 MHZ
4 int 1i,3j:
5 long c = 0;
[d = d*2;
7T E% for(i=0;i<d;i++){
8 [= for (j=0;3<1000;3++){
=] c++
10
11
12 }
s -
14 int dec to_ 7seg(int number){
15 [—- switch (number) {
16 case 0 : return Ox3F;
17 case 1 : return 0x06;
18 case 2 : return 0x5B;
19 case 3 : return 0x4F;
20 case 4 : return O0x66;
21 case 5 : return 0x6D;
22 case 6 : return O0xT7D;:
23 case 7 : return O0x07:
24 case 8 : return O0xTF;
25 case 29 : return O0x6F;
26 default: return 0x00;
27
28 ¥
29 L

18

30 [Hint main () {

33
32 ICODIR |=
33 IOCODIR |=
34
35 IOOSET =
36
37 &4 while (1) {
38 JOOCLR = (1<<22): // turn-on first 7-seg
39 JOOCLR = Ox0000007F; // clear prev. number
40 ICOPIN |= dec_to_Tseg(9): ’ load 9 on first 7-seg
491 msDelav (1)
42 TOOSET = (1<<22):; // turn—-off first 7-seg
43
44 JOOCLR = (1<<23): // turn—-on second 7-seg
45 JOOCLR = Ox0000007F; /f/ clear prewv. number
46 JOOPIN |= dec_to_7seg(S5S): // load 5 on first —Seg
47 msDelav (1)
48 JOOSET = (1<<23):; // turn-off second 7-seg
49 - }
50 3}
51 L
o Protues
U1

%f—xmu PO.QT=xDIVPWM1 L

— XTAL2 PO. 1/RxDIVPWM3/EINTO

3 PO 2/SCLO/CAPO.O

5] RTXC1 P0.3/SDADMATO. O/EINT1

— RTXC2 P0.4/SCKO/CAPD.1/AD0.6

7 | — PO.5/MISOO/MATD. 1/AD0.7

— RST PO.G/MOSIDICARPD.2/AD1.0

PD.7/SSELIVPYWM2/EINT2
PO.&TxD1/PWM4/AD1.1
PO.9/RxD1/PWMB/EINT3

PO.10/RTS1/CAP1.QVAD1.2

PO.11/CTS1/CAP1.1/SCL1

PO.12DSR1/MAT1.QVAD1.3
PO.13/DTR1/MAT1.1/AD1.4
PO.14/DCD1/EINT1/SDA1
PO.1S/RIM/EINTZ/AD1.5

PO.1S/EINTO/MATO.2/CAPO.2
PO.17/CAP1.2/SCK1/MAT1.2
P0.18/CAP1.3MISO1/MAT1.3
PD.19/MAT1.2MOSI1/ICAP1.2
PO.2D/MMAT1.3/SSEL1/EINT3
PD.21/PWME/AD1.6/CAP1.3
FO0.22/AD1.7/CAFD.0/MATOD.0
P0.23

8 ”|‘I3§|ﬁﬂ|&‘,‘[ﬁ|5 |&|£I%|8§|2’.|8€|33l23|ﬂ] bl]

19

U1

=1 XTAL1 P0.0/TxDO/PWM1
—1 XTAL2 P0.1/RxDO/PWM3/EINTO
3 P0.2/SCLO/CAPO.0
5] RTXCA1 P0.3/SDAD/MATO..0/EINT1
RTXC2 P0.4/SCK0/CAP0.1/AD0.6
_ P0.5/MISO0/MATO.1/ADO.7
——1 RSI P0.6/MOSI0/CAP0.2/AD1.0
PO0.7/SSELO/PWM2/EINT2
P0.8/TxD1/PWM4/AD1.1
P0.9/RxD1/PWMB/EINT3
P0.10/RTS1/CAP1.0/AD1.2
P0.11/CTS1/CAP1.1/SCL1
P0.12/DSR1/MAT1.0/AD1.3
P0.13/DTR1/MAT1.1/AD1.4
P0.14/DCD1/EINT1/SDA1
PO.15/RIN/EINT2/AD1.5

PO.16/EINTO/MAT0.2/CAPO.2
PO.17/CAP1.2/SCK1/MAT1.2
P0.18/CAP1.3/MISO1/MAT1.3
P0.19/MAT1.2/MOSI1/CAP1.2
P0.20/MAT1.3/SSEL1/EINT3
P0.21/PWMS/AD1.6/CAP1.3
P0.22/AD1.7/CAP0.0/MAT0.0
P0.23

Post Lab:
1. Include all your work during the lab.

2. Implement a system that toggles two LEDs when controlling that with
clicking on 2 push buttons.

3. Implement a system that counts from 00 to 99 and increments every one click
on a push button.

4. Simulate your work on Proteus and attach it.

20

