Birzeit University

Faculty of Information Technology

Computer System Engineering

Digital Signal Processing (DSP)

Assignment No2

Instructor: Dr. Abualsoud Hanani

Exercise 1:

Determine the Fourier transform of each of the sequences below:

(a)

$$\mathbf{x}(\mathbf{n}) = \delta(\mathbf{n} - 3)$$

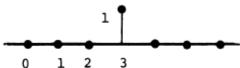


Figure P4.1-1

(b)
$$x(n) = \frac{1}{2} \delta(n + 1) + \delta(n) + \frac{1}{2} \delta(n - 1)$$

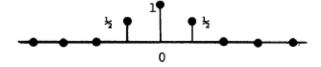


Figure P4.1-2

(c)
$$x(n) = a^n u(n) 0 < a < 1$$



Figure P4.1-3

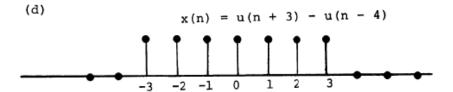


Figure P4.1-4

Exercise 2:

- (a) Consider a linear shift-invariant system with unit-sample response $h(n) = \alpha^n u(n)$, where α is real and $0 < \alpha < 1$. If the input is $x(n) = \beta^n u(n)$, $0 < |\beta| < 1$, determine the output y(n) in the form $y(n) = (k_1 \alpha^n + k_2 \beta^n) u(n)$ by explicitly evaluating the convolution sum.
- (b) By explicitly evaluating the transforms $X(e^{j\omega})$, $H(e^{j\omega})$ and $Y(e^{j\omega})$ corresponding to x(n), h(n), and y(n) specified in part (a), show that $Y(e^{j\omega}) = H(e^{j\omega}) \ X(e^{j\omega})$

Exercise 3:

Let x(n) and $X(e^{j\omega})$ represent a sequence and its transform. Do not assume that x(n) is real or that x(n) is zero for n < 0. Determine in terms of $X(e^{j\omega})$ the transform of each of the following:

- (a) k x(n)
- (b) $x(n n_0)$ where n_0 is an integer
- (c) n x(n)