
1

Faculty of Engineering & Technology Electrical & Computer

Engineering Department

Computer Design Laboratory ENCS 4110

Experiment #11

LCD and ADC

Prepared by:

Hasan Hamed 1190496

Instructor: Dr. Abualseoud Hanani

Assistant: Eng. Moutasem Diab

Section: 1

Date: 22/8/2021

2

1. Abstract

The aim of the experiment is to understand how the LCD works and how to use it to display characters or

any string, and to understand how to program it to use it in ARM microcontrollers, and to understand how

the ADC works and how to use it to convert analog signals to digital values so embedded system can deal

with it and finally, to display the output of ADC in LCD.

3

Table of Contents

1. Abstract ... 2

2. Theory ... 4

2.1. Alphanumeric LCD display .. 4

2.1.1. Function Description: ... 4

2.1.2. LCD Display .. 6

2.1.3. LCD Screen Modes ... 6

2.1.4. Displaying Standard Character on LCD .. 7

2.1.5. Displaying Custom Characters on LCD display... 8

2.2. Analog-to-Digital Conversion (ADC) ... 8

2.2.1. LPC2138 ADC Programming ... 10

3. Procedure .. 12

3.1. Displaying Name Using LCD .. 12

3.2. Moving Displayed Word on LCD ... 14

3.3. Digital Voltmeter .. 17

3.4. Temperature Sensor ... 19

4. Conclusion ... 21

5. References... 22

4

2. Theory

2.1. Alphanumeric LCD display

This component is specifically manufactured to be used with microcontrollers, which means that it cannot

be activated by standard IC circuits. It is used for displaying different messages on a miniature liquid

crystal display. The model described here is for its low price and great capabilities most frequently used in

practice (LM016L LCD). It is based on the HD44780 microcontroller (Hitachi) and can display messages

in two lines with 16 characters each. It displays all the letters of alphabet, Greek letters, punctuation marks,

mathematical symbols etc. In addition, it is possible to display symbols made up by the user. Other useful

features include automatic message shift (left and right), cursor appearance, LED backlight etc.

Figure 2.1: 2x16 LCD.

2.1.1. Function Description:

Registers

 The HD44780U has two 8-bit registers, an instruction register (IR) and a data register (DR). The IR stores

instruction codes, such as display clear and cursor shift, and address information for display data RAM

(DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU. The DR

temporarily stores data to be written into DDRAM or CGRAM and temporarily stores data to be read from

DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into DDRAM or

CGRAM by an internal operation. The DR is also used for data storage when reading data from DDRAM

or CGRAM. When address information is written into the IR, data is read and then stored into the DR from

DDRAM or CGRAM by an internal operation.

Memory

 In 16×2 LCD controller HD44780, there are three memory are available to store characters, numbers and

special symbols. Which are DDRAM (data display RAM) which stores ASCII codes, CGROM (character

generating ROM) which is responsible for stored standard character pattern, and CGRAM (character

5

generating RAM) which holds custom character pattern space total 8 in 2×16 module.

 Display Data RAM (DDRAM)

Display data RAM(DDRAM)stores display data represented in 8-bit character codes. Its extended capacity

is 80×8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be

used as general data RAM.

Character Generator ROM (CGROM)

 The character generator ROM that is responsible for stored standard character pattern generates 5×8 dot or

5×10 dot character patterns from 8-bit character codes. It can generate 208 5×8 dot character patterns and

32 5×10 dot character patterns.  Character Generator RAM (CGRAM) The character generating RAM

which holds custom character pattern has only 8 memory location available to store user defined characters

with address 0x00 - 0x07, which is shown in the Figure 2.2.

Figure 2.2: Characters Table.

6

2.1.2. LCD Display

 Along one side of a small printed board there are pins used for connecting to the microcontroller. There

are in total of 14 pins marked with numbers (16 if the backlight is built in). Their function is described in

the Figure below.

Figure 2.3: Pin Descriptions for LCD.

2.1.3. LCD Screen Modes

 D0-D7 is the data bus and is used to pass commands and characters to the LCD. Data can be transferred to

and from the display either as a single 8-bit byte or two 4-bit nibbles. In the second case only the upper

four data lines (D4-D7) are used. This 4-bit mode is beneficial when using a microcontroller with few

input/output pins available.

7

 2.1.4. Displaying Standard Character on LCD

 Out of these three memory locations, DDRAM and CGROM are used to generate regular standard

characters (ASCII characters). By using these three memory locations, a user can generate different

character fonts and symbols on LCD display. A character font describes the shape and style of the

character. Each shape of a character is designed by taking the number of pixels in mind. For example, in

16x2 LCD there are 16 segments available per single line. Each segment contains pixels in 5x7 or 5x10

matrix forms.

Figure 2.4: LCD Segments per Line.

 For example, in 16×2 LCD there are 16 segments available per single line. Each segment contains pixels

in 5×8 or 5×10 matrix forms. For example, a character in both uppercase ‘A’ and lowercase ‘a’ is designed

by energizing corresponding pixels as shown below.

Figure 2.5: Capital and Small ‘A’ Representation in Pixels.

 All these eight hexadecimal codes (referred as character pattern) of each character are stored in character

generator ROM (CGROM) area.

 The Display Data RAM (DDRAM) stores the ASCII code of a character which is sent by the

microcontroller. Now the LCD controller (HD44780) maps the corresponding ASCII Code in DDRAM

with CGROM address to bring the hexadecimal codes (character pattern) of that particular character. By

using those hexadecimal codes, the 5x7 matrix segment will light according to that character pattern to

display corresponding character on it as shown in Figure 2.6.

8

Figure 2.6: Block Diagram for Characters Generation in LCD.

 2.1.5. Displaying Custom Characters on LCD display

 To create custom characters on LCD, the display controller (HD44780) make use of CGRAM area to

store hexadecimal codes (character pattern) which are designed by user. In addition to CGRAM area,

DDRAM area is also used to store the CGRAM address of a particular character, which is sent by

microcontroller in hexadecimal format.

2.2. Analog-to-Digital Conversion (ADC)

 Analog-to-digital conversion (ADC) is necessary because, while embedded systems deal with digital

values (as we have deal with keypads and switches). Analog signals such as, temperature, speed and

pressure are generated by peripheral devices such as microphones, analog cameras, sensors, and etc. They

all need to be converted into digital data before being processed by the microcontroller. Figure 7.1 shows

microcontroller connection to sensor via ADC.

Figure 2.7: Microcontroller Connection to Sensor Via ADC.

 Signals in the real world are analog: light, sound, etc. So, real-world signals must be converted into

digital, using a circuit called ADC (Analog-to-Digital Converter), before they can be manipulated by

digital equipment such as microcontroller. Let's say you have a sound wave, and you wish to sample it

with an ADC. Here is a typical wave:

9

Figure 2.8: Sine Analog Wave.

When you sample the wave with an analog-to-digital converter, you have control over three variables:

The sampling rate: Controls how many samples are taken per second.

The sampling precision (resolution): Controls how many different gradations (quantization levels) are

possible when taking the sample.

The reference voltages: The VREF + represents the maximum analog value that can be converted by the

Analog to Digital converter. The VREF - represents the minimum analog value that can be converted by

the Analog to Digital converter.

Figure 2.9: Sampling Process.

You can see that as the sampling rate and precision (resolution) increase, the similarity between the

original wave and the ADC's output improves.

The Figure below shows an analog signal and quantized versions for several different number of

quantization levels. With L levels, we need N=log2 L bits to represent the different levels or conversely,

with N bits we can represent L = 2N levels.

Figure 2.10: Quantized Signals with Different Levels.

10

2.2.1. LPC2138 ADC Programming

Registers used for ADC Programming in LPC2138

1. AD0CR– A/D Control Register: This is the main control register for AD0.

 1. Bits [7 to 0] – SEL: This group of bits are used to select the pins (Channels) which will be used for

sampling and conversion. Bit ‘x'(in this group) is used to select pin A0.x in case of AD0.

 2. Bits [15 to 8] – CLKDIV: These bits store the value for CLKDIV which is used to generate the ADC

clock. Peripheral clock i.e., PCLK is divided by CLKDIV+1 to get the ADC clock. Note that ADC clock

speed must be <= 4.5Mhz! As per datasheet user must program the smallest value in this field which yields

a clock speed of 4.5 MHz or a bit less.

 3. Bit 16 – BURST: Set this to 1 for doing interrupted repeated conversions. Set this bit to 0 for software-

controlled conversions, which take 11 clocks to finish.

 4. Bits [19 to 17] – CLKS: These bits are used to select the number of clocks used for conversion in burst

mode along with number of bits of accuracy of the result in RESULT bits of ADDR.

5. Bit 21 – PDN: Set it to 1 for powering up the ADC and making it operational. Set it to 0 for bringing it

in power down mode.

 6. Bits [26 to 24] – START: These bits are used to control the start of ADC conversion when BURST (bit

16) is set to 0. Below is the table as given in datasheet.

Figure 2.11: Bits [19 to 17] – CLKS

11

Figure 2.12: Bits [26 to 24] – START

7. Bit 27 – EDGE: Set this bit to 1 to start the conversion on falling edge of the selected CAP/MAT signal

and set this bit to 0 to start the conversion on rising edge of the selected signal.

 8. Other bits are reserved.

 2. AD0GDR - A/D Global Data Register: This is the global data register for the corresponding ADC

module. It contains the ADC’s DONE bit and the result of the most recent A/D conversion.

 1. Bits [15 to 6] – RESULT: Given DONE (below) is set to 1 these bits give a binary fraction which

represents the voltage on the pin selected by the SEL field, divided by the voltage on Vref pin i.e.,

=V/Vref. A value of zero indicates that voltage on the given pin was less than, equal to or greater than

Vssa. And a value of 0x3FF means that the voltage on the given pin was close to, equal to or greater than

the reference voltage.

 2. Bits [26 to 24] – CHN: It gives the channel from which RESULT bits were converted. 000 for channel

0, 001 for channel 1 and so on.

3. Bit 30 – OVERRUN: In burst mode this bit is 1 in case of an Overrun i.e., the result of previous

conversion being lost(overwritten). This bit will be cleared after reading AD0GDR.

 4. Bit 31 – DONE: When ADC conversion completes this bit is 1. When this register (AD0GDR) is read

and AD0CR is written, this bit gets cleared i.e., set to 0. If AD0CR is written while a conversion is in

progress then this bit is set and a new conversion is started.

 5. Other bits are reserved. [1]

12

3. Procedure

3.1. Displaying Name Using LCD

1) The following code was edited by the instructor and was built using Keil Uvision program.

Figure 3.1: Name Displaying Code.

2) The name was put in the LCD_send_str function.

3) Hex file was generated after building the code.

4) The following circuit was implemented using Proteus program.

Figure 3.2: Displaying Name Circuit.

13

5) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in Figure

3.3.

Figure 3.3: Simulation Result.

The circuit will just print the name that was put on the code earlier on the LCD.

14

3.2. Moving Displayed Word on LCD

1) The following code was edited by the instructor and was built using Keil Uvision.

Figure 3.4: Moving Code.

2) The name was put in the LCD_send_str function.

3) Hex file was generated after building the code.

4) The following circuit was implemented using Proteus program.

15

Figure 3.5: Implemented Circuit Using Proteus

5) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the

following Figures.

Figure 3.6: Simulation Result for Right Button.

16

Figure 3.7: Simulation Result for Left Button.

Figure 3.8: Simulation Result for Jump Button.

17

Figure 3.9: Simulation Result for Reset Button.

The LCD will move the word to the right after pushing the right push button as shown in Figure 3.6, and

then after pushing the left button the word will move left as shown in Figure 3.7, and the word will jump to

the next line after pushing the jump button as shown in Figure 3.8, and finally the word will reset to the

first state after pushing the reset button as shown in Figure 3.9.

3.3. Digital Voltmeter

1) The following code was edited by the instructor and was built using Keil Uvision program.

18

Figure 3.10: Voltmeter Code.

2) Hex file was generated after building the code.

3) The following circuit was implemented using Proteus program.

Figure 3.11: Voltmeter Circuit Using Proteus.

19

4) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the

following Figure.

Figure 3.12: Voltmeter Simulation.

The circuit will just find the voltage of the variable resistor using ADC, and then it will display it on the

LCD.

3.4. Temperature Sensor

1) The following code was edited by the instructor and was built using Keil Uvision.

Figure 3.13: Sensor Code.

20

2) Hex file was generated after building the code.

3) The following circuit was implemented using Proteus program.

Figure 3.14: Temperature Sensor Circuit.

4) The Hex file was uploaded to the microcontroller, then the simulation was started as shown in the

following Figure.

Figure 3.15: Temperature Sensor Simulation

The sensor will sense the temperature and using ADC, it will display it to the LCD.

21

4. Conclusion

In conclusion, we understood how LCD works and how to use it to display words, and we learned how to

make operations to this word such as moving right or left or jump from line to line, and we learn how to

use ADC to convert the analog signal into digital values so that the digital system can deal with, and

finally we learned how to use both for real-life operations, such as voltmeters and sensors.

22

5. References

[1] Computer Design Laboratory Manual.

