.7 2
BIRZEIT UNIVERSITY

Faculty of Engineering & Technology Electrical & Computer
Engineering Department
Computer Design Laboratory ENCS 4110
Experiment #11
LCD and ADC

Prepared by:
Hasan Hamed 1190496

Instructor: Dr. Abualseoud Hanani
Assistant: Eng. Moutasem Diab

Section: 1
Date: 22/8/2021

1. Abstract

The aim of the experiment is to understand how the LCD works and how to use it to display characters or
any string, and to understand how to program it to use it in ARM microcontrollers, and to understand how
the ADC works and how to use it to convert analog signals to digital values so embedded system can deal

with it and finally, to display the output of ADC in LCD.

Table of Contents

AN o] T TP PSP PR P P ROURPOPPRT 2
B =T YRS 4
2.1, Alphanumeric LCD diSPlay ...cc.uuueeieiuiieeiiiiiee e eeiteee e sttt e e e st e e ssiee e e s sabae e e s saaaeeesnsaaeeessnbaeeeesssaeessnnsens 4
2.0 0. FUNCEION DESCIIPTION ... ettt aetsbsbsssbsassesssssssssssssssssssssssnsssssnsssnsnnnsnnnnns 4
2.0.2. LCD DiSPIAY weeutteeueeiiteeiteett ettt ettt ettt ettt ettt e h e sh b b e e ate e be e sa bt et e e eate e eae e eateebeesaeeebeenaeas 6
2.1.3. LCD SCrEEN IMOESeeinieieiiiieeit ettt sttt ettt s et e e eab e e st e e e bt e e s bteeeanteesabeeesabeeesabeesanneesanee 6
2.1.4. Displaying Standard Character 0N LCDciiiiiiiieiiiiieee et e s s e e s s 7
2.1.5. Displaying Custom Characters on LCD diSPlay.......cccccueeiiriiiieeeiiiiiieeeriiee e e ssvee e e 8

2.2. Analog-to-Digital CoONVErSioN (ADC).....cccuiiieieiiiiee e ettt ettt e e st e e e et e e e e eata e e e esbaeeeeeensaaeesenseeeeennnneeeas 8
2.2.1. LPC2138 ADC PrOSramMIMiNG......uuuuuuueuuurrurererererereserssssnsesssssssesssssesssesmmeremsesmem..........———. 10

IR e TotTe (¥ PP PRPPRN 12
3.1. Displaying Name USING LCD.......uuiiiiieeie ettt e ettt e e e e e seettrr e e e e e e s esaaae e e e e e e e e e sennssaesneeesesennns 12
3.2. Moving Displayed Word 0N LCD......ccciiiiiciiiieeee ettt e e e e e eeetttee e e s e e e s esasaeaee e e e e e e sennseneneeeasesennns 14
G T B 1= 41 = | IV 1 o= = SRR 17
o =T 0] o L=l - LU =N Y=T 0 o] (PO PPN PPPPPPPPPRON 19
L @o o [ol [V 1Y (o o PP PP TP PPRPPRN 21
ST 0= (=T =T 0 Tl L TP PPROPPRN 22

2. Theory
2.1. Alphanumeric LCD display

This component is specifically manufactured to be used with microcontrollers, which means that it cannot
be activated by standard IC circuits. It is used for displaying different messages on a miniature liquid
crystal display. The model described here is for its low price and great capabilities most frequently used in
practice (LMO16L LCD). It is based on the HD44780 microcontroller (Hitachi) and can display messages
in two lines with 16 characters each. It displays all the letters of alphabet, Greek letters, punctuation marks,
mathematical symbols etc. In addition, it is possible to display symbols made up by the user. Other useful
features include automatic message shift (left and right), cursor appearance, LED backlight etc.

This is a 2x16

line LCD Dizrlav

Figure 2.1: 2x16 LCD.
2.1.1. Function Description:
Registers
The HD44780U has two 8-bit registers, an instruction register (IR) and a data register (DR). The IR stores
instruction codes, such as display clear and cursor shift, and address information for display data RAM
(DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU. The DR
temporarily stores data to be written into DDRAM or CGRAM and temporarily stores data to be read from
DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into DDRAM or
CGRAM by an internal operation. The DR is also used for data storage when reading data from DDRAM
or CGRAM. When address information is written into the IR, data is read and then stored into the DR from
DDRAM or CGRAM by an internal operation.
Memory
In 16x2 LCD controller HD44780, there are three memory are available to store characters, numbers and
special symbols. Which are DDRAM (data display RAM) which stores ASCII codes, CGROM (character
generating ROM) which is responsible for stored standard character pattern, and CGRAM (character

4

generating RAM) which holds custom character pattern space total 8 in 2x16 module.

Display Data RAM (DDRAM)

Display data RAM(DDRAM)stores display data represented in 8-bit character codes. Its extended capacity
is 80x8 hits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be
used as general data RAM.

Character Generator ROM (CGROM)

The character generator ROM that is responsible for stored standard character pattern generates 5x8 dot or
5x10 dot character patterns from 8-bit character codes. It can generate 208 5x8 dot character patterns and
32 5x10 dot character patterns. — Character Generator RAM (CGRAM) The character generating RAM
which holds custom character pattern has only 8 memory location available to store user defined characters
with address 0x00 - 0x07, which is shown in the Figure 2.2.

weve pnl F QPP =3 E ot
e |1] HI a0 PIF &S0
;HJ"EEEhPrf@£FB
o (¢ | BICISCs VNTES
cs$4DTdtﬁIFﬁpn
o o [mal D E[e = [FF 2=
o [|&&FU W IhZ5]p[E]
ol il G 11 P IE=1 IS Siecdiord (n [6
o |0 [B H[M [4 2[E U]r[5
: DEJVLHQILL”H
w ok 8 T2 dz] |"|'ij ¥
o 1+ 5 KK 2% EQF R
w o la LIF 1] #2272 ¢A
o= =M1l Fs 0t =

S PR 153 Wk el il 5
S i] I EPT -] |

Figure 2.2: Characters Table.

5

2.1.2. LCD Display
Along one side of a small printed board there are pins used for connecting to the microcontroller. There
are in total of 14 pins marked with numbers (16 if the backlight is built in). Their function is described in

the Figure below.

Pin Symbol o Description
1 VSS —_ Ground
2 VCC — +5V power supply
3 VEE — Power supply to control contrast
4 RS : RS = 0 to select command register,
RS = 1 to select data register
5 _— : R/W = 0 for write,
R/W = 1 for read
6 E I Enable
7 DBO 110 The 8-bit data bus
8 DB1 le; The 8-bit data bus
9 DB2 I/O The 8-bit data bus
10 DB3 I/O The 8-bit data bus
11 DB4 I/O The 4/8-bit data bus
12 DB5 le; The 4/8-hit data bus
13 DB6 I/O The 4/8-bit data bus
14 DB7 11O The 4/8-bit data bus

Figure 2.3: Pin Descriptions for LCD.

2.1.3. LCD Screen Modes

DO0-D7 is the data bus and is used to pass commands and characters to the LCD. Data can be transferred to
and from the display either as a single 8-bit byte or two 4-bit nibbles. In the second case only the upper
four data lines (D4-D7) are used. This 4-bit mode is beneficial when using a microcontroller with few
input/output pins available.

2.1.4. Displaying Standard Character on LCD

Out of these three memory locations, DDRAM and CGROM are used to generate regular standard
characters (ASCII characters). By using these three memory locations, a user can generate different
character fonts and symbols on LCD display. A character font describes the shape and style of the
character. Each shape of a character is designed by taking the number of pixels in mind. For example, in

16x2 LCD there are 16 segments available per single line. Each segment contains pixels in 5x7 or 5x10
matrix forms.

1“6% EOO0000000000E
.16 [EEO0000000000000E
EE00000000000008

Figure 2.4: LCD Segments per Line.
For example, in 16x2 LCD there are 16 segments available per single line. Each segment contains pixels
in 5x8 or 5x10 matrix forms. For example, a character in both uppercase ‘A’ and lowercase ‘a’ is designed

by energizing corresponding pixels as shown below.

ROW l‘f\..ll HEX ROW PIXEI HEX
ROW:1 01110 = 0x0E ROW:1 01110 = 0x0E
ROW:2 10001 =0x11 ROW:2 00001 = 0x01
ROW:3 10001 =0x11 ROW:3 00001 = 0x01
ROW:4 11111 = 0xFF ROW:4 01111 = 0x0F
ROW:5 10001 =0x11 ROW:5 10001 = 0x11
ROW:6 10001 = 0x11 ROW:6 10001 = 0x11
ROW:7 10001 = 0x11 ROW:7 01110 = 0x0E
ROW:8 for CURSOR ROW:8 for CURSOR

Figure 2.5: Capital and Small ‘A’ Representation in Pixels.
All these eight hexadecimal codes (referred as character pattern) of each character are stored in character
generator ROM (CGROM) area.
The Display Data RAM (DDRAM) stores the ASCII code of a character which is sent by the
microcontroller. Now the LCD controller (HD44780) maps the corresponding ASCII Code in DDRAM
with CGROM address to bring the hexadecimal codes (character pattern) of that particular character. By
using those hexadecimal codes, the 5x7 matrix segment will light according to that character pattern to

display corresponding character on it as shown in Figure 2.6.
7

MCu DDRAM CGROM

MC d CGROM Display controller matches
U program sen C stores
A 3 DORAM Stores - the ASClicodeof ‘A" In
character ASCH ASCII code of character
=5 = , DDRAM with the CGROM
code of 'A’ to LCD Character ‘A’ patternsof ‘A
address and display the

letter A’ on LCD according
to the character pattern of
‘A’ stored in CGROM

Figure 2.6: Block Diagram for Characters Generation in LCD.
2.1.5. Displaying Custom Characters on LCD display
To create custom characters on LCD, the display controller (HD44780) make use of CGRAM area to
store hexadecimal codes (character pattern) which are designed by user. In addition to CGRAM area,
DDRAM area is also used to store the CGRAM address of a particular character, which is sent by

microcontroller in hexadecimal format.

2.2. Analog-to-Digital Conversion (ADC)

Analog-to-digital conversion (ADC) is necessary because, while embedded systems deal with digital
values (as we have deal with keypads and switches). Analog signals such as, temperature, speed and
pressure are generated by peripheral devices such as microphones, analog cameras, sensors, and etc. They
all need to be converted into digital data before being processed by the microcontroller. Figure 7.1 shows

microcontroller connection to sensor via ADC.

Analog Proper Digital
Physical % | Signal m’nﬂ' Voltage signal
sonsl —>|SONSORI— >|Conitioningl] "o Lot

Figure 2.7: Microcontroller Connection to Sensor Via ADC.
Signals in the real world are analog: light, sound, etc. So, real-world signals must be converted into
digital, using a circuit called ADC (Analog-to-Digital Converter), before they can be manipulated by
digital equipment such as microcontroller. Let's say you have a sound wave, and you wish to sample it

with an ADC. Here is a typical wave:

| V.

Figure 2.8: Sine Analog Wave.
When you sample the wave with an analog-to-digital converter, you have control over three variables:
The sampling rate: Controls how many samples are taken per second.
The sampling precision (resolution): Controls how many different gradations (quantization levels) are
possible when taking the sample.
The reference voltages: The VREF + represents the maximum analog value that can be converted by the
Analog to Digital converter. The VREF - represents the minimum analog value that can be converted by

the Analog to Digital converter.

Figure 2.9: Sampling Process.

You can see that as the sampling rate and precision (resolution) increase, the similarity between the
original wave and the ADC's output improves.

The Figure below shows an analog signal and quantized versions for several different number of
quantization levels. With L levels, we need N=log2 L bits to represent the different levels or conversely,
with N bits we can represent L = 2N levels.

Unquantized signal 2 lovels

os|

02|

o os 1 5 0 os 1 15

o) -] 1 o8 I[_[

os} I 1 { osf [L 1

Figure 2.10: Quantized Signals with Different Levels.
9

2.2.1. LPC2138 ADC Programming

Registers used for ADC Programming in LPC2138
: This is the main control register for ADO.

1. Bits [7 to 0] — SEL: This group of bits are used to select the pins (Channels) which will be used for
sampling and conversion. Bit ‘x'(in this group) is used to select pin A0.x in case of ADO.

2. Bits [15 to 8] — CLKDIV: These bits store the value for CLKDIV which is used to generate the ADC
clock. Peripheral clock i.e., PCLK is divided by CLKDIV+1 to get the ADC clock. Note that ADC clock
speed must be <= 4.5Mhz! As per datasheet user must program the smallest value in this field which yields
a clock speed of 4.5 MHz or a bit less.

3. Bit 16 — BURST: Set this to 1 for doing interrupted repeated conversions. Set this bit to O for software-
controlled conversions, which take 11 clocks to finish.

4. Bits [19 to 17] — CLKS: These bits are used to select the number of clocks used for conversion in burst
mode along with number of bits of accuracy of the result in RESULT bits of ADDR.

5. Bit 21 — PDN: Set it to 1 for powering up the ADC and making it operational. Set it to O for bringing it
in power down mode.

6. Bits [26 to 24] — START: These bits are used to control the start of ADC conversion when BURST (bit
16) is set to 0. Below is the table as given in datasheet.

Value Clock\bits

000 I 1clocks\10bits
001 I Oclocks'\9bits
010 Oclocks\8bits
011 8clocks\7bits
100 Tclocks\6bits
101 6¢clocks\Sbits
110 Sclocks\4bits
111 4clocks\3bits

Figure 2.11: Bits [19 to 17] - CLKS

10

Value Significance
000 No start (this value is to be used when clearing PDN to 0)
001 Start the conversion

010 | Start conversion when the edge selected by bit 27 occurs on
P0.16/EINTO/MATO0.2/CAPO.2 pin

011 | Similar to above — for MAT0.0 pin
100 | Similar to above — for MATO.1 pin
101 | Similar to above — for MAT0.3 pin
110 | Similar to above — for MAT1.0 pin
111 | Similar to above — for MAT1.1 pin

Figure 2.12: Bits [26 to 24] - START

7. Bit 27 — EDGE: Set this bit to 1 to start the conversion on falling edge of the selected CAP/MAT signal
and set this bit to O to start the conversion on rising edge of the selected signal.

8. Other bits are reserved.

This is the global data register for the corresponding ADC
module. It contains the ADC’s DONE bit and the result of the most recent A/D conversion.

1. Bits [15 to 6] - RESULT: Given DONE (below) is set to 1 these bits give a binary fraction which
represents the voltage on the pin selected by the SEL field, divided by the voltage on Vref pin i.e.,
=V/Vref. A value of zero indicates that voltage on the given pin was less than, equal to or greater than
Vssa. And a value of Ox3FF means that the voltage on the given pin was close to, equal to or greater than
the reference voltage.

2. Bits [26 to 24] — CHN: It gives the channel from which RESULT bits were converted. 000 for channel
0, 001 for channel 1 and so on.

3. Bit 30 — OVERRUN: In burst mode this bit is 1 in case of an Overrun i.e., the result of previous
conversion being lost(overwritten). This bit will be cleared after reading ADOGDR.

4. Bit 31 — DONE: When ADC conversion completes this bit is 1. When this register (ADOGDR) is read
and ADOCR is written, this bit gets cleared i.e., set to 0. If ADOCR is written while a conversion is in
progress then this bit is set and a new conversion is started.

5. Other bits are reserved. [1]

11

3. Procedure

3.1. Displaying Name Using LCD

1) The following code was edited by the instructor and was built using Keil Uvision program.

2 # e "lcd_lib.h"

S § de "utils.h"

4

5 [Jint main(void){

6

7 I00DIR |=0X Config P0.0...10 output pins
8 LCD init():

] LCD send str("Your Name ~_ “");

i) while (1)

hz |]

void LCD init(){

LCD cmd (0x38); //set 2-lines ,
LCD_cmd (INCREMENT _CURSOR) ; //ir
LCD cmd (DISPLAY ON_CURSOR_OFF)
LCD cmd (CLEAR_SCREEN); //clear s

void LCD send_str(unsigned char *str){
unsigned int i=0;

while (str[i]!="\0"){ //loop until null terminated str
if(i == 16) LCD_cmd(SECOND ROW):; // move to the next line
LCD_send_char (str[i]):
msDelay (10); // showing characters in slowly
i++;

Figure 3.1: Name Displaying Code.

2) The name was put in the LCD_send_str function.
3) Hex file was generated after building the code.

4) The following circuit was implemented using Proteus program.

GND
LCD1

LMO16L
u1
w2 XA PO OTXDWPWMI 12 ———0) 00 ——
Sl Xt PO URDOPWMAEINTD (=4 ——0) D1 Your Hame “__
4 PO.2/SCLOICAPO.D [2————() D2
=] RTXC1 PO.JSDADIMATO. DEINT1 o 7 O D3
VEC =— RTXC2 PO.4/SCKO/CAPO.1/ADO & S O D4
e PO SMISOUMATO 1/ADOT (52 O D5 e I
2 RET PO GMOSIDICAPO 2/AD1.0 (= O D6 29¢ PFw 85833885
FUASSELUMWIMZEIN 12 227 Q v/ SHE—= SEEEEE
POSMDIPWMAADL (22— RS ,lﬂ o el ~ QHHH
P Q/RDIPWMEEINTS [5-———0 RW 111
POAORTSICAP1 0AD12 [32———0) E
PO 1/CTS1/CAPT 1/SCLY
PO 12IDSR1MAT! D/AD1 3 (=0 0000
PO 1DTRMAT1 1/AD1 4 (2= gzY BcEB388B
PO.14DCDVEINTIISDAT [0
PO1S/RITEINT2/AD1.5

Figure 3.2: Displaying Name Circuit.

12

5) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in Figure
3.3.

LCD1

LMo1oL

88Y pz. zsuB3885

. s[a[s] s[=[sla]s]=]s]s
~ - wiolo '.09::‘!:
U1
;
S XTALY - POOTXDOPWMI [
LM oory 1 [=21
3 PO 2/SCLOCAPO0 22
21w oEiNT1 22
S {RIXC2 POASCKOCTAPO.UADOS 27
& PO SABSOQMATO 1/ADO 7 (22
L SMOSIICAPD 21401 0 (=1
PO TISSELOPVAREINT2 2]
POSTOUPWAIAAD1 1 (122
POSRXO1F 3 s
PO IORTS UCAR! 0UAD1 2 22
PO1CTSUCAP USCLY | ook
PO.12DSRYMAT1 0/AD1 3 |20
£0 1¥DTRIMAT1 1/2D1 4 o2
POJADCOVEINTIISDAY 141
PO1SRI 15
0 16EINTOMATO 21CAPO 2 1o
PO.17/CAP1 2SCKIMAT1 2 (1o
PO.18/CAP1 IMISOTMNAT1 3 |22
PO 1GMATI 2MOSITICAP1.2 |or-
PO2OMAT} YSSELTEINTS [
PO 2UPWMSADT SCAP13 | =1
F0.22/AD1 7/CAPO OMATO 0 o
Po23 225
PO.25AD0 4AOUT Y
2004005 [
P0.27/ADO GICAPO.1MATO.Y |
P0.28/ADO.1/CAPO 2MATO 2 v
£ ZACAPO IMATO3
Py PO30ADO JENTICAPO |
=
“S .
1 16TRACERKTO 10
@ P1ATTRACERKT1 (2
VBAT P1.18TRACEPKT2 |-
a P1 1BTRACEPKTS (2
3 vRer P120TRACESYNG [1e
o] VaA P121PIPESTATO 4
v P122PPESTAT [0
2 F123PPESTAT o0
va #124TRACECLK |2
- P128/EXTING (20
o vssa £1.20RT0K (20
2 ves £1.277700 (20
5 ves P1.20TD1 |25
2 vss P1.29TOK 22
2 {vss P130TMsE (22
vss P1L3UTRET ——
(Fean

Figure 3.3: Simulation Result.

The circuit will just print the name that was put on the code earlier on the LCD.

13

3.2. Moving Displayed Word on LCD

1) The following code was edited by the instructor and was built using Keil Uvision.

2 #define bit(x) 1<<x

6

7 Hint main(void){

B8 int col = 0 , Tow = 0;

9 unsigned char name[] = "Name";

10

11 IO0DIR |=0XO0O00007FF: Config P0.0...10 output pins
12 IO1DIR &= (=~ Fi nf s in

14 LCD _init():
15 LCD send str(name):;

ile (1) TC
if (! (IO1PIN & bit(l6))){ lefc

msDelay (50);

col=--:

i 1 < 0) e

LCD_cmd (CLEAR :

LCD send str At (row,col,name): P

- - - if (! (IO1PIN & bi 1) reset

if (' (IOLPIN & bit(17))) 1 right d

maDelay (50} ;

= LCD send str at(row,col,name);

col %= 16 ; - - -

LCD cmd (CLEAR_SCREEN) ;

LCD send str_at (row, col,name) ;

|'.-':\::l LCD send str_ at (unsigned char row,unsigned char col,unsigned char *str){

void LCD set cursor posunsigned char row,unsigned char col){

W: else cp = SECOND ROW:

Figure 3.4: Moving Code.
2) The name was put in the LCD_send_str function.
3) Hex file was generated after building the code.

4) The following circuit was implemented using Proteus program.

14

U1
22 A
e D
= rrxct
= rxc2
M o=
+33v
A
$———199 Jypar
RN
2 vas
) SRR
—i

LCD1

Lmo16L
POOMOOPAMI L2 Q oo
PO.ARXDOPAMIENTD [o1
PO 2/SCLOICAPO.0 02
PO.3/SDAOMATO. QENT! 03
PO.4/SCKOICAPD 1/ADOS [D4
POSMSOOMAT01/AD07 | 05
P0.6MOSIOICAPO.2/AD1.0 D6 @g
POTISSELOPWMMRENT2 231 o7 ¥ pE. ss3338%8>
POSTxD1 3 QRS L minw siminininininin
PO.ARDIPAMEENTS it R L L NH S
POAORTSICAPT 0/AD1 2 Fie———O) £ Wi
POA1ACTSICAPY 1/5CL1 [l
PO12DSRIMATI O/AD1 3 |-
POAIDTRIMATI 17801 4 i
PO14DCDIENTISDAT [oik
POASRNENT2IADT 5 [298 £E* 85383885
POABENTOMATO 2CAPD2 [0
POA7ICAP! 21SCKIMATT 2 i
PO.1BICAPT IMSOTMATI 3 =
POIIMATI 2MOSHICAPT 2 |2
PO20MATI BSSELIENTS [-oaa-
PO.21/PWMSIAD! BICAP1 3 f—
P0.221AD1 7ICAPO.OMATO0 [2—
023 |55
PO.25/AD0 4/AOUT pES—
P026/400 5 L
PO27/AD0.0ICAPOIMATO |1l
PO.28/AD0.1/CAPO.2MATO2 [t
PO.29/AD0 26CAPD 3MATO3 =12 - e Left
PO3/A0 IENTICAPDD R O ano
P1ABMTRACEPKTO —"-E—I — & Right
P 17MRACEPKTI e
1 1aTRACETS |24 1 — & dmet
P1 20/TRACESYNG f—id-
P121PPESTATD 44 « =29, Reset
P122PPESTATI [=
P123PPESTAT2 |t

Figure 3.5: Implemented Circuit Using Proteus

vee

5) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the

following Figures.

u2

“33v

XTALY
XTAL2 PO1

€62
LMoteL

88Y pf. ssymasss

PO.OTXDOPWM!
ROVPWMIEINTO

RTXC1

OEINT?

[

1/ADDS.
FO.5MISOOMATO. 1/ADO.7

REFRRE

PO.7ISSELOPWMEINT2

RAER

.1

o

O,

.2

&

SCLL
PO.12DSR1MATS 0/AD1.3
Fo. VAD1 4

o

8

-
H

%

7iag 5583 &

ABEINTOMATO. 2CAPO 2 =
PO.17/CAP1 2SCKIMAT1.2 -
PO.1B/CAP1 IMISO1/MAT1.3

P1.20/TRACI
P121/PIPESTATO -
P1 1

Pl
P1.24/TRACECLK
P1

lalalalels [3

5|

B

3 |als|zlal=18)

B

o[e [=[=]==]=

| 28EXTING
P128RTCK
P1.27T00 |+
P1.287DI
P1.20TCK

P1.30TMS |
P131TRET

R P S R Y
Wlelaleeleleflalel]

‘é a2

Figure 3.6: Simulation Result for Right Button.

15

433 _

484 2B, ssgazsss

w o] wlu]s """'g['
CEREEE & oly|

u2
62
R
=2 et
2 arxcz
57| Y

£
A = &
L o
42 vear
W

22 vREF L'—o v
5 Vi
% v > J:_s
=
= 55
2 lvss 1
2 s k3
ol
2 Jvss
S 1 vss

vss

APcim

|
.,l

Figure 3.7: Simulation Result for Left Button.

T T T
T 692 T

ETEXT>

88¢ pi. ssusssss

w[s]e] w[s]s] w[=[a]s]a]s]a]s
T o B R

U2
[->3
i ol
2 Amx
51 amxecz
57w
o3
0
5
.
0
= S
REEN = .
A mR= s
2 b
==
22 wRer Lo
s T
W i = o)
3 1w
vssa
vee =1
vss B
vss
vss
vss
LEG2R

Figure 3.8: Simulation Result for Jump Button.

16

t€H2
LMG18L

E?Q pE. 85833885 .
;2 STl Sfee Sl
u2 M

XTALY FOOTDOPAMI |-
XTALZ PO 1/RXDOPWNMIEINTO |-
PO 2/SCLOICAPO O

RRRE

RTXCt Fo OENTY
ATXC2 PO ASCHOCARO, LADO 8
POAMISOOMATO. LADO 7
REY PO.AMCSIOCARD.2AD1.0
PO.7SSELOPWN2EINT2

POATD 1
0

3 b e

aals]

L AR S 2

3
PO 1ORTSHCAP1 QDA 2 |-
PO 1ICTSUCAPY 1ECLY |-
PO 1 AD1 3 =
PO 1JOTRIMATI LADY 4
0.1 VEDA1
PO, 5

war

PO IGEINTOMATO 2/CAPO.2 |-
POITICAP 2SCKIMATL.2
POINCART IMISOVMATYS |-
PO 1OMAT1 2MOSIVCAP1 2 [
PO 20MAT 1 WSSEL1EINTS
PO21PWMSAD! 8/ICAF1 3 |-

FO.22A01 7ICAPD GMATO.O
FOZ2

e lahelelelslalsls fa

PO2SADDAAOUT [—
PO2ADOS

tm

PO27IADO.OITAPD. 1MATO 1
PO 28IADO 1/CAP). 2WATO 2
PO 20AD0 2ICAPT IMATO 3

PO.30'ADD JEINTICAFO O
"w PO

Ll
i1
F

.lil.
.

)
-

Py P11STRACEPKTO

[
o

Hlils
0
9

:
I
|

E

8 883
g

bl
2yd
g
HE

;
RRRRERRE

™
@
2
N
8

aas
2
¥
2

Figure 3.9: Simulation Result for Reset Button.

The LCD will move the word to the right after pushing the right push button as shown in Figure 3.6, and
then after pushing the left button the word will move left as shown in Figure 3.7, and the word will jump to
the next line after pushing the jump button as shown in Figure 3.8, and finally the word will reset to the
first state after pushing the reset button as shown in Figure 3.9.

3.3. Digital Voltmeter

1) The following code was edited by the instructor and was built using Keil Uvision program.

17

ADC_start():
level = ADC_read():
sprintf(level str,"%$-4d",level);
LCD_cmd (FIRST_ROW)

LCD_send str(v

_to_str(volt_str,volt):
LCD_cmd (SECOND_ROW)
LCD_send_str("V
:CD_send_sc: (vol

PowexUP;

oid ADC_starc(){
ADOCR |= START_NOW: Start new Co n
unsigned DC_read(){

while(!{ADOGDR & ADC_DONH)) :
1t (AD R>>6) & Ox3FF;

Figure 3.10: Voltmeter Code.

2) Hex file was generated after building the code.
3) The following circuit was implemented using Proteus program.

LCD1
LMD1 6L

U1
821 xraL1 POOTOOPAMY it
S xrar2 PO =t
PO2ISCLOCAPOD [222
33: RTXC1 PO3SDADMATO DENTI 2o~
RIXC2 POA/SCKOICAPO1/ADOS [oii———Q) ADCOS
al 0. 1/AD07 [k Q 00
L R P PO2/AD1 0 =2 Q01
PO7/SSELOPAM2ENT? [Hal————Q D2
POSTXO1PWMA/AD! 1 oo 03
PO i 3 g; g§§ £3“ B5883885
PO Pt
POATICTSICAPI 1SCLT Foak 06
PO 10/AD13 (22 Q 07
P01 117801 4 Q RS g
POA4DCDVENTI/SDAT Fost—————O) RW S
POISRNENTZAD1 S [——— Q¢
1 0 ==
POA7ICAPY 2ISCKIMATI 2 ik i
PO 3MSOIMATI 3 21
POAGMATI 2MOSHICAP 2 [t .
PO2OMAT! JSSEL1ENTS [ADCOS
PO 21 PWMS/AD! BICAPT 3 - eoll *©
PO.22/AD1 7ICAPO OMATO0 |2~
Po23 (=52 10k
PO25/AD0 4/ACUT [~
PO26/AD0S [t
PO27/ADO.DKAPD IMATON ot 2
PO28/AD0.1/CAPO 2MATO 2 it

Figure 3.11: Voltmeter Circuit Using Proteus.
18

4) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the
following Figure.

LCD1
LM018L

levelig9?
volti3l

u 255 akw

XTALY PoATCOPWY 2
XAz PO RIDOPWAVEINTO [21

/5
RTXC1 POYSDADMATD. DEINTY
RTNCZ PO4SCHUCARD TADOD

= 24010 [+

PO 1ZDSRMATY DD 3 | 22
PO ISOTRIMATY 1401 4 [=22
PO I4DCD1ENTVS0A! 1

POASRINEINTZAD! & ~

O IGEINTOMATOZCAPO 2 |1
PO.17IGAP1 JECKIMAT1 2 [~ o7

P23

i IBTRACERKTO 5 oy
e g

PYAGTRACERKTZ [+ .
P11 TRACERKTS [

P1Z0TRACESING —

P12UPIPESTATO — H
P122PIPESTATY

£l

P
P1.24TRACECLK

g ﬁﬁﬁﬁa §

ves P1.27T00
ves P128TOI
vEE P12WTCK

vES P1AGTME
WES P TREY

Feaize

Figure 3.12: Voltmeter Simulation.
The circuit will just find the voltage of the variable resistor using ADC, and then it will display it on the
LCD.

3.4. Temperature Sensor

1) The following code was edited by the instructor and was built using Keil Uvision.

int main() {

unsigned int level ;

unsigned char level str[10] :
double volt ;

unsigned char volt_str[10] :;

IOODIR |= (Ox7FF<<5):; Config P0.5...15 output pins

LCD_init():
ADC init():
while(1){
ADC start():
level = ADC read():
sprintf (level_scz, "%-4d",level);
LCD_cmd (FIRST_ROW) ;

LCD_send str("Level: ");
LCD send_str(level str):;
volt = (level*VREF/1023)*100;

double_to_str(volt_str,volt):
LCD_cmd (SECOND_ROW) ;

LCD send str("Degree: ");
LCD_send str(volt_str):
LCD_send char('C'):

Figure 3.13: Sensor Code.
19

2) Hex file was generated after building the code.

3) The following circuit was implemented using Proteus program.

LCD1

LMO16L

XTALY FO.O/TXDORVWI
KTAL2 POARXDOPAMIENTO
PO2/SCLOKCAPO O

RTKCI PO.3/SDAOMATO. OEINT1
RTXC2 PO 4/SCKOICAPD 1/ADO B
IR PO SMISCOMATO1/ADO.7
RET POGMOSIICAPD 2(AD1.0
PO.7/SSELOPAMZENT2

PO.BITAD1 PAWM4IAD1 A

PO SRxD1PWMEEINTS

[
b=
T2RAZRRIB28 S
@
1im
28
=
an
O]
&n
7n
Bn
o]
70m
1
8*1 0
13m
4m
+
ch—————£>§
||——0 GND

EH EP

POAORTS1ICAPT DIAD1 2
PO.11CTS1/CAP1 1/SCL1
PO12/DSR1MATI D/AD1 3
POASDTRIMATI 1/A01 4
PO14/DCD1ENT1/SDAT
POASKN JAD1 S5

[=]=
o]

PO.1BEINTOMATO 2/CAPO.2
POATICAP1 2/5CK1MAT1.2
POAS/CAPT 3MISO1MAT 3
POASMATY 2MOSH ICAP1 2
PO 20MAT1 3/SSEL1/EINT3

PO21/PWMSIAD] BICAP 3
P0.22/AD1.7/CAPD.OMATOO
F0O23

P0.25/AD0.4/A0UT
PO.26/AD0.5
P0.27/AD0.0JCAPD.1 MATO A
P0.28/AD0 1/CAPD 2MAT0 2
P0.29/AD0.2/CAPD.3MATO 3
PO.30/AD0 3ENT3/CAPOD

BEEREE EFFkRREE

&
b=}

Figure 3.14: Temperature Sensor Circuit.

4) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the

following Figure.

8. 85883885

u2 Jelel slele] lelalel
e o b 1 b B b B B S
o FOOTX0OPWNY =%
L a2 PO URMDOPWMIEINTY
N PO2SCLOCAR) 0
S| RTXCI POSSOAGMATS OGN
S RTXCZ PO4SCHOCAPD 1ADOS sov
s POSMISCOMATD 1AD0 7 A

R 2010

PO

POSTOUFWMAADY 1
PO DRXD1PWMBENTY
PO1ORTS1CAPY BiAD1 2
PO 11/CTS1CAPY 1SCLY
PO 1ZDSRIMAT1 0AD1 3
PO 1ADTRIMATS. 1AD1 4
FO.1DCOVEINTYSDAT
POASRIVEINTZIAD1 3

o Tsfelelelelalelelelelalalallels

I

e H;Hé‘wl:

D1
R1
= . ¥ l
LEC-RED

Figure 3.15: Temperature Sensor Simulation

The sensor will sense the temperature and using ADC, it will display it to the LCD.
20

4. Conclusion

In conclusion, we understood how LCD works and how to use it to display words, and we learned how to
make operations to this word such as moving right or left or jump from line to line, and we learn how to
use ADC to convert the analog signal into digital values so that the digital system can deal with, and

finally we learned how to use both for real-life operations, such as voltmeters and sensors.

21

5. References

[1] Computer Design Laboratory Manual.

22

