
1

Electrical and Computer Engineering

Computer Design Lab – ENCS4110

Introduction to ARM Assembly Language and Keil
uVision5

Objectives

1. Introduce some of the ARM architecture to students.

2. Begin to use the lab tool - Keil uVision 5.

3. The students will create a project and write

 an ARM assembly language program based on a simulated target.

The ARM (Advanced RISC Machine) architecture is introduced in the class (also see http://www.arm.com.) Keil MDK-

ARM is a complete software development toolkit for ARM processor-based microcontrollers. Keil uVision5 will be used

in the lab. The ARM Cortex-M3 processor will be examined with the STM32VLDISCOVERY board. The following is

some important information for you.

Important Information

1. In the lab room Masri207, computers are running the operating

 system Windows 10 Pro, and ARM Software Microcontroller

 Development Kit Version 5.21a (Keil uVision5) is installed.

2. To install it in your home computer, you can download the following files:

 ~ftp/pub/class/301/ftp/uVision5/MDK521a.EXE
 ~ftp/pub/class/301/ftp/uVision5/Keil.STM32F1xx_DFP.2.1.0.pack

 Here is the Link to Keil Tools.

3. To know more about Keil, visit http://www.keil.com/

4. To see STM32VLDISCOVERY board, visit STM32VLDISCOVERY Board.

5. To see The Cortex-M3 Instruction Set, visit Cortex-M3 Devices Generic User Guide.

http://www.arm.com/
https://www.cs.uregina.ca/Links/class-info/301/ftp/uVision5/MDK521a.EXE
https://www.cs.uregina.ca/Links/class-info/301/ftp/uVision5/Keil.STM32F1xx_DFP.2.1.0.pack
https://www2.keil.com/mdk5/
http://www.keil.com/
http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/PF250863
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/CIHDFHCC.html

2

6. To see more references of Cortex-M3, visit the following:

 Cortex-M3 Technical Reference Manual - ARM Information Center
 Cortex-M3 programming manual

Create an ARM Assembly Language Program

To create an assembly language program, you need to use a text editor such as NotePad in Microsoft Windows

environment. There is a text edit in the Keil uVision5 for you to use too. The file name must have a .s at the end. Let's

look at the following program called FirstArm.s on a PC. The file FirstArm.s contains the source code of the program to

load registers and demonstrate a few other operations. We will use Keil uVision5 to create a project and execute this

program so that you can get a feel of how Keil uVision5 works.

;The semicolon is used to lead an inline documentation.

;This is the first ARM Assembly language program you see in the lab.

;This program skeleton was from Dave Duguid and Trevor Douglas in summer 2013.

;When you write your program, you could have your info at the top document block.

;For Example: Your Name, Student Number, what the program is for, and what it does

etc.

;;; Directives

 PRESERVE8

 THUMB

; Vector Table Mapped to Address 0 at Reset

; Linker requires __Vectors to be exported

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x20001000 ; stack pointer value when stack is empty

 ;The processor uses a full descending stack.

 ;This means the stack pointer holds the address of the last

 ;stacked item in memory. When the processor pushes a new item

 ;onto the stack, it decrements the stack pointer and then

 ;writes the item to the new memory location.

 DCD Reset_Handler ; reset vector

 ALIGN

; The program

; Linker requires Reset_Handler

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337i/DDI0337I_cortexm3_r2p1_trm.pdf
http://www.st.com/web/en/resource/technical/document/programming_manual/CD00228163.pdf

3

 AREA MYCODE, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

;;;;;;;;;;User Code Starts from the next line;;;;;;;;;;;;

 MOV R0, #12

STOP

 ADD R0, R0, #4

 B STOP

 END ;End of the program

References:

1. A complete list of DIRECTIVES from ARM Information Center
2. Cortex-M3 Devices Generic User Guide
3. Cortex-M3 Programming Manual

ARM Cortex-M3 Core Registers

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/Cacigaci.html
https://www.cs.uregina.ca/Links/class-info/301/ARM/CortexM3UserGuide.pdf
https://www.cs.uregina.ca/Links/class-info/301/ARM/CortexM3ProgrammingManual.pdf

4

Here is the Program Status Register Format:

ARM Cortex-M3 Memory Map

5

STM32F100xB Memory Map

 STM32F100xB Memory Map

 STM32F100RB Datasheet

Start up Keil uVision5

https://www.cs.uregina.ca/Links/class-info/301/ARM/STM32F100xBMemoryMap.pdf
https://www.cs.uregina.ca/Links/class-info/301/ARM/STM32F100RBDatasheet.pdf

6

Before you start up, you are recommended that you create a folder to hold all your project
files.
For example: you can have a folder "FirstARM-Project" ready before hand.

You can start up uVision5 by clicking on the icon from the desktop or from the
"Start" menu or "All Programs" on a lab PC.
The following screen is what you will see.

Create a project

Let's create our first ARM uVision5 project now. To create a project, click on the "Project" menu from
the uVision5 screen and select "New uVision Project...".

7

Then, select the folder that you prepared for, give project a name and save it.

From the "Select Device for Target" window, select "STMicroelectronics" and then
"STM32F1 Series".

8

click on "+" beside "STM32F100" and then select "STM32F100RB" and click on "OK".

Make sure you click on "OK" for the following pop up window.

9

Create Source File and Add Source File to the Project

Right click on "Source Group 1" and then select "Add New Item to Group 'Source Group
1'...".

You will see the following window and make the suggested selections to proceed.

10

You will see the "FirstARM.s*" text edit window. That is the place you will write your ARM Assembly
language program. For a test, you can copy and paste the example program into this window. You
can click on the "save" buttom to save your project.

11

You can right click on "Target 1" and then select "options for Target 'Target 1'..." the same
as the following screen.

Please click on "Debug" and then select "Use Simulator".

12

Build your project

Click on the "Build" button or from the "Project" menu, you will see the following screen.

Run the program in your project

When the assembler is happy with the program, we can run the program by selecting "Start/Stop
Debug Session" from the "Debug" menu or clicking on the debug button.

13

Click on "OK" for the pop up window showing "EVALUATION MODE, Running with Code Size Limit:
32K".

Open your uVision5 to full screen to have a better and complete view. The left hand side window

shows you the registers and the right side window shows the program code. There are some other

windows open. You may adjust the size of them to see better.

Run the program step by step, you can observe the change of the values in the registers.

14

Click on the "Start/Stop Debug Session" from the "Debug" menu or click on the debug button to stop

executing the program.

We will analyze the program and see how it works.

It works with both the simulated target and the real circuit board STM32VLDISCOVERY Board.

We will demonstrate it in the lab for you.

http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/PF250863

15

ARM Architecture

ARM processors are mainly used for low-power and low cost applications such as mobile phones,

communication modems, automotive engine management systems, and hand-held digital systems.

Here is a diagram of the ARM architecture for your reference.

 ARM Architecture is an Enhanced RISC Architecture.

 It has large uniform Register file and uses Load Store Architecture.

 i.e. operations operate on registers and not in memory locations.

 ARM Architecture instructions are of uniform and fixed length.

 It is a 32 bit processor.

 It also has 16 bit variant called THUMB.

 i.e. it can be used as 32 bit and as 16 bit processor.

ARM cores are licensed to partners/manufacturers so as to develop and fabricate new

microcontrollers around same processor cores. A microcontroller is a small computer on a single

integrated circuit containing a processor core, memory, and programmable input/output peripherals.

16

The ARM Cortex-M3 microcontroller will be used in the lab with the STM32VLDISCOVERY board.

For more information, visit STM32VLDISCOVERY Board.

ARM Registers

Here is the Register Organization in ARM State.

Here is the Register Organization in THUMB State.

http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/PF250863

17

Here is the Program Status Register Format:

 In ARM State, there are 16 general purpose registers;

 one or more status registers are accessible at any one time.

 In THUMB State, there are 8 general purpose registers;

 PC, SP, LR and CPSR are accessible.

 Conditonion code flags in CPSR:

 N - Negative or less than flag

 Z - Zero flag

 C - Carry or bowrrow or extended flag

 V - Overflow flag

18

ARM Instructions

Here are a few sample ARM Instructions for you to test out for this lab:

 MOV R2, #0x76

 ; Move the 8-bit Hex number 76 to the low portion of R2

 MOV R2, #0x7654

 ; Move the 16-bit Hex number 7654 to the low portion of R2

 MOVT R2, #0x7654

 ; Move the 16-bit Hex number 7654 to the high portion of R2

 MOV32 R2, #0x76543210 ; Move the 32-bit Hex number 76543210 to the R2

 LDR R2, = 0x76543210 ; Load R2 with the 32-bit Hex number 76543210

 ADD R1, R2, R3 ; R1 = R2 + R3

 ADDS R1, R2, R3 ; R1 = R2 + R3, and FLAGs are updated

 SUB R1, R2, R3 ; R1 = R2 - R3

 SUBS R1, R2, R3 ; R1 = R2 - R3, and FLAGs are updated

 B LABEL ; Branch to LABEL

The entire list of the Instructions can be found in the Cortex-M3 Devices Generic User
Guide.
OR see The Cortex-M3 Instruction Set in Cortex-M3 Devices Generic User Guide, in
Chapter 3: The Cortex-M3 Instruction Set.

Lab Assignment

Write your first ARM assembly language program MyFirstARM.s.
The program will execute the following instructions. You will run the program step by step,
observe and answer the question after each statement.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/CIHDFHCC.html
https://www.cs.uregina.ca/Links/class-info/301/ARM/lab.html

19

 MOV R2, #0x01 ; R2 = ?

 MOV R3, #0x02 ; R3 = ?

 ;Other examples to move immediate values

 MOV R5, #0x3210 ; R5 = ?

 MOVT R5, #0x7654 ; R5 = ?

 MOV32 R6, #0x87654321 ; R6 = ?

 LDR R7, = 0x87654321 ; R7 = ?

 ADD R1,R2,R3 ; R1 = ?

 MOV32 R3, #0xFFFFFFFF ; R3 = ?

 ADDS R1,R2,R3 ; R1 = ?

 ; specify Condition Code updates

 SUBS R1,R2,R3 ; R1 = ?

 ; specify Condition Code updates

 MOV R4, #0xFFFFFFFF ; R4 = ?

 ADD R1,R2,R4 ; R1 = ?

 ; How did that operation affect the flags in CPSR?

 ADDS R1,R2,R4 ; R1 = ?

 ; Please specify Condition Code updates

 ; and now what happened to the flags in the CPSR?

 MOV R2, #0x00000002 ; R2 = ?

 ADDS R1,R2,R4 ; R1 = ?

 ; again, what happened to the flags?

 MOV R2, #0x00000001 ; R2 = ?

 MOV R3, #0x00000002 ; R3 = ?

 ADDS R1,R2,R3 ; R1 = ?

 ; Add some small numbers again

 ; and check the flags again......

 ; Add numbers that will create an overflow

 MOV R2, #0x7FFFFFFF ; R2 = ?

 MOV R3, #0x7FFFFFFF ; R3 = ?

 ADDS R1,R2,R3 ; R1 = ?

 ; Check the flags in the CPSR?

You will hand in the following:

1. The screenshot of the program successfully built in Keil uVision.
2. The source code in the file MyFirstARM.s with the answers.

