

Faculty of Engineering and Technology

Electrical and Computer Engineering

DSP (Fall 2015)

Quiz (2)

Name:

ID:

Consider a first-order digital filter, which is described by the following difference equation:

$$y(n) = x(n) - ax(n-1), a \neq 0$$

1- Is this filter IIR or FIR filter? Justify? FIR because it doesn't depend on output

2- Find the coefficient a such that this filter attenuates signal -6 db at frequency $\omega = \frac{\pi}{4}$?

To find freg Respose, /H(E), of this system, we take F.T. For two sides

Y(E) = X(E) - a E X (E)

(2) X(by) = 1-a== H(by)

H(e) = 1 - a coswtaj sinw

 $|H(iv)| = \sqrt{1-acos\omega^2 + (asinw)^2}$

20 $\log_{10} |HC^{iw}| = -6$ $|H(e^{iT_4})| = 10 = 0.5$

(2) $(1-a\cos\frac{\pi}{4})^2 + (a\sin\frac{\pi}{4})^2 = (0.5)^2$

 $(-a)^2 + (a)^2 = 0.25$

1-20 + 02 + 02 = 0.25

1-529 +02 =0.26

$$a^2 - 52a + 0.75 = 0$$

$$a = \sqrt{2} + \sqrt{2 - 4(0.15)}$$

Faculty of Engineering and Technology

Electrical and Computer Engineering

	DSP (Fall 2015)
	Quiz (2)
	Name: ID:
	Consider the following 2 nd order digital filter:
	$y(n) = ax(n) + bx(n-2), \ a \neq 0, b \neq 0$
[2]	1- Is this filter IIR or FIR? Justify? FIR be cause it doesn't depend on original
[8]	2- Determine coefficients; a and b such that filter attenuates signal magnitude by half at frequency $\omega = \frac{\pi}{3}$ and its
	frequency response is normalized so that H(0)=1.
	Y(je) = a X(je) + be X(je)
[2]	Y(Jw) = HCey = a + be
	at w=0=) H(e)=1=) [a+b=1] (2)
	H(e) = = = = H(e) = = = (a+bcoszw) + (bsinzw) =
	al w = 7.
	$a + b \cos 2\pi$ $+ \left(b \sin 2\pi\right)^2 = \frac{1}{4} \cdot \left(a - \frac{1}{2}(a - \frac{1}{2}) = 0\right) = \frac{1}{4} = 0$
[2]	$(a - \frac{1}{2}b)^2 + (\frac{\sqrt{3}b}{2})^2 = \frac{1}{4}$ 50 , $b = 1 - a = 1 - \frac{1}{2} = \frac{1}{2}$
	$d^2-ab+\frac{1}{4}b^2+\frac{3}{4}b^2=\frac{1}{4}$
	$a^2-ab+b^2=\frac{1}{4}$, but $b=1-a$
	$a^2 - a(1-a) + (1-a)^2 = \frac{1}{4}$
	$a^2 - a + a^2 + 1 - 2a + a^2 = 1$
	$3a^2 - 3a + \frac{3}{4} = 0$