

Faculty of Information Technology

Computer Systems Engineering

Digitol Signal Processing - **ENCS431**

Second Exam

i

Fall Semester 30/1/2014

 $\Box \rho$

Time allowed: 90 minutes

Name: ID: section: 9:30-11:00, 12:30 -2:00

Question 1: [35 marks] Structures for DT systems

(a) Consider a causal LTI system whose system function is

$$
H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}
$$

Draw the signal flow graph for implementations of the system in each of the following forms: [5pts each]

Direct form **I.** (i) $\sim 10^{-1}$

I Direct form **II** (Canonical form)

 $\mathbf{1}$

(iii) Parallel form using first order sections by long division: P(2) Can expression
\n
$$
H(Z) = 8 + \frac{8z^2 - 7}{1 + \frac{7}{2}z^2 + \frac{1}{2}z^2}
$$
 by using parallel fractions
\n
$$
\frac{3z^2 - 7}{1 - \frac{7}{5}z^2 + \frac{1}{2}z^2} = \frac{A_1}{1 - \frac{1}{5}z^2} + \frac{A_2}{1 - \frac{1}{5}z^2} = \frac{12}{1 - \frac{1}{5}z^2} - \frac{25}{1 - \frac{1}{5}z^2}
$$
\n(iv) $\frac{12}{1 - \frac{7}{5}z^2 + \frac{1}{2}z^2} = \frac{A_2}{1 - \frac{1}{5}z^2} + \frac{A_2}{1 - \frac{1}{5}z^2} = \frac{12}{1 - \frac{1}{5}z^2} - \frac{25}{1 - \frac{1}{5}z^2}$
\n(iv) $\frac{12}{1 - \frac{1}{5}z^2 + \frac{1}{5}z^2} = \frac{12}{(1 - \frac{1}{5}z^2)^2} - \frac{25}{(1 - \frac{1}{5}z^2)(1 - \frac{1}{5}z^2)}$
\n(v) $\frac{1}{2}$
\n $\frac{1}{2}$

Question 2: [30 marks] DFT

(a) The figure below shows the block diagram of an LTI system, where $x(n)$ is the input sequence, $h(n)$ is the impulse response of the system and $y(n)$ is the output sequence. The magnitude and phase (in degrees) of the Discrete Fourier Transform $H(k)$ of $h(n)$ is shown in figures (a) and (b), respectively.

Assume the input sequence $x(n) = \{ 1, 0, 2, 3 \}.$

(i) Determine the impulse response of this system, h(n)? [5pts] $h(t) = \frac{1}{4} \sum_{k=0}^{K} H(k) e^{-\frac{1}{2} \sum_{k=0}^{K}}$ $H(o) = 2^{\int o} = 2$ H(1) = $\sqrt{2}e^{-\frac{1}{2}I_{2}} = \sqrt{2}(cos 135 + j sin 135)$
 $= -1 + j$

H(2) = 0 $j25$

H(3) = $\sqrt{2}e^{-\frac{1}{2}i\sqrt{2}(cos 225 + j sin 225)}$
 $= -1 - j$

h(n) = $\frac{2}{3}$ = $\frac{1}{2}$ H(k) W_{1}^{nk} $3p$ ts $h(3)=1$ $h(n) = 2^{8}0, 0, 1, 13$ $\frac{12\pi}{e}$ k. ρ = $\frac{1}{4}(2-1+i-1-i) = 0$ $h(s) = \frac{1}{2} \sum_{i=1}^{3} H(s)$ Determine the output sequence y(n) by computing the 4-point circular convolution? [5pts] Using technology method you = XIN (4) has 3 $\mathbf{v}:$ \mathbf{z} Õ $\overline{3}$ $\overline{2}$ \circ $X(w)$ \mathbf{I} Î. $h(r)$ \circ Õ Ò Õ 5) $y_{0.35}$ {2,5,41}, $s_{0.5}$ ð \circ \mathcal{O} \circ \circ $\ddot{\circ}$

 \bullet

3

 \mathcal{L}

 \mathcal{L}

 \mathcal{O}

Determine the output sequence, y(n) using DFT? [10 pts] (ii)

 \sim

$$
\gamma_{1}\psi\left[\begin{array}{c}\chi(v)\\ \chi(v)\\ \chi(v)\\ \chi(v)\end{array}\right]=\begin{bmatrix}1&1&1\\ 1&-1&-1\\ 1&-1&-1\\ 0&-1&-1\end{bmatrix}\begin{bmatrix}1\\ 0\\ 2\\ 3\end{bmatrix} = \begin{bmatrix}6\\ -1+3j\\ -1-3j\end{bmatrix} = \begin{bmatrix}6\\ -1+3j\\ 0\\ -1+3j\end{bmatrix}\begin{bmatrix}2\\ -1+j\\ 0\\ -1-j\end{bmatrix} = \begin{bmatrix}12\\ -2-4j\\ 0\\ -2+1\end{bmatrix}
$$

(b) Let 10-length finite sequence $x(n) = \{1, 2, 3, a, 4, 3, (2, 1, 2, 3) \}$ for $0 \le n \le 9$. Assume $x(n)$ is zero outside the interval $0 \le n \le 9$. Let $X(e^{j\omega})$ be the DTFT of $x(n)$ and $X_1(k)$ be samples of $X(e^{j\omega})$

every
$$
\frac{\pi}{3}
$$
; i.e.,
\n $X_1(k) = X(e^{j\omega})|_{\omega = (\pi/3)k}$, $0 \le k \le 5$

The 6-point sequence x1(n) that results from taking the 6-point inverse DFT of $X_1(k)$ is

 $x1(n)=$ {3, 3, 5, 7, 1, 3} for $0 \le n \le 5$. Based on this sequence, x1, determine the value of the fourth sample of x(n), i.e. x(3) or a? is value of a unique? If so justify your answer. If not, find another choice of a consistent with the given information? [10 pts]

X(16) is 6-point DFT of X(n)
\nSince length of X(n) is greater than 6 =) There will be
\n
\n
$$
\lim_{x \to 0} \frac{a\{i_{asj}}\}{\sinh y} = \lim_{x \to 0} \frac{a}{\sinh y} = \lim_{x \to 0} \frac{a}{\sin y} = \lim_{x \to 0} \frac{
$$

Question 3:[35 marks] Sampling and reconstruction

Consider the system below:

(a) Let the continuous-time input signal $x_c(t) = \cos(25\pi t) + \cos(120\pi t) + \cos(50\pi t)$, what is the range of sampling frequency, in Hz, that will avoid aliasing in the C/D converter? [5 pts]

 max log 4×4 2×7 = 120 π . 525 7, 252N => 525 7, 240J 32 2752240777221204223

(b) Now, assume the sampling frequency of C/D converter FS1=200Hz and the discrete system is an ideal low-pass filter with frequency response as follow:

(c) If the sampling frequency of D/C converter FS2 = 40Hz, Find the reconstructed continuous-time signal if the analogue reconstruction filter in the D/C converter, $H_r(j\Omega)$, has a gain of (0.025) and cut-off frequency, Ω_c half of the sampling frequency. Sketch spectrums of all involved signals[15pts]

 γ (e^{ω}) 525 = 21/5 = 2071 0.005 π 0.1005 M $32c = 407$
 $T = \frac{1}{40}$ $\frac{7}{4}$ - 亚 k $-\frac{1}{4}$ 长 $\Sigma = \frac{\omega}{T}$ \int_{0}^{0} 0.1 $rac{1}{\sqrt{2}}$ $\sqrt{2}$ 10π 5π -57 -107 $H_v(i)2$ كوص 44π -401 χ (jr) 0.095π 0.0057 0.0057 0.0057 10π 57 -5π -107 $y \begin{bmatrix} 1 & 1 \end{bmatrix}$ so, onlying $y_{t}(k) = 0.005 \begin{bmatrix} cos(6\pi k) + cos(10\pi k) \end{bmatrix}$