.7 2
BIRZEIT UNIVERSITY

Faculty of Engineering & Technology Electrical & Computer
Engineering Department
Computer Design Laboratory ENCS 4110
Experiment #7
ARM's Flow Control Instructions

Prepared by:
Hasan Hamed 1190496

Instructor: Dr. Abualseoud Hanani
Assistant: Eng. Moutasem Diab

Section: 1
Date: 14/8/2021

1. Abstract

The aim of the experiment is to understand how to deal with strings in ARM assembly language, and to
understand the importance of conditions flags, and to learn ARM branch and compare instructions and
how to use them for loops and conditional statements, and finally to create useful ARM assembly

programs using all of those concepts.

Table of Contents

Y 0] 1 - Tod SRS 2
N I =T 0 o SRS 4
2.1. Setting Condition Code FIagSccviiiieiieiie e 5
2.2. The Encoding Format for Branch INStruCtionsccocovevieiiiniisieccie e, 5
2.3. Branch and Control INStIUCTIONSooviiiiie i 6
TR o (0 Tox T [SO STTRP 8
3.1. String Length Counter Programccccveiieiieiie it 8
3.2. Sum of Integers between 5 And 0 Program.ccceevveiiieieeiieieesie e 10
O @0 Tod 1151 [o SRS 13
D RETBIBNCES ...ttt bbb re et re e 14

2. Theory

ARM's Flow Control Instructions modify the default sequential execution. They control the operation of
the processor and sequencing of instructions. ARM has 16 programmer-visible registers and a Current
Program Status Register, CPSR as shown below.

User registers

11
Mtori2are

45 neneral-purpose

7 registers

1{ 1 The CPSRH (current proce]]

a | 31 30 29 28 27 8 7 6 6 4 0
=) - e AT

N|Z|C \ v unused IF T ‘ made

r10 1 | DS L Devigeed”
i Condition codes Operating mode

2

L
n3 Stack pointer
e e = P -l The use of r13 as a stack pointer is a programming

r4 Link register " convention, whereas the use of r14 and r15 as "he link

reqister and ram counter is enforced by the hardware
"5=m }F"\)‘-_i'df";.,*br‘!r_l 2qIste prograr ([CE 1)) €N €

Figure 2.1: ARM Register Set

RO to R12 are the general-purpose registers. R13 is reserved for the programmer to use it as the stack
pointer. R14 is the link register which stores a subroutine return address. R15 contains the program counter
and is accessible by the programmer.

Condition code flags in CPSR:

N - Negative or less than flag

Z - Zero flag

C - Carry or borrow or extended flag

V - Overflow flag

The least-significant 8-bit of the CPSR are the control bits of the system. The other bits are reserved.

2.1. Setting Condition Code Flags

Some instructions, such as Compare, given by CMP R1, R2 which performs the operation R1-R2 have the
purpose of setting the condition code flags based on the result of the subtraction operation. The arithmetic
and logic instructions affect the condition code flags only if explicitly specified to do so by a bit in the OP-
code field. This is indicated by appending the suffix S to the OP-code. For example, the instruction

ADDS RO, R1, R2 sets the condition code flags. But ADD R0, R1, R2 does not.

2.2. The Encoding Format for Branch Instructions
Conditional branch instructions contain a signed 24-bit offset that is added to the updated contents of the
Program Counter to generate the branch target address. Here is the encoding format for the branch

instructions.

31 28 27 24 23 0

Condition OP code offset

Figure 2.2: Encoding Format for Branch Instruction

Offset is a signed 24-bit number. It is shifted left two-bit positions (all branch targets are aligned word
addresses), signed extended to 32 bits, and added to the updated PC to generate the branch target address.
The updated PC points to the instruction that is two words (8 bytes) forward from the branch instruction.
ARM instructions are conditionally executed depending on a condition specified in the instruction. The
instruction is executed only if the current state of the processor condition code flag satisfies the condition
specified in bits 31-28 of the instruction. Thus, the instructions whose condition does not meet the
processor condition code flag are not executed. One of the conditions is used to indicate that the

instruction is always executed. Here is a more detailed description.

31-28 272625 24-21 20 19-16 15-12 11-0
cond @ ©1I opcode S Rn Rd Operand 2
» Rn = source register operand 1 4 bits =

» Rd = destination register 1 of 16 registers

» 31-28: condition code
@ ALL arm instructions can be conditionally executed
« eg: ADDEQ
= add, but only if the previous operation produced a
result of zero

« checks CPSR stored from previous operation

Figure 2.3: ARM Instruction
5

All the ARM instructions are conditionally executed depending on a condition specified in the instruction

bits 31-28
CONDITION
0000 EQ
0001 NE
@010 HS/CS
@011 LO/CC
0100 MI
0101 PL
0110 VS
0111 VC
1000 HI
1001 LS
1010 GE
1011 LT
1100 GT
1101 LE
1110 AL
1111 NE

Flags

zzmﬁ<fzzthN
Il
<< OFROFFOFROFORK

= N
Innn
— R0
— R0
N N
I
I
= o

Z==08&N==V
Z==1||N!=V
always
never

Note
Equal
Not Equal
>= () / C=1
<) / C=1
minus(neg)
plus(pos)
V set(ovfl)
V clr
> (U)
<= (U)

(U) = unsigned
Figure 2.4: ARM Conditions and Flags Affected

The instruction is executed only if the current state of the processor condition code flag satisfies the

condition specified in bits 31-28 of the instruction. The instructions whose condition does not meet the

processor condition code flag are not executed. One of the conditions is used to indicate that the

instruction is always executed.

2.3. Branch and Control Instructions

Branch instructions are very useful for selection control and looping control. Here is a list of the ARM

processor's Branch and Control instructions.[1]

BEQ target ; Conditionally branch to target, when Z = 1
ENE ARZAR ; branch to AAA when Z = 0

when N = 0

; branch to

BLT labelA’r i Conditionally branch to label label
i N set and V clear or N clear and
i i.e. N !=V

ELE labell ; Conditionally branch to label labell,
; when less than or equal, Z set or N set and V clear
; or N clear and V set
;i i.e. Z =1o0r N =V

BEGT ; Conditionally branch to label labeldn,

i 2 clear and either N set and V set

H or N clear and V clear

i l.e. Z=0andN=1V
BGE labell ; Conditionally branch to label labelA,

; when Greater than or equal to zero,

; Z set or N set and V clear

; or N clear and V set

;i i.e. 2 =1 or N !=V
BL funC ; Branch with link (Call) to function funC,

; return address stored in LR, the register R14
BX LR ; Return from function call
BXNE RO ; Conditionally branch to address stcored in RO
ELX RO ; Branch with link and exchange (Call)

; to a address stored in RO.

Figure 2.5: Examples of Branch Instruction

The Compare instruction can also be used as Branch by putting the condition after CMP instruction as

shown below.
Mnemonic Meaning
- _-'J_B_Z_ _3_5_,_ _t_a_r_ g_ e_: __________ ; ’ _E_c-_r_w_a_r_d_ _b_r_a_n_c_h_ _i_f_ _Ej 5_ _i_s_ _z_e_:_o ______________
o _C_B_J.‘\]_ Z._ _R‘_C'_,_ _t_a;_ r_ g_ e_: _________ H ’ _E_c-_r_w_a_r_n:l_ _Z::_r_a_n_c—h_ _i_f_ _FJZ_ _i_s_ _n_o_t_ _z_e_r_o __________
. aeR2, RO ; R2 - R9, update the N, Z, C and V flags
o oRo, #6400 ; RO + #6400, update the N, Z, C and V flags
______ C _}{_E_G_I_ _S_E_,_ _P:: ,_ _I: :_I: _’TF_ 2_ - _,_ _u_p_n:l_a._:_e_ _:_h_e_ _1‘_,_ _Z_,._ _C_ _a_n_cj _u’_ _f___a_g_s_ -

Figure 2.6: Examples of Compare Instruction

7

3. Procedure

3.1. String Length Counter Program

1) The following code was put in Keil Uvision.

; The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document block

;For Example: Your Name, Student MNumber, what the program is for, and what

it does

etc.
; This program will count the length of a string.
;i; Directives

PRESERVES

THUMEBE
; Vector Table Mapped to Address 0 at Reset
i Linker requires __ Vectors to be exported

AREA RESET, DATAZ, READONLY

EXPORT _ WVectors

Vectors
pCD 0x20001000 ; stack pointer wvalue when stack is empty

DCD Reset Handler ; reset vector

ALIGN
; Byte array/character string
; DCB type declares that memory will be reserved for consecutive bytes
; You can list comma separated byte wvalues, or use "quoted" characters.
; The ,0 at the end null terminates the character string. You could alsc use "\0".

; The zero wvalue of the null allows you to tell when the string ends.

Mo

mneom

Reset Han

; Initialize the counter counting the length of stringl

=

ND

; End of the program

Figure 3.1: Assembly Code to Count the Length of a String

2) The target was built using build target button and the debugger was started as shown below.

Lone

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12
R13(SP)
R14(LR)
R15 (PC)
+--xPSR

+/- Banked

+ System

= Intemal
Mode
Privilege
Stack
States

Sec

(x08000014
(x0000000C
(x00000000
(x00000000
(x00000000
(x00000000
(x00000000
(x00000000
(x00000000
(x00000000
0x00000000
0x00000000
0x00000000
0x20001000
(xFFFFFFFF
0x0800002E
0x61000000

Thread
Privileged
MSP

126
0.00001050

Figure 3.2: Debugging the Code

9

The program will count the length of the string and will save the number of characters in R1, and because
the string in assembly is not null terminated the zero was used to stop counting if the string address pointer
(RO) reaches the address of the number zero, after that the value of the register containing the character

(R2) will become zero and the program will branch to finish.

3.2. Sum of Integers between 5 And 0 Program.

1) The following code was put to Keil Uvision program.

= Ul
DCD x20001000 tack pointer lue wh tack 1 mp
DCDh R T ndler r ctor
Aur + t1ion
AREA DATA
ARE BAN D A READ E
UM DCD SO0
| DCD
ARE fEA] D B READWE E
'.\._I:' < L
; Linker requires Reset Handler
o -~
REA ODE, CODE, READONL
I + Handler
EXPORT R andl
_____ M Load cou i Rl
oV R # le ccumulator R
-
______ , RO, R1 Add ber inte R

STOF

SUBS R1, R1l, #1 ;Decrement loop counter Rl
BGT LOOP ;Branch back if not done
LDR R3, SUMPF ;Load address of SUM to R3
STR RO, [R3] ;Store SUM
LDR R4, [R3]

B STOP
END

Figure 3.3: Program Code

2) The target was built using the Build button and the debugger was started as show below.

RO

R1

R2

R3

R4

R5

R6

R7

R8

RS

R10

R11

R12

R13(SP)

R14(LR)

R15 (PC)
+ - xPSR
Banked
System
Intemal

Mode

Privilege

Stack

States

Sec

0x0000000F
(x00000000
0x00000000
(x20000000
0x0000000F
(x00000000
0x00000000
(x00000000
0x00000000
(x00000000
0x00000000
(x00000000
0x00000000
(x20001000
OxFFFFFFFF
0x08000026
0x61000000

Thread
Privileged
MSP

35
0.00000292

<

28 0000 MOVS r0,x0
0x0800002A 0000 MOVS r0,r

[
(%)
5
&
L5
¥
(=)
=
-
i
x)
%)
14
L}
s
[
=
&)

23 SUMP DCD SUM
24 N DCD S

25 AREA MYRAM, DATA, READWRITE
26 SUM DCD C
2’7 . Tha ™Yo
8 r juires Reset Handler
29 A MYCODE, CODE, READONLY
30 ENTRY
31 EXPORT Reset_Handler
32 Reset_Handler
33 verveeressUser:-Cade: Start ‘from the next Yine o rrsrsrss
34
35 LDR R1, N :;Loa unt into Rl
36 MOV RO, # Clear accumulator R
37 LOOP
38 ADD RO, RO, R into R
39 SUBS R1, R1, loop c ter R1
40 BGT LOOP ;Bra t ne
41 LDR R3, SUMP f SUM to R
42 STR RO, [R3]
43 LDR R4, [R3]
44 STOP B STOP
45 END

Figure 3.4: Program Debugging

11

The program will count the integers between n and 0 and in this case the number is 5 so the program will
add (5+4+3+2+1) and will save it in RO, after that the sum will be stored in the memory at the address that

sum pointer pointing at, and finally it will load R4 with the sum that is stored previously in the memory.

12

4. Conclusion

In conclusion, we understood how to deal with strings in ARM assembly, and we understood that the
strings in assembly are not null terminated as in C or JAVA or other high level languages, and we
understood the importance of Branch and Compare instructions and how to use them to make loops and

conditional statements (If ... else , while loop), and finally we used all those concepts to make programs
such as counters.

13

5. References

[1] Computer Design Laboratory Manual.

14

