
1

Faculty of Engineering & Technology Electrical & Computer

Engineering Department

Computer Design Laboratory ENCS 4110

Experiment #7

ARM's Flow Control Instructions

Prepared by:

Hasan Hamed 1190496

Instructor: Dr. Abualseoud Hanani

Assistant: Eng. Moutasem Diab

Section: 1

Date: 14/8/2021

2

1. Abstract

The aim of the experiment is to understand how to deal with strings in ARM assembly language, and to

understand the importance of conditions flags, and to learn ARM branch and compare instructions and

how to use them for loops and conditional statements, and finally to create useful ARM assembly

programs using all of those concepts.

3

Table of Contents

1. Abstract ... 2

2. Theory ... 4

2.1. Setting Condition Code Flags ... 5

2.2. The Encoding Format for Branch Instructions ... 5

2.3. Branch and Control Instructions ... 6

3. Procedure ... 8

3.1. String Length Counter Program .. 8

3.2. Sum of Integers between 5 And 0 Program. ... 10

4. Conclusion ... 13

5. References ... 14

4

2. Theory

ARM's Flow Control Instructions modify the default sequential execution. They control the operation of

the processor and sequencing of instructions. ARM has 16 programmer-visible registers and a Current

Program Status Register, CPSR as shown below.

Figure 2.1: ARM Register Set

R0 to R12 are the general-purpose registers. R13 is reserved for the programmer to use it as the stack

pointer. R14 is the link register which stores a subroutine return address. R15 contains the program counter

and is accessible by the programmer.

Condition code flags in CPSR:

N - Negative or less than flag

Z - Zero flag

C - Carry or borrow or extended flag

V - Overflow flag

The least-significant 8-bit of the CPSR are the control bits of the system. The other bits are reserved.

5

2.1. Setting Condition Code Flags

Some instructions, such as Compare, given by CMP R1, R2 which performs the operation R1-R2 have the

purpose of setting the condition code flags based on the result of the subtraction operation. The arithmetic

and logic instructions affect the condition code flags only if explicitly specified to do so by a bit in the OP-

code field. This is indicated by appending the suffix S to the OP-code. For example, the instruction

ADDS R0, R1, R2 sets the condition code flags. But ADD R0, R1, R2 does not.

2.2. The Encoding Format for Branch Instructions

Conditional branch instructions contain a signed 24-bit offset that is added to the updated contents of the

Program Counter to generate the branch target address. Here is the encoding format for the branch

instructions.

Figure 2.2: Encoding Format for Branch Instruction

Offset is a signed 24-bit number. It is shifted left two-bit positions (all branch targets are aligned word

addresses), signed extended to 32 bits, and added to the updated PC to generate the branch target address.

The updated PC points to the instruction that is two words (8 bytes) forward from the branch instruction.

ARM instructions are conditionally executed depending on a condition specified in the instruction. The

instruction is executed only if the current state of the processor condition code flag satisfies the condition

specified in bits 28-31 of the instruction. Thus, the instructions whose condition does not meet the

processor condition code flag are not executed. One of the conditions is used to indicate that the

instruction is always executed. Here is a more detailed description.

Figure 2.3: ARM Instruction

6

All the ARM instructions are conditionally executed depending on a condition specified in the instruction

bits 31-28.

Figure 2.4: ARM Conditions and Flags Affected

The instruction is executed only if the current state of the processor condition code flag satisfies the

condition specified in bits 31-28 of the instruction. The instructions whose condition does not meet the

processor condition code flag are not executed. One of the conditions is used to indicate that the

instruction is always executed.

2.3. Branch and Control Instructions

Branch instructions are very useful for selection control and looping control. Here is a list of the ARM

processor's Branch and Control instructions.[1]

7

Figure 2.5: Examples of Branch Instruction

The Compare instruction can also be used as Branch by putting the condition after CMP instruction as

shown below.

Figure 2.6: Examples of Compare Instruction

8

3. Procedure

3.1. String Length Counter Program

1) The following code was put in Keil Uvision.

9

Figure 3.1: Assembly Code to Count the Length of a String

2) The target was built using build target button and the debugger was started as shown below.

Figure 3.2: Debugging the Code

10

The program will count the length of the string and will save the number of characters in R1, and because

the string in assembly is not null terminated the zero was used to stop counting if the string address pointer

(R0) reaches the address of the number zero, after that the value of the register containing the character

(R2) will become zero and the program will branch to finish.

3.2. Sum of Integers between 5 And 0 Program.

1) The following code was put to Keil Uvision program.

11

Figure 3.3: Program Code

2) The target was built using the Build button and the debugger was started as show below.

Figure 3.4: Program Debugging

12

The program will count the integers between n and 0 and in this case the number is 5 so the program will

add (5+4+3+2+1) and will save it in R0, after that the sum will be stored in the memory at the address that

sum pointer pointing at, and finally it will load R4 with the sum that is stored previously in the memory.

13

4. Conclusion

In conclusion, we understood how to deal with strings in ARM assembly, and we understood that the

strings in assembly are not null terminated as in C or JAVA or other high level languages, and we

understood the importance of Branch and Compare instructions and how to use them to make loops and

conditional statements (If … else , while loop), and finally we used all those concepts to make programs

such as counters.

14

5. References

[1] Computer Design Laboratory Manual.

