BIRZEIT UNIVERSITY

Electrical and Computer Engineering

Computer Design Lab — ENCS4110
ARM Data-processing Instructions

Objectives

1. To investigate Arithmetic Operations and more other instructions.

2. To implement them in Keil uVisionb5.

ARM Registers and the Conventions of Use

As mentioned in the previous lab, ARM has 16 programmer-visiable registers and a Current Program Status
Register, CPSR.
Here is a picture to show the ARM register set.

User registers

)

r0
r
r3
rd
S
— < rOtor12 are
5] general-purpose
7 registers
() The CPSRA (current processor status register)
9 31 30 29 28 27 8: 7 6 6 4 0
[NlZlCIVl unused | IF |T[mode]

10
M chcmor codes Operating mode
r12
ri. Stack pointer : ;
1 . p_ —__ Theuse of r13 as a stack pointer is a programming
ri4 Link reqister ~ convention, whereas the use of r14 and r15 as the link

T register and program counter is enforced by the hardware

o Program counter .

RO to R12 are the general-purpose registers.

R13 is reserved for the programmer to use it as the stack pointer.
R14 is the link register which stores a subroutine return address.
R15 contains the program counter and is accessible by the programmer.

CPSR: current program status register (32 bit)
Stores the status of the previous ALU operation.
flags

= 1, if result was negative

=1, if result was zero

1, 1f result had a carry-out

1, if result was an overflow

These can be used to make decisions later on.

< aONZ

Each ARM instruction is encoded into a 32-bit word. Access to memory is provided only by Load and Store
instructions.

ARM data-processing instructions operate on data and produce new value.

They are not like the branch instructions that control the operation of the processor and sequencing of
instructions.

ARM instructions have the following general format:

Label Op-code operandl, operand2, operand3 ; comment

Arithmetic Instructions

Arithmetic instructions are very basic and frequently used in your ARM programming.
Here is a table that demonstrates the usage of the ARM processor's arithmetic instructions
with examples.

Instruction Mnemonic Meaning
Addition ADD RO, R1, R2 ; RO = R1L + R2
Addition ADDS RO, R1, R2 ; RO = Rl + R2,

; and FLAGs are updated

SUBS R7, R6, #20 ; R7 = R6 - 20
; Sets the flags on the result

Reverse Subtraction RSB R4, R4, #120 ; R4 = 120 - R4
Cmultiply WL RO, R1, R2 ;RO =RL *R2
_____________________ UMULL RO, R4, RS, R6 ; Unsigned (R4,R0) = R5 * R6
""""""""""" SMLAL R4, RS, R3, R8 ; Signed (R5,R4) = (R5,Rd) + R3 * RS

Division SDIV RO, R2, R4 ; Signed divide, RO = R2/R4

UDIV R8, RS, R1 ; Unsigned divide, RS8 R8/R1.

Examples of Move Instructions

Mnemonic Meaning

MOV R1, #0xFA05 ; Write value of OxFAO5 to R1l, flags are not updated

MOVS R11, #0x000B ; Write value of O0x000B to R11, flags get updated

MOVS R10, R12 ; Write value in R12 to R10, flags get updated
______ MOV R3, #23 ; Write value of 23 to R3
______ MOV RS, SB ; Write value of stack pointer to R&
""" MUNS R2, $0xF ; Write value of OxFFFFFFF0 (bitwise inverse of OxF)

; to the R2 and update flags.

AND R9, R2, R1 ; R9 = R2 AND R1
AND R9, R2, #0xFFO0O ; R9 = R2 AND #0xFFOO
ORR R9, R2, R1 ; R9 = R2 OR R1

ORREQ R2, RO, R5

ANDS R9, R8, #0x19

EOR R7, R11, RI1O0 ; R7 = R11 XOR RI10

EORS R7, R11, #0x18181818

BIC RO, R1, #0xab ; RO = R1 AND (NOT (#0xab))

ORN R7, R11, R14, ROR #4 ; R7 = R11 OR (NOT (R14 ROR #4))

ORNS R7, R11, R14, ROR #2 ; update the flags

Conditional Execution of Instructions

Each ARM instruction is encoded into a 32-bit word.
The basic encoding format for the instructions such as
Load, Store, Move, Arithmetic, and Logic instructions, is as follows:

31 28 27 2019 1615 1211 4

(&%)
o

Condition OP code Rn Rd Other info 1 Rm

An instruction specifies a conditional execution code (Condition), the OP code, two or three registers (Rn, Rd,
and Rm), and some other information.
Here is a more detailed description.

31-28 272625 24-21 20 19-16 15-12 11-0
cond © @I opcode S Rn Rd Operand 2

» Rn = source register operand 1 4 bits =
» Rd = destination register 1 of 16 registers
» 31-28: condition code
@ ALL arm instructions can be conditionally executed
@ eg: ADDEQ

e add, but only if the previous operation produced a
result of zero

» checks CPSR stored from previous operation

All the ARM instructions are conditionally executed depending on a condition specified in the
instruction(bits 31-28).

CONDITION Flags Note
0000 EQ Z==1 Equal
0001 NE Z==0 Not Equal
00106 HS/CS C==1 =) J =1
0011 LO/CC (C==0 <) 4 =1
0100 MI N==1 minus(neg)
0101 PL N==0 plus(pos)
0110 VS V==1 V set(ovfl)
0111 VC V==0 YV ELP
1000 HI C==18&&Z==0 > ()
1001 LS C==0]|z==1 <= (U
1010 GE N==V =
1011 LT N!=V <
1160 GT Z==0&&N==V >
1101 |LE Z==1||N1=V &=
1110 AL always
1111 NE never

(U)= unsigned

« The instruction is executed only if the current state of the processor condition code
flag satisfies the condition specified in bits b31-b28 of the instruction.

For example:
CMP RO, #25 ; flags are updated according to (RO - #25)
ADDGT R1, R2, #12

« The instructions whose condition does not meet the processor condition code flag
are not executed.
« One of the conditions is used to indicate that the instruction is always executed.

Examples of Shift Instructions

RRX R4, R5 ; Rotate right with extend (one bit only).

Here are two links for your references.
1. from ARM Information Center.

2. Section 3.5 and 3.6.

An Example of Using Arithmetic Instructions

;The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document block
;For Example: Your Name, Student Number, what the program is for, and what it does
etc.

; This program will catculate the value of the following function:

; f(x) = 5x"2 - 6x + 8 when x = 7.

;
;;: Directives

PRESERVES
THUMB

; Vector Table Mapped to Address 0 at Reset

; Linker requires _ Vectors to be exported
AREA RESET, DATA, READONLY
EXPORT Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty
DCD Reset Handler ; reset vector
ALIGN

; The program
; Linker requires Reset Handler

AREA MYCODE, CODE, READONLY
ENTRY

EXPORT Reset Handler

Reset Handler

MOV RO, #7 ;o0 x =7

X" 2

MUL R1, RO, RO ; R1
MOV R4, #5
MUL R1, R1, R4

MOV R5, 46
MUL R2, RO, R5 ; R2 = 6x

SUB R3, R1, R2 ; R3 5x"2 - 6x
ADD R3, R3, #8 ; R3 = 5x"2 - 6x + 8

http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/DUI0068.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf

ALIGN
STOP
B STOP

END ; End of the program

Load and Store Instructions

To access memory, we can only use Load and Store instructions.

LDR dest, expression

STR STR{cond} srce, [base],offset

LDR R6, [R4] ; load R6 with the value in the memory whose address is in R4

STR RO, [R1] ; store RO in the byte address R1

STR RO, [R1,#20] ; store RO in the byte address R1+20

STR RO, [R1,R2,LSL#2] ; store RO in the address given by R1+R2*4
Examples:

LDR RO, NUM ; load RO with the value of NUM in memory
LDR R6, = NUM ; Load the address of NUM to R6

MOV RO, #0x001C ; Load the wvalue to the RO

STR RO, [R6] ; Store the value in RO to NUM

Another Example

;The semicolon is used to lead an inline documentation

;For Example: Your Name, Student Number, what the program is for,
etc.

; See i1if you can figure out what this program does

;;; Directives

PRESERVES
THUMB

; Vector Table Mapped to Address 0 at Reset

;Your Data section
; AREA DATA

SUMP DCD SUM

;When you write your program, you could have your info at the top document block

and what it does

; Linker requires _ Vectors to be exported
AREA RESET, DATA, READONLY
EXPORT Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty
DCD Reset Handler ; reset vector
ALIGN

NUM1 DCD 5

NUM2 DCD 7

; The DCD directive allocates one or more words of memory,
; aligned on four-byte boundaries,

; and defines the initial runtime contents of the memory.

; For example, datal DCD 1,5,20
; Defines 3 words containing decimal values 1, 5, and 20

AREA MYRAM, DATA, READWRITE
SUM DCD O

; The program
; Linker requires Reset Handler

AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset Handler

Reset Handler

LDR R1, NUM1
LDR R2, NUM2
MOV RO, #0

ADD RO, R1, R2
SUBS RO, RO, #1

LSLS R3, RO, #2 ; Logical shift left by 2 bits with flag update

LDR R4, SUMP
STR R3, [R4]

LDR R6, [R4]
ALIGN

STOP
B STOP

END

Lab Assignment

You can convert temperatures from Celsius to Fahrenheit or from Fahrenheit to Celsius. Here are the
two formulas for your reference.
C=5%*(F-32) /9

F=(9*C/ 5 +32
Write an ARM assembly language program convertF2CandC2F.s.
You will do the following:

You can put the Fahrenheit temperature, say 70, in the register RO;

and have the converted temperature in Celsius in the register R1.

You can put a Celsius temperature, say 22 in register R2;

and have the converted temperature in Fahrenheit in the register R3.

Build the program if there are any bugs, fix them.

Run the program step by step and see how values are changing in the registers.
Make a screenshot to capture the results in your designated registers.

NoakwNpE

You will hand in the following:

1. The source code in the file convertF2CandC2F.s
2. The screenshot to show the program has been successfully built
3. The screenshot showing the converted temperatures in the registers

https://www.cs.uregina.ca/Links/class-info/301/ARM-arithmetic/lab.html

