
1

Electrical and Computer Engineering

Computer Design Lab – ENCS4110

ARM's Flow Control Instructions

Objectives

1. To explore ARM branch instructions and implement them in Keil uVision5

2. To investigate how to use strings in Keil uVision5.

ARM's Flow Control Instructions modify the default sequential execution. They control the operation
of the processor and sequencing of instructions.

Review of ARM Register Set

As mentioned in the previous lab, ARM has 16 programmer-visible registers and a Current Program
Status Register, CPSR.
Here is a picture to show the ARM register set.

2

 R0 to R12 are the general-purpose registers.

 R13 is reserved for the programmer to use it as the stack pointer.

 R14 is the link register which stores a subroutine return address.

 R15 contains the program counter and is accessible by the programmer.

 Conditonion code flags in CPSR:

 N - Negative or less than flag

 Z - Zero flag

 C - Carry or bowrrow or extendedflag

 V - Overflow flag

 The least-significant 8-bit of the CPSR are the control bits of the system.

 The other bits are reserved.

Setting Condition Code Flags

Some instructions, such as Compare, given by CMP R1, R2 which performs the operation R1-R2
have the sole purpose of setting the condition code flags based on the result of the subtraction
operation.

The arithmetic and logic instructions affect the condition code flags only if explicitly specified to do so
by a bit in the OP-code field. This is indicated by appending the suffix S to the OP-code.
For example, the instruction ADDS R0, R1, R2 sets the condition code flags. But ADD R0, R1,
R2 does not.

The Encoding Format for Branch Instructions

Conditional branch instructions contain a signed 24-bit offset that is added to the updated contents of
the Program Counter to generate the branch target address. Here is the encoding format for the
branch instructions:

Offset is a signed 24-bit number. It is shifted left two-bit positions (all branch targets are aligned word

addresses), signed extended to 32 bits, and added to the updated PC to generate the branch target

address. The updated PC points to the instruction that is two words (8 bytes) forward from the branch

instruction.

ARM instructions are conditionally executed depending on a condition specified in the instruction. The

instruction is executed only if the current state of the processor condition code flag satisfies the

condition specified in bits b31-b28 of the instruction. Thus the instructions whose condition does not

meet the processor condition code flag are not executed. One of the conditions is used to indicate

3

that the instruction is always executed.

Here is a more detailed description.

All the ARM instructions are conditionally executed depending on a condition specified in the
instruction(bits 31-28).

 The instruction is executed only if the current state of the processor condition code
flag satisfies the condition specified in bits b31-b28 of the instruction.

For example:

4

CMP R0, #'A' ; flags are updated according to (R0 - #'A')

BEQ VowelCount

 The instructions whose condition does not meet the processor condition code flag
are not executed.

 One of the conditions is used to indicate that the instruction is always executed.

Branch and Control Instructions

Branch instructions are very useful for selection control and looping control.

Here is a list of the ARM processor's Branch and Control instructions.

--

 B loopA ; Branch to label loopA unconditioally

--

 BEQ target ; Conditionally branch to target, when Z = 1

--

 BNE AAA ; branch to AAA when Z = 0

--

 BMI BBB ; branch to BBB when N = 1

--

 BPL CCC ; branch to CCC when N = 0

--

 BLT labelAA ; Conditionally branch to label labelAA,

 ; N set and V clear or N clear and V set

 ; i.e. N != V

--

 BLE labelA ; Conditionally branch to label labelA,

 ; when less than or equal, Z set or N set and V clear

 ; or N clear and V set

 ; i.e. Z = 1 or N != V

--

 BGT labelAA ; Conditionally branch to label labelAA,

 ; Z clear and either N set and V set

 ; or N clear and V clear

 ; i.e. Z = 0 and N = V

--

 BGE labelA ; Conditionally branch to label labelA,

 ; when Greater than or equal to zero,

 ; Z set or N set and V clear

 ; or N clear and V set

 ; i.e. Z = 1 or N !=V

--

 BL funC ; Branch with link (Call) to function funC,

 ; return address stored in LR, the register R14

--

 BX LR ; Return from function call

--

 BXNE R0 ; Conditionally branch to address stored in R0

--

 BLX R0 ; Branch with link and exchange (Call)

 ; to a address stored in R0.

--

5

Examples of Compare Instructions

 Mnemonic Meaning

--

 CBZ R5, target ; Forward branch if R5 is zero

--

 CBNZ R0, target ; Forward branch if R0 is not zero

--

 CMP R2, R9 ; R2 - R9, update the N, Z, C and V flags

--

 CMN R0, #6400 ; R0 + #6400, update the N, Z, C and V flags

--

 CMPGT SP, R7, LSL #2 ; update the N, Z, C and V flags

--

Here are two links for your references.

1. ARM branch instructions from ARM Information Center.

2. Cortex-M3 Devices Generic User Guide Section 3.9.

An Example of Using Branch Instructions

;The semicolon is used to lead an inline documentation

;

;When you write your program, you could have your info at the top document block

;For Example: Your Name, Student Number, what the program is for, and what it does

etc.

;

; This program will count the length of a string.

;

;;; Directives

 PRESERVE8

 THUMB

; Vector Table Mapped to Address 0 at Reset

; Linker requires __Vectors to be exported

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x20001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

;;;

; Byte array/character string

; DCB type declares that memory will be reserved for consecutive bytes

; You can list comma separated byte values, or use "quoted" characters.

; The ,0 at the end null terminates the character string. You could also use "\0".

; The zero value of the null allows you to tell when the string ends.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/DUI0068.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf

6

;

; The DCB directive allocates one or more bytes of memory, and defines the initial

; runtime contents of the memory.

;

; Example

; Unlike C strings, ARM assembler strings are not null-terminated.

; You can construct a null-terminated C string using DCB as follows:

; C_string DCB "C_string",0

;

;**

string1

 DCB "Hello world!",0

; The program

; Linker requires Reset_Handler

 AREA MYCODE, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

;;;;;;;;;;User Code Start from the next line;;;;;;;;;;;;

 LDR R0, = string1 ; Load the address of string1 into the register R0

 MOV R1, #0 ; Initialize the counter counting the length of string1

loopCount

 LDRB R2, [R0] ; Load the character from the address R0 contains

 CMP R2, #0

 BEQ countDone

 ; If it is zero...remember null terminated...

 ; You are done with the string. The length is in R1.

 ADD R0, #1 ; Otherwise, increment index to the next character

 ADD R1, #1 ; increment the counter for length

 B loopCount

countDone

STOP

 B STOP

 END ; End of the program

7

Another Example

;The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document block

;For Example: Your Name, Student Number, what the program is for, and what it does

etc.

;

; See if you can figure out what this program does

;

;;; Directives

 PRESERVE8

 THUMB

; Vector Table Mapped to Address 0 at Reset

; Linker requires __Vectors to be exported

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x20001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

;Your Data section

;AREA DATA

 ; AREA MYRAM, DATA, READWRITE

SUMP DCD SUM

N DCD 5

 AREA MYRAM, DATA, READWRITE

SUM DCD 0

; The program

; Linker requires Reset_Handler

 AREA MYCODE, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

;;;;;;;;;;User Code Start from the next line;;;;;;;;;;;;

 LDR R1, N ;Load count into R1

 MOV R0, #0 ;Clear accumulator R0

LOOP

 ADD R0, R0, R1 ;Add number into R0

8

 SUBS R1, R1, #1 ;Decrement loop counter R1

 BGT LOOP ;Branch back if not done

 LDR R3, SUMP ;Load address of SUM to R3

 STR R0, [R3] ;Store SUM

 LDR R4, [R3]

STOP

 B STOP

 END

Lab Assignment

Write an ARM assembly language program CountVowelsOne.s to count how many
vowels and how many non-vowels are in the following string.

 "ARM assembly language is important to learn!",0

Recommendations for writing the program:

 Put the string in the memory by using DCB.
 Use R0 to hold the address of a character in the string.
 Use R1 to be the counter for vowels.
 Use R2 to be the counter for non-vowels.
 Build the program, debug if needed.
 Run the program step by step and see how values are changing in the registers.

OR just run the program and see the final result in the register R1 and R2.
 Make a screenshot to capture the results in your designated registers.

You will hand in the following:

1. The source code in the file CountVowelsOne.s
2. The screenshot (print screen) to show the program has been successfully built
3. The screenshot showing the number of vowels in R1 and non-vowels in R2

https://www.cs.uregina.ca/Links/class-info/301/ARM-control/lab.html

