bv ,x\ /zw‘ \c>
BIRZEIT UNIVERSITY

Electrical and Computer Engineering

Computer Design Lab — ENCS4110
ARM Addressing Modes

Objectives

Explore ARM addressing modes
- Register Addressing Mode
- Register Indirect Addressing Mode
- ARM's Autoindexing Pre-indexed Addressing Mode
- ARM's Autoindexing Post-indexing Addressing Mode

- Program Counter Relative (PC Relative) Addressing Mode
- and so on

Review of ARM Registers Set

As mentioned in the previous lab, ARM has 16 programmer-visiable registers and a Current Program
Status Register, CPSR.Here is a picture to show the ARM register set.

User registers

0

r =

re

3

rd

e rOtori2 are

15} general-purpose

= registers

B The CPSA (current processor status register)

9 31 30 29 28 27 8 7 6 5 4 0

= IN[z]c[V] unused | IF [T] mode

1 bcncmorcodeg Operating mode

r12

i *—Sggkf(ﬂqici_ ___Theuse of r13 as a stack pointer is a programming

rt4 Link register ~ convention, whereas the use of r14 and r15 as ‘he link
'fﬂﬁFﬁgk”;ngmmcmmmr register and program counter is enforced by the hardware

RO to R12 are the general-purpose registers.

R13 is reserved for the programmer to use it as the stack pointer.
R14 is the link register which stores a subroutine return address.
R15 contains the program counter and is accessible by the programmer.

Conditonion code flags in CPSR:

N - Negative or less than flag

Z - Zero flag

C - Carry or bowrrow or extendedflag

V - Overflow flag

The least-significant 8-bit of the CPSR are the control bits of the system.
The other bits are reserved.

Summary of ARM addressing Modes

There are different ways to specify the address of the operands for any given operations such as
load, add or branch. The different ways of determining the address of the operands are called
addressing modes. In this lab, we are going to explore different addressing modes of ARM processor
and learn how all instructions can fit into a single word (32 bits).

Name Alternative Name ARM Examples

Register to register Register direct MOV RO, RI
Absolute pirect LDR RO, MEM
Literal Immediate Mov RO, #15

Pre-indexed, Register indirect LDR RO, [R1, #4]
base with displacement with offset

Pre-indexed, Register indirect LDR RO, [R1, #4]!
autoindexing pre-incrementing

Post-indexing, Register indirect LDR RO, [R1], #4
autoindexed post-increment

Double Reg indirect Register indirect LDR RO, [R1l, R2]

Register indexed

Double Reg indirect Register indirect LDR RO, [R1, R2, LSL #2]
with scaling indexed with scaling
Program counter relative LDR RO, [PC, #offset]

Literal Addressing Mode

31 28 27 26 25 24 21 2019 16 15 12 11 0
I condltlm C C' op‘COde S r.‘;:‘xuvco' r‘dm*.!‘r-;';t»:‘v‘u Operand 2

3¢ Learning 2014

11 87 0

Alignment | 8-bit immediate value

Y

Examples Meaning

CMN RO, #6400 ; RO + #6400, update the N, Z, C and V flags

CMPGT SP, R7, LSL #2 ; update the N, Z, C and V flags

Register Indirect Addressing Mode

Register indirect addressing means that the location of an operand is held in a register. It is also
called indexed addressing or base addressing.

Register indirect addressing mode requires three read operations to access an operand. It is very
important because the content of the register containing the pointer to the operand can be modified at
runtime. Therefore, the address is a variable that allows the access to the data structure like arrays.

« Read the instruction to find the pointer register
o Read the pointer register to find the oprand address
« Read memory at the operand address to find the operand

Some examples of using register indirect addressing mode:

LDR R2, [RO] ; Load R2 with the word pointed by RO

STR R2, [R3] ; Store the word in R2 in the location pointed by R3

Register Indirect Addressing with an Offset

ARM supports a memory-addressing mode where the effective address of an operand is computed
by adding the content of a register and a literal offset coded into load/store instruction. For example,

Instruction Effective Address

ARM's Autoindexing Pre-indexed Addressing Mode

This is used to facilitate the reading of sequential data in structures such as arrays, tables, and
vectors. A pointer register is used to hold the base address. An offset can be added to achieve the
effective address. For example,

Instruction Effective Address

LDR RO, [R1, #4]! R1 + 4 ; loads RO with the word pointed at by R1+4
; then update the pointer by adding 4 to R1

ARM's Autoindexing Post-indexing Addressing Mode

This is similar to the above, but it first accesses the operand at the location pointed by the base
register, then increments the base register. For example,

Instruction Effective Address

LDR RO, [R1], #4 R1 ; loads RO with the word pointed at by R1
; then update the pointer by adding 4 to R1

Program Counter Relative (PC Relative) Addressing Mode

Register R15 is the program counter. If you use R15 as a pointer register to access operand, the
resulting addressing mode is called PC relative addressing. The operand is specified with respect to
the current code location. Please look at this example,

Instruction Effective Address

LDR RO, [R15, #24] R15 + 24 ; loads RO with the word pointed at by R15+24

ARM's Load and Store Encoding Format

The following picture illustrates the encoding format of the ARM's load and store instructions, which is
included in the lab material for your reference. Memory access operations have a conditional
execution field in bit 31, 03, 29, and 28. The load and store instructions can be conditionally executed
depending on a condition specified in the instruction. Now look at the following examples:

Encoding Format of ARM's load and store instructions

3 282726 25 24 23 22 21 20 19 1615 1211 0
1
| Condition |01 || P|u[B|W][L]nr.] Fiasali) Operand 2
r ’
D:' —» Source/destination register
— Base register
Offset select t—— Data direction (Load/store)
0= 12-bit literal 0 = store in memory
1 = load into register
1 = shifted register ¥
» Pointer update (Write-back)

0 = don’t write back adjusted pointer
1 = write back adjusted pointer
» Operand size (Byte/Word)
0 = word access
1 = byle access

* Pointer direction (Up/down)
0 = decrement pointer
1 = increment pointer

——— -* Pointer adjust (Pre/post-increment)
0 = post-index operation: use pointer then adjust
1 = pre-Index operation: adjust pointer then use pointer

‘ 11 0

|] Immediate offset [TR &]
o 0 | l 12-bit immediate value
11 76 543 0
Reqister-based ofiset
» 1 | oo seas adlisscn -{ Shift length ITypeIOlRegisterl

Summary of ARM's Indexed Addessing Modes

Addressing Mode Assembly Mnemonic Effective address FinalValue in
R1
Pre-indexed, base LDR RO, [R1l, #d] Rl + d R1
unchanged
Pre-indexed, base LDR RO, [R1l, #d]! Rl + d Rl + d
updated
Post-indexed, base ILDR RO, [R1l], #d R1 Rl + d
updated

An Example Program of Using Post-indexing Mode

;The semicolon is used to lead an inline documentation
;When you write your program, you could have your info at the top document block

;For Example: Your Name, Student Number, what the program is for, and what it does
etc.

; This program will find the sum of an array.
;;; Directives
PRESERVES

THUMB

; Vector Table Mapped to Address 0 at Reset
; Linker requires __ Vectors to be exported

AREA RESET, DATA, READONLY

EXPORT _ Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty
DCD Reset Handler ; reset vector
ALIGN

;Your Data section

;AREA DATA
SUMP DCD SUM
N DCD 5

NUM1 DCD 3, -7, 2, -2, 10
POINTER DCD NUM1

AREA MYRAM, DATA, READWRITE
SUM DCD 0

; The program
; Linker requires Reset Handler

AREA MYCODE, CODE, READONLY

ENTRY
EXPORT Reset Handler

Reset Handler

IDR R1, N ; load size of array -
; a counter for how many elements are left to process

LDR R2, POINTER ; load base pointer of array
MOV RO, #0 ; initialize accumulator
LOOP
LDR R3, [R2], #4 ; load value from array,
; increment array pointer to next word
ADD RO, RO, R3 ; add value from array to accumulator
SUBS R1, R1, #1 ; decrement work counter
BGT LOOP ; keep looping until counter is zero
LDR R4, SUMP ; get memory address to store sum
STR RO, [R4] ; store answer
LDR R6, [R4] ; Check the value in the SUM
STOP
B STOP
END

Another Example

;The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document block
;For Example: Your Name, Student Number, what the program is for, and what it does
etc.

; This program will count the length of a string.

;;; Directives

PRESERVES
THUMB

; Vector Table Mapped to Address 0 at Reset
; Linker requires __ Vectors to be exported

AREA RESET, DATA, READONLY

EXPORT _ Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty
DCD Reset Handler ; reset vector

7

rrrrrrrrrrrrrrrrrr L rrrrrrrTrrIrIrIrIIIrIIrIIIIIIIIIIIIIIIIIIrIrIrTIrTIrIIIrTIIrIIrTIIrTIrIIrTIrTIrTIrTIrTIrTIrTrrrrrrrrry
; Character array - string

; This type of format will construct a C string and null terminate.

; This means you can tell when the string ends

A NN N e

stringl
DCB "Hello world!",0

; The program
; Linker requires Reset Handler

AREA MYCODE, CODE, READONLY
ENTRY

EXPORT Reset Handler

Reset Handler

LDR RO, = stringl ; Load the address of stringl into the register RO

MOV R1, #0 ; Initialize the counter counting the length of stringl
loopCount

LDRB R2, [RO], #1 ; Load the character from the address RO contains

; and update the pointer RO
; using Post-indexed addressing mode

CBZ R2, countDone ; If it is zero...remember null terminated...
; You are done with the string. The length is in R1.

;ADD RO, #1; ; Otherwise, increment index to the next character
ADD R1, #1; ; increment the counter for length
B loopCount
countDone
B countDone
END ; End of the program

Program#1.:

Write an ARM assembly language program AddGT.s to add up all the numbers that are
great than 5 in the number array NUML1. Look at the following given code for more details
and complete it.

;The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document lock
;For Example: Your Name, Student Number, what the program is for, and what it does
etc.

;;; Directives
PRESERVES8
THUMB

; Vector Table Mapped to Address 0 at Reset
; Linker requires _ Vectors to be exported

AREA RESET, DATA, READONLY
EXPORT Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty

DCD Reset Handler ; reset vector
ALIGN

;Your Data section
;AREA DATA
SUM DCD 0
SUMP DCD SUM
N DCD 7
NUM1 DCD 3, -7, 2, -2, 10, 20, 30
POINTER DCD NUM1

; The program
; Linker requires Reset Handler
AREA MYCODE, CODE, READONLY
ENTRY

EXPORT Reset Handler

Reset Handler

; Please complete the program to add up all the
; numbers in the array NUM1l that are greater than 5.
; Put the sum in the register RO.

rrrrrrrrr L r T L r L LI LI LI LI L LI LI LI L L L rrrrrrs

Hint: Check the example in the lab notes.
9

https://www.cs.uregina.ca/Links/class-info/301/ARM-addressing/lab.html

You will hand in the following:

1. The source code in the file AddGT.s
2. The screenshot (print screen) to show the program has been successfully built

3. The screenshot showing the sum in RO.

Program#2.

Write an ARM assembly language program Min-Max.s to find the maximum value and the
minimum value in the number array NUM1. Look at the following given code for more
details and complete it.

;The semicolon is uded to lead an inline documentation
;When you write your program, you could have your info at the top document lock

;For Example: Your Name, Student Number, what the program is for, and what it does
etc.
;;: Directives

PRESERVES8

THUMB

Vector Table Mapped to Address 0 at Reset

’

; Linker requires _ Vectors to be exported
AREA RESET, DATA, READONLY
EXPORT Vectors
__Vectors
DCD 0x20001000 ; stack pointer value when stack is empty
DCD Reset Handler ; reset vector
ALIGN

;Your Data section
;AREA DATA

Max DCD 0

MaxP DCD Max

Min DCD O

MinP DCD Min

N DCD 12

NuoM® oCD 3, -7, 2, -2, 10, 20, 30, 15, 32, 8, 64, 66
POINTER DCD NUM1

; The program
; Linker requires Reset Handler
AREA MYCODE, CODE, READONLY

ENTRY
EXPORT Reset Handler

10

Reset Handler

; Add code below to find the maximum value and
; the minimum value in the number array NUMI.
; You can use the example in the notes as a reference.

rrrrrrrr LT L r LI I r L LI L LI L L L LI LI L rrrr s

You will hand in the following:

1. The source code in the file Min-Max.s

2. The screenshot (print screen) to show the program has been successfully built
3. The screenshot showing the Min in R5 and the Max in R6.

11

