Elham 2. Mar 1091496

Birzeit University

ENCS431: Digital Signal Processing

Instructor: Dr. Khalid Faraj

Fist Exam

16/10/2011

1. Consider two systems described by the following linear constant coefficient difference equations:

Y[n] =
$$0.2y[n-1] + x[n] = 0.3x[n-1] + 0.02x[n-2]$$
 $Y[n] = x[n] - 0.1x[n-1]$

Prove that the systems are equivalent.

2. The input x[n] and the output of a casual system obeys the relationship

relationship
$$Y[n] = x[n] + 0.3y[n-2] \qquad H(2) \longrightarrow h(h)$$

$$Y(2) = x(2) + 0.3y(2) = 2$$

A. Find the impulse response.

B. Determine if the system is stable or not.

3. Consider the following LTI system:

Determine a closed form expression for the response of the system to the following input signal:

$$x[n] = \begin{bmatrix} 1 & n \ge 4 \\ 0 & otherwise \end{bmatrix}$$

If the system is casual and initially at rest.

4. Consider the following discrete time signal x[n]

$$x[n] = \begin{bmatrix} n+1 & 0 \le n \le 3 \\ 4 & n \ge 4 \\ 0 & otherwise \end{bmatrix}$$

A. Determine the z-transform $\underline{x(z)}$ of x[n], and represent it as a ratio of polynomials in z^{-1} .

- B. What is the region of convergence(ROC) of the z transform.
- 5. Consider the following system:

$$h[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 3.5\delta[n-3] + 3.5\delta[n-4] + 3.5\delta[n-5] + 3\delta[n-6] + 2\delta[n-7] + \delta[n-8].$$

A. Find $H(e^{jw})$.

B. Find the group delay for the system.

6. Consider the system represented by the figure:

A. Find the system function relating the z-transform of the input and output.

B. Write the difference equation of the system.