UNIVERSITY OF
NEWCASTLE UPON TYNE

School of Electrical, Electronic and Computer
Engineering

Matlab/Simulink Tutorial

Release 13 - version 6.5
Second Edition
June 2003

Contents

'G-I-I-AP:FER—‘I-'—'Fhe—Bas-ies ... 4 |

(I (oo [U T3 (o) o ISP RPPTTI 1
1.2 SIMPIE MaAN ...t 2
1.3 Matlab and variables..................oooumuiiiiiiiiiei e 2
1.4 Variables and simple Mathcoiiiiiiiiiiiiiiiiiieee e 4
1.5 COMPIEX NUMDEIS......uuiiiiiiiii ettt e et e e e e s et eeeaeeeseennreeeeaaaeeannns 4
1.6 Common mathematical fTUNCHONSuuueueueeiriiiiiiiieeiieieveieeeveteveeeveveeeeeeeeeveveeeeenns 5
(1.7 IM=FIIES .o oeiiiiiiiiiiiiii ettt ettt eeteeeeeteeeeeeeeesseeeeseseseseseesbesssesssssesesssssssesnsnsssnsnnnnsen 6
LR A o]] o= (o P PP PPPPPPPPIR 8
1.9 Number display fOrmatsS...........ccuuviiiieeiiiiiiiiiiiie e e e e e 8
O N =T T o — 8
N [8
(R S T T 8
I—L%I-I-AP*ER—Z-.—Arrays—and-Plots .. 9
D1 AITAY CONSTIUGCTION ...t e e e e e s eaeeeeennaas 9
D .2 PlOTS ..o oottt eeeeeeeesneeseessenensnieeeeeeeeees 9
_F Array addressing. .o 12
A AITAY CONSITUCHION ...ttt a et e e e e e e e e et eeeeaaeas 14
B AAY OrIENEAION. ...t e e e e e e e e ennaanaeeas 16
P.6 Array — Scalar MathematiCsc.oooiiiiiiiiiiiiiiiee 17
P.7 Array-Array mathematicSoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieiie e ieieve e eeebebeeeeeeeees 18
D 8 8508, OIS, .. wuuuiiiiiiiiiitte oo et ee et s e ettt eeeet e eeeeesseeesn s eeeererernnnseeeserrrnnnnaeeeereeres 19
P.9 Array Manipulation..............o 20
P10 Array Searching and COMPATiSONeiiiiuuiiiiiiiiieiiiieieeeee e e 21
R NG = VRS TV ST PP PPPPPPPPR 22
VA e o e 23
SRS e T 25
B.2 Relational and Logical (@ oT= = 1] o T PO 25
2.1 RelatioNal OPEIratOrSc.ceei ettt a e e e e e eeteeeaaaeeeeannees 25

B.2.2 Logical Operators.o 26

B.3 CONIOl FIOW ..o en e ensnans 27|
B.3. 1 OI” IOODS ..ttt ae 27

B.3.2 “WHIIE” LOOPS.iiieeeiiieeiiieee ettt ettt ettt e e et eee e saseaseeesnseeesnsseessnssesnnnsnn 28

B.3.3 if-else-end CONSIIUCHONSuvuvuuieiiieiiiiiiiiiiiiiiiiiiiiiieiiiitaas 29

.1 POIYNOMUAIS ... eesnnanan 30
1.2 NUMENCal INTEGratioN.......ciiieeiiiieeeeeeeeeee e eeaaaeeeen 32
1.3 Numerical Differentiation ... 33
I VT T o] T PN 34
B.4.1 RUIES QN PIOPEITIESvveeeeeeeeeee et e seeeseteesneeesnteeaeeeeneeas 34

TR oo TUTes (oY s Y —— 36
5.2 SOIVING ODEuuiiiiiiiiiiiiititiieiitei ettt evetetevevebeveeeeeeeeeeeeeteseeesebesesesesesesesesnsernsnses 36
§.2.1 EXAMDIE Tt 39

D.2.2 EXAMPIE 2.t e e e e e e e et e eeaeeeeneas 43

BD.2.3 EXAMIPIE 3 ...t e e e et e ee e eeenneeerneerennaes 45

D. 2.4 EXEICISE vttt 45

.3 Second Order System Example ... 46

4 Fourier Spectrum EXample.............ooooeiiiiiiiiieieeeee e 53

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

CHAPTER 1: The Basics

1.1 Introduction

Matlab stands for Matrix Laboratory. The very first version of Matlab, written at the University of
New Mexico and Stanford University in the late 1970s was intended for use in Matrix theory, Linear
algebra and Numerical analysis. Later and with the addition of several toolboxes the capabilities of
Matlab were expanded and today it is a very powerful tool at the hands of an engineer.

Typical uses include:

¢ Math and Computation

e Algorithm development

¢ Modelling, simulation and prototyping

e Data analysis, exploration and visualisation
e Scientific and engineering graphics

e Application development, including graphical user interface building.

Matlab is an interactive system whose basic data element is an ARRAY. Perhaps the easiest way
to visualise Matlab is to think it as a full-featured calculator. Like a basic calculator, it does simple
math like addition, subtraction, multiplication and division. Like a scientific calculator it handles
square roots, complex numbers, logarithms and trigonometric operations such as sine, cosine and
tangent. Like a programmable calculator, it can be used to store and retrieve data; you can create,
execute and save sequence of commands, also you can make comparisons and control the order
in which the commands are executed. And finally as a powerful calculator it allows you to perform
matrix algebra, to manipulate polynomials and to plot data.

To run Matlab you can either double click on the appropriate icon on the desktop or from the start
up menu. When you start Matlab the following window will appear:

<) MATLAB M= E3
File Edit Yiew ‘Web Window Help
0 B“‘| v B o |] | 2 |Curremouremry-|C\mat|anm2\wnrk =l J

A Command Window
S\ MATLAE =
o\ Connunications Toolbox

i control Systen Toolbox
#f\Filter Design Toolbox To get started, select "MATLAE Help” from the Help menu.

This is a Classroom License for instructional use only.
Research and commercial use is prohibited.

o\ Fuzzy Logic Toolhox

o\ Tnage Processing Toolhox

\INT Contral Toolhox

HHEC Toolbox

A\ Mu-inalysis and Synthesis Toolbox
flHeural Wetwork Toolbox =

4| >| Launch Pad | Warkspace

b3

|save our.dac our -ascis 4]
%$-- 11:42 AN 9/17,/02 --%

s
F-— 11:43 AN 9717402 --%

sqm
ang
%-- 10:23 AM 9/18/02 --% j

4| Pl Cormmand History | Current Directary | 1| B

Ready |

Figure 1: Desktop Environment

Initially close all windows except the “Command window”. At the end of these sessions type
“‘Demo” and choose the demo “Desktop Overview” for a full description of all windows. The
command window starts automatically with the symbol “>>” In other versions of Matlab this symbol
may be different like the educational version: “EDU>>". When we type a command we press
ENTER to execute it.

Chapter 1 Page 1

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

1.2 Simple math

The first thing that someone can do at the command window is simple mathematic calculations:

» 141
ans =
2
» 5-6
ans =
-1
» 7/8
ans =
0.8750
» 9%*2
ans =
18
The arithmetic operations that we can do are:
Operation Symbol Example
Addition, a+b + 5+3
Subtraction, a-b - 5.05-3.111
Multiplication, a*b * 0.124*3.14
Left division, a\b \ 5\3
Right division, b/a / 3/5(=5\3)
Exponentiation, a° A 5A2

The order of this operations follows the usual rules: Expressions are evaluated from left to right,
with exponentiation operation having the highest order of precedence, followed by both
multiplication and division, followed by both addition and subtraction. The order can change with
the use of parenthesis.

1.3 Matlab and variables

Even though those calculations are very important they are not very useful if the outcomes cannot
be stored and then reused. We can store the outcome of a calculation into variables by using the

“n,

symbol “=":
» a=5

a =

Chapter 1 Page 2

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

» newcastle=7
newcastle =

7
» elec elec sch=l
elec elec sch =

1

We can use any name for our variables but there are some rules:
e The maximum numbers of characters that can be used are 63
e Variable names are case sensitive, thus the variable “A” is different from “a”.

e Variable names must start with a letter and they may contain letters, numbers and

underscores but NO spaces.

Also at the start of Matlab some variables have a value so that we can use them easily. Those
values can be changed but it is not wise to do it. Those variables are:

Special variable Value

ans The default variable name used for results

pi 3.14...

eps The smallest possible nhumber such that, when added to
one, creates a number greater than one on the computer

flops Count of floating point operations. (Not used in ver. 6)

inf Stands for infinity (e.g.: 1/0)

NaN Not a number (e.g: 0/0)

| (and) j i=j=\/—_1

nargin Number of function input arguments used

nargout Number of function output arguments used

realmin The smallest usable positive real number

realmax The largest usable positive real number

Also there are names that you cannot use: for, end, if, function, return, elseif, case, otherwise,
switch, continue, else, try, catch, global, persistent, break.

If we want to see what variables we have used, we use the command “who”:

Chapter 1 Page 3

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

» who
Your variables are:
a b newcastle

ans elec _elec sch

To see the value of a variable we type its name:

» a
a =

5
To erase a variable we use the command “clear”

» clear a

Now if we check our variables:
» who

Your variables are:

ans elec _elec sch
b newcastle

1.4 Variables and simple math

The variables that we have just defined can be used, exactly like the numbers:
» d=a+b
d =
11

» f=za*newcastle

35

1.5 Complex numbers

One of the characteristics that made Matlab so popular is how easily we can use complex
numbers. To define a complex number we have to use the variable i (or j):

» z=1+7j
Zz =
1.0000 + 1.00001

» z21=5.36-501

Chapter 1 Page 4

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

zl =
5.3600 -50.00001
Complex numbers and variables can be used exactly like real numbers and variables.

To transform a complex number from its rectangular form to its polar we use the commands “abs”
and “angle”

» zamp=abs (z)
zamp =

1.4142
» zphase=angle (z)
zphase =

0.7854
At this point we must note that Matlab ALWAY'S uses radians for angles and not degrees.

To find the real and the imaginary part of a complex number we use the commands “real” and
“‘imag”:

» zreal=(real(zl))
zreal =
5.3600
» zimaginary=(imag(z1l))
zimaginary =
-50

1.6 Common mathematical functions

Like most scientific calculators, Matlab offers many common functions important to mathematics,
engineering and the sciences. The number of those functions is more than 1000 just in the basic
Matlab. And every function may take different forms depending on the application. So it is
impossible in this text to analyse all of them. Instead we will give a table of the most common that
we think that will be useful.

Matlab name Comments

abs(x) Absolute value or magnitude of complex number.
acos(x) Inverse cosine.

angle(x) Angle of complex number.

asin(x) Inverse sine.

atan(x) Inverse tan.

conj(x) Complex conjugate.

Chapter 1 Page 5

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

cos(x) Cosine.

exp(x) e”.

imag(x) Complex imaginary part.
log(x) Natural logarithm.

log10(x) Common logarithm.

real(x) Complex real part.

rem(x,y) Remainder after division: x/y
round(x) Round toward nearest integer.
sqrt(x) Square root.

tan(x) Tangent

One useful operation of the command prompt is that we can recall previous commands by using
the cursor keys (T,d). Also with the use of the mouse we can copy and paste commands.

1.7 M-files

For simple problems, entering the commands at the Matlab prompt is fast and efficient. However
as the number of commands increases, or when you wish to change the value of a variable and
then re-valuate all the other variables, typing at the command prompt is tedious. Matlab provides
for this a logical solution: place all your commands in a text file and then tell Matlab to evaluate
those commands. These files are called script files or simple M-files. To create an M-file, chose
form the File menu the option NEW and then chose M-file. Or click at the appropriate icon at the
command window. Then you will see this window:

) Untitled =] 3
Fie Edit View Tewt Debug Bieakponis 'Web Window Help

OB S| 568 o e e | B |68 E D 82| stesFe
1

Lo e

Ready

Figure 2: M-file window

After you type your commands save the file with an appropriate name in the directory “work”. Then
to run it go at the command prompt and simple type its name or in the M-file window press F5. Be
careful if you name your file with a name that has also used for a variable, Matlab is going to give
you the value of that variable and not run the M-file. When you run the M-file you will not see the
commands (unless you would like to) but only the outcomes of the calculations. If you want to do a
calculation either at the command prompt or in an M-file but not to see the outcome you must use

Chapter 1 Page 6

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

“,n

the symbol “;” at the end of the command. This is very useful and makes the program very fast.
E.g.

» a=10

» b=5

» c=a+b
C =

15
With this code you actually want only the value of the variable “c” and not “a” and “b” so:

» a=10;
» b=5;
» c=a+b
C =

15

Even though now this seems a littlie bit unnecessary you will find it imperative with more complex
programs.

Because of the utility of M-files, Matlab provides several functions that are particularly useful:

Matlab name Comments

disp(ans) Display results without identifying the variable names
disp(‘Text’) Display Text

input Prompt user for input

keyboard Give control to keyboard temporally. (type return to quit)
pause Pause until user presses any keyboard key

pause(n) Pause for n seconds

waitforbuttonpress Pause until user presses mouse button or keyboard key.

When you write an M-file it is useful to put commends after every command. To do this use the
symbol “%”:

temperature=30 % set the temperature
temperature =

30

Chapter 1 Page 7

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS — SECOND EDITION

1.8 Workspace

All the variables that you have used either at the command prompt or at an M-file are stored in the
Matlab workspace. But if you type the command “clear” or you exit Matlab all these are lost. If you
want to keep them you have to save them in “mat” files. To do this go from the File menu to the
option: “save workspace as...”. Then save it as the directory “work”. So the next time you would
like to use those variables you will load this “mat” file. To do this go at the File menu at chose
“Load workspace...”. To see the workspace except from the command who (or whos) you can

click at the appropriate icon at the command window.

1.9 Number display formats

When Matlab displays numerical results it follows some rules. By default, if a result is an integer,
Matlab displays it as an integer. Likewise, when a result is a real number, Matlab displays it with
approximately four digits to the right of the decimal point. You can override this default behaviour
by specifying a different numerical format within the preferences menu item in the File menu.

The most common formats are the short (default), which shows four digits, and the format long,
which shows 15 digits. Be careful in the memory the value is always the same. Only the display
format we can change.

1.10 Path Browser

Until now we keep say save the M-file or the workspace to the “work” directory. You can change
this by changing the Matlab path. To see the current path type the command “path”. If you wish to
change the path (usually to add more directories) from the File menu chose “Set Path...”. The
Following window will appear:

[
) Set Path [0]
All changes take effect immediately.
IATLAB search path;
Add Folder.. (23 CMATLABRI Ziwork j

(L CWMATLABR1 2vworkiternp
Add with Subfolders
32

(L C:WATLABRT Zwiarkiphd

et T (3 CWATLABR Zworkiphdidrives_exercises

(L CWMATLABR 1 2weorkiphdidrives_lib

figye Up (L] CWMATLABR Zworkiphdiiee paper
[E— (L0 CWATLABR T Zwiorkiphdiee papendetta_or_star
(3 CWATLABR 2workiphdiee papensimulink model
|z By [CWMATLABR1 2wiorkiphdiiee paperimodels form ct

[CWATLABR 1 Zwiorkiphdliee papemaodels from aur

e it (0] C:MATLABR1 Zworkphdliee papenfigures
AT AT sslAm et ""_nl;l
»

Save | Close | REveri | Default | Help |

Figure 3 Path Browser

After you added a directory you have to save the new path if you want to keep it for future uses.

1.11 Toolboxes.

To expand the possibilities of Matlab there are many libraries that contain relevant functions.
Those libraries are called Toolboxes. Unfortunately because of the volume of those toolboxes it is
impossible to describe all of these now.

1.12 Help...........

As you have realised until now Matlab can be very complicated. For this reason Matlab provides
two kinds of help. The first one is the immediately help. When you want to see how to use a
command type “help commandname”. Then you will see a small description about this command.
The second way to get help is to get to from the help menu in the command window.

Chapter 1 Page 8

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

CHAPTER 2: Arrays and Plots

2.1 Array construction

Consider the problem of computing values of the sine function over one half of its period, namely:
y=sin(x), x E [0,11]. Since it is impossible to compute sin(x) at all points over this range (there are
infinite number of points), we must choose a finite number of points. In doing so, we are sampling
the function. To pick some number, let’'s say evaluate every 0.117 in this range, i.e.

let x={0, 0.1, 0.2, 0.31, 0.47T1, 0.511, 0.67T1, 0.711, 0.8171, 0.9717, 11}. In Matlab to create this vector is
relative easy:

» x=[0 0.1*pi O0.2*pi O0.3*pi O0.4*pi O0.5*pi 0.6*pi O0.7*pi 0.8*pi
0.9*pi pil

X =
Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850
Columns 8 through 11
2.1991 2.5133 2.8274 3.1416
To evaluate the function y at this points we type:
» y=sin (x)
y =
Columns 1 through 7
0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511
Columns 8 through 11
0.8090 0.5878 0.3090 0.0000
To create an array in Matlab, all you have to do is to start with a left bracket enter the desired

values separated by comas or spaces, then close the array with a right bracket. Notice how

Matlab finds the values for “x” and stores them in the array “y”.

2.2 Plots

One of the most useful abilities of Matlab is the ease of plotting data. In Matlab we can plot two
and three-dimensional graphics. Here we will only study two-dimensional plots. Assume that in

vector “x” we have the data from an experiment. To plot those we use the command “plot” like this:

» z=rand(1,100);
» plot(z)

Then we will see a new window that contains the following figure:

Chapter 2 Page 9

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

0 10 20 30 40 50 60 70 80 90 100

As we can see the command “plot” created a graph where the elements of the “y” axis are the
values of the vector “z” and at the "x” axis we have the number of the index inside the vector.

Another way to use the command “plot” is like this:

» t=0:0.1:10;
» z=sin(2*pi*t);
» plot(t, z)

0.8 B

0.6 g

0.4 4

0.2 g

0.2}

0.4}

0.6

-0.8 |- g

Also we can combine two graphs at the same figure:

» £=0:0.1:10;

» zl=sin(2*pi*t);
» z2=cos (2*pi*t);
» plot(t,zl,t,z2)

A A O A A A A A A
L O T O

4t T TPy P TIeY T TT
o2 L VY LY I I ey A

02 \ \ \ \
O2e] RIREEN [1] |
|1/ IR |
oal LUV VT VT T VY LT
ost LU L

O8N VN W T VW VW VT

Chapter 2 Page 10

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

Or:

» £=0:0.1:10;

» zl=sin(2*pi*t);
» zZ2=cos (2*pi*t);
» plot(t,zl)

» hold

Current plot held

R

0 1

0

®

0

[

0

i

0

[N}

o

-0

[N}

-0

i

-0

[

-0

®

0

ATTENTION: If we do not use the command “hold” the second graph will overwrite the first one:

» £=0:0.1:10;

» zl=sin(2*pi*t);
» zZ2=cos (2*pi*t);
» plot(t,zl)

» plot(t,z2)

0.8

0.6 -

0.4+

0.2+

0.2

0.4]

-0.6

0.8

Also we can change the colour and the line style of the graph. This can be done either by typing
the command plot like this:

» £t=0:0.1:10;
» zl=gin(2*pi*t);
» plot(t,zl,'r',+)

Chapter 2 Page 11

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

0.8
065 + ++ +4+ ++ ++ ++ ++ ++ ++ ++ T
0.4l
0.2
0 + + + + + + F 4+ F ot
-0.2+
-0.4 1
06 ++ ++ ++ ++ ++ ++ ++ ++ ++ +H

-0.8|1

f‘;‘;é’m@f% #50 Edit Propriies for [Line © =1 ¥ 9]
Data Stle | info |

1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ - Line Propertie Marker Propertie
08 / ﬁ \ [\ [\ 1 Line swle [soa ey 7] sife [ro maner woney =]
0 \ / 1 Lnewidth o5 =] swfis =]
04 ‘ \ } \ Color [Blue hd Edge :ulurlm
02 \ \ Fanacnlner[
o \ | / / \ / ‘
.8
e \ \ (/ \ \ / \ / \ ‘ \ r ~Example

RIATRTRIRinl

I | I \ | |

ERERRR

: ’ ‘ ’ ’ ! : o Cancel Apply | Immediate apply Help
Ready

And then simply “paste” on the “Word” file.

2.3 Array addressing

Suppose that we have the array “x” and we want to find the value of the third element. To do this
we type:

» a=x(3)
a =

0.6283

Chapter 2 Page 12

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

Or we want the first five elements:
» b=x(1:5)
b =

0 0.3142 0.6283 0.9425 1.2566

Notice that, in the first case the variable “a” is a scalar variable and at the second the variable “b” is
a vector.

Also if we want the elements from the seventh and after we type:
» c=x(7:end)
C =

1.8850 2.1991 2.5133 2.8274 3.1416

Here the word “end” specifies the last element of the array “x”. There are many other ways to
address:

» d=y(3:-1:1)
d =
0.5878 0.3090 0

These are the third, second and first element in reverse order. The term 3:-1:1 says “start with 3,
count down by 1 and stop at 1.

Or:
» e=x(2:2:7)
e =

0.3142 0.9425 1.5708

These are the second, fourth and sixth element of x. The term 2:2:7 says, "start with 2 count up by
two and stop when seven”. In this case adding 2 to 6 gives 8, which is greater than 7, so the eighth
element is not included.

Or:
» f£=y([8 2 9 11])

f =

0.8090 0.3090 0.5878 0

Here we used the array [8 2 9 1] to extract the elements of the array “y” in the order we want them.

Chapter 2 Page 13

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

2.4 Array Construction

Earlier we entered the values of “x” by typing each individual element in “x”. While this is fine when
there are only 11 values of “x”, what if there are 111 values? So we need a way to automatically
generate an array.
This is:
» x=(0:0.1:1) *pi
X =
Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11

2.1991 2.5133 2.8274 3.1416

Or:
» x=[0:0.1:1] *pi
X =
Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850
Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

The second way is not very good because it takes longer for Matlab to calculate the outcome (see
[2] page 42).

Or:
» x=(0:0.1:1)

X =
Columns 1 through 7
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
Columns 8 through 11
0.7000 0.8000 0.9000 1.0000
» xa=x*pi
xa =

Columns 1 through 7

Chapter 2 Page 14

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850
Columns 8 through 11

2.1991 2.5133 2.8274 3.1416

Or we can use the command “linspace”:
» x=linspace(0,pi,11)
X =
Columns 1 through 7

0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850
Columns 8 through 11

2.1991 2.5133 2.8274 3.1416

In the first cases the notation “0:0.1:1” creates an array that starts at 0, increments by 0.1 and ends
at 1. Each element then is multiplied by 1 to create the desire values in “x”. In the second case, the

Matlab function “linspace” is used to create “x”. This function’s arguments are described by:

linspace(first_value, last_value, number_of values)

The first notation allows you to specify the increment between data points, but not the number of
the data points. “linspace”, on the other hand, allows you to specify directly the number of the data
points, but not the increment between the data points.

For the special case where a logarithmically spaced array is desired, Matlab provides the
“logspace” function:

» a=logspace(0,2,11)

a =
Columns 1 through 7
1.0000 1.5849 2.5119 3.9811 6.3096 10.0000
15.8489

Columns 8 through 11

25.1189 39.8107 63.0957 100.0000

Here the array starts with 10°, ending at 10 and contains 11 values.
Also Matlab provides the possibility to combine the above methods:
» a=1:5

a =

Chapter 2 Page 15

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

»

»

1 2

b=1:2:9

2.5 Array Orientation

4 5
7 9
4 5 1 3

In the preceding examples, arrays contained one row and multiple columns. As a result of this row
orientation, they are commonly called row vectors. It is also possible to have a column vector,
having one column and multiple rows. In this case, all of the above array manipulation and
mathematics apply without change. The only difference is that results are displayed as columns,

rather th

an as rows.

To create a column vector we use the symbol ;"

» c=[1;2;3;4]

w N R

B

So while spaces (and commas) separate columns, semicolons separate rows.

Another way to create a column vector is to make a row vector and then to transpose it:
» x=linspace(0,pi,11);

»

x1

If the vector x contained complex numbers then the operator

xl=x"'

0

0.3142
0.6283
0.9425
1.2566
1.5708
1.8850
2.1991
2.5133
2.8274
3.1416

the elements:

would also give the conjugate of

Chapter

2

Page 16

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

» k=[0 1+2i 3+0.54651i];
» l=k!

1.0000 - 2.00001
3.0000 - 0.54651
To avoid this we can use the dot-transpose:

» l=k.!
1 =

0
1.0000 + 2.00001
3.0000 + 0.5465i

Since we can make column and row vectors is it possible to combine them and to make a matrix?
The answer is yes. By using spaces (or commas) to separate columns and semicolons to separate
rows:

» A=[1 2 3; 4 5 6]

A =

[
N
w

Or we can use the following notation:

» A=[1 2 3

4 5 6]

A =
1 2 3
4 5 6

2.6 Array — Scalar Mathematics

When we use scalar and arrays we have to be careful. For example the expression g-2, where g is
a matrix would mean g-2*I, where “I” is the unitary matrix. In Matlab this does not apply. The above
expression would mean subtract from all the elements in the matrix g the number 2.:

» g=[1 2 3;4 5 6]1;
» gl=g-2

-1 0 1
3 4

Otherwise we can do everything that we can do with the scalar variables.

Chapter 2 Page 17

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

2.7 Array-Array mathematics

Here we can do any operation we want as long as it is mathematically correct. For example we
cannot add matrices that have different number of rows and columns.

»
»
»

»

»

A=[1 2 3 4;5 6 7 8;9 10 11 12];
B=[1111;2 2 2 2;3 3 3 3];
C=A+B

2 3 4 5

7 8 9 10

12 13 14 15
D=C-A

1 1 1 1

2 2 2 2

3 3 3 3
F=2*A-D

1 3 5 7

8 10 12 14

15 17 19 21

The multiplication and division with matrices can be done with 2 different ways.

The first is the classical

ok

or /” and follows the laws of the matrix algebra:

M=[1 2;3
N=[5 6;7
K=M*N

4] ;
81;

19 22
43 50

The second way is to do those arithmetic operations element by element, and so we do need to
care about the dimensions of the matrices. To do this we use the symbols “*” and “/” but with a dot
in front of them “.*” and “./” :

»

K

K=M.*N
5 12
21 32

The same procedure with division and multiplication can be done with array powers:

Chapter 2 Page 18

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

» N1=N"2
N1l =
67 78
91 106
» N2=N."2
N2 =
25 36
49 64

» M1=M."(-1)

M1

1.0000 0.5000
0.3333 0.2500

2.8 Zeros, Ones, ...

Because of their general utility, Matlab provides functions for creating arrays:
The command “eye” creates the unitary matrix:
» g=eye(2,3)

The command “zeros” creates the zero matrix:
» f=zeros (5)

f =

O OO oo
O OO oo
O O O oo
O OO oo
O OO oo

The command “ones” makes an array where all the elements are equal to 1:

» h=ones (3, 3)

h =
1 1 1
1 1 1
1 1 1

The command “rand” makes an array where the elements are uniformly distributed random
numbers:

Chapter 2 Page 19

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

» l=rand(5,6)

1l =
0.9501 0.7621 0.6154 0.4057 0.0579 0.2028
0.2311 0.4565 0.7919 0.9355 0.3529 0.1987
0.6068 0.0185 0.9218 0.9169 0.8132 0.6038
0.4860 0.8214 0.7382 0.4103 0.0099 0.2722
0.8913 0.4447 0.1763 0.8936 0.1389 0.1988

The command “randn“ makes an array where all the elements are normally distributed random
numbers:

» p=randn(7,1)
p:

-0.4326
-1.6656
0.1253
0.2877
-1.1465
1.1909
1.1892

2.9 Array Manipulation

Since arrays and matrices are fundamental to Matlab, there are many ways to manipulate them.
Once matrices are formed, Matlab provides tools to insert, extract and rearrange subsets of them.
Knowledge of these features is key to using Matlab efficiently. There are many ways to do these
manipulations so here we can only give some examples:

» A=[1 2 3;4 5 6;7 8 9];

» A(3,3)=0

A =
1 2 3
4 5 6
7 8 0

Set the element (3,3) equal to zero.

» A(2,6)=1

A =
1 2 3 0 0 0
4 5 6 0 0 1
7 8 0 0 0 0

Here because the number of columns of A is 3 Matlab places 1 at the element (2,6) and the rest of
the elements that were added are equal to zero.

» A(:,4)=20

Chapter 2 Page 20

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

A =
1 2 3 20 0 0
4 5 6 20 0 1
7 8 0 20 0 0

Here Matlab sets all the elements of the fourth column equal to 20.

» A=[1 2 3;4 5 6;7 8 9];
» B=A(3:-1:1,1:3)

B =
7 8 9
4 5 6
1 2 3

Here it creates a matrix “B” by taking the rows of “A” in reversed order.
The previous manipulation can also be done with the following way:

» B=A(3:-1:1,:)

B =
7 8 9
4 5 6
1 2 3

If we want to erase a column then we type:

» A(:,2)=[]
A =
1 3
4 6
7 9

If we want to reshape a matrix we type:
» A=[1 2 3;4 5 6];
» B=reshape(A,1,6)
B =

2.10 Array Searching and Comparison

Many times, it is desirable to know the indices or subscripts of those elements of an array that
satisfy some relational expression. In Matlab, this task is performed by the function “find”, which
returns the subscripts where a relational expression is true:

» X=-3:3

X =

Chapter 2 Page 21

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

-3 -2 -1 0 1 2 3
» k=find (abs(x)>1)
k =

1 2 6 7

And if we want to find those numbers then:

» y=x(k)

-3 -2 2 3
The command “find” also works with matrices:

» A=[1 2 3;4 5 6;7 8 9];
» [1,j]1=£find (A>5)

WD ww

wN R

w

At times it is desirable to compare two arrays. For example:

» B=[1 5 6;9 0 0;4 5 1]
» A=[1 2 3;4 5 6;7 8 9]
)

» isequal (A,B

.
I

Ne N

ans =
0

» isequal (A,A)

ans =

1

2.11 Array Size

There are cases where the size of a matrix in unknown but is needed for some manipulation,
Matlab provides two utility functions “size” and “length”:

Chapter 2 Page 22

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

» A=[1 2 3 4;5 6 7 8];
» B=gize (4)

B =

With one output argument, the “size” function returns a row vector whose first element is the
number of rows and whose second element is the number of columns.

» [r,cl=size(A)

With two output arguments, “size” returns the number of rows in the first variable and the number
of columns in the second variable.

If we want to see which number is bigger (i.e. if the array has more rows than columns) we use the
command “length”:

» C=length(a)
C =
4

Actually the function “length” is doing: “max(size(A)”

2.12 Matrix operations

There are various matrix functions that we can do in Matlab, some of them are:
To find the determinant:

» A=[1 2 3;4 5 6;7 8 9];
» a=det (4)

a =

To find the inverse:

» A=[1 5 3;4 5 10;7 8 50];
» b=inv (2)

b =

Chapter 2 Page 23

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

-0.3476 -0.0716

0.2658 -0.0041

0.0061 0.0307
Command Commends
det(a) Determinant.
eig(a) Eigenvalues.
[x,d]=eig(a) Eigenvectors.
expm(a) Matrix exponential.
inv(a) Matrix inverse.
norm(a) Matrix and vectors norm.
norm(a,1) 1-norm
norm(a,2) 2-norm (Euclidean)
norm(a,inf) Infinity
norm(a,p) P-norm (vectors only)

norm(a,’fro’)

F-norm

poly(a) Characteristic polynomial

rank(a) Rank

sqrtm(a) Matrix square root

trace(a) Sum of diagonal elements

Chapter 2 Page 24

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

CHAPTER 3: Strings, Logic and Control Flow

3.1 Strings

The true power of Matlab is its ability to crunch numbers. However it is desirable sometimes to
manipulate text. In Matlab, text variables are referred to as character strings, or simple strings.

Character strings in Matlab are arrays of ASCII values that are displayed as their character string
representation:

» t='how about this character string’
t =

how about this character string
»size(t)

ans =
131

A character string is simple a text surrounded by single quotes.
The function “disp” allows you to display a string without printing its variable name:

» disp(t)
how about this character string

3.2 Relational and Logical Operations

3.2.1 Relational Operators

Matlab relational operators include:

Relational Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

~= Not equal to

General a relational operator returns one for true and zero for false:

» A=1:9;
» B=9-A;
» tf=A>4

tf =

Chapter 3 Page 25

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

Here we see that after the fourth element the values of A are greater than 4.

» tf=A==B
tf =
0 0 0 0 0 0 0 0 0
Finds element of A that are equal to those of B. The symbol “==" compares two variable and

returns one where they are equal and zeros when they are not.

3.2.2 Logical Operators

Logical operators provide a way to combine or negate relational expressions. Matlab logical

operators include:

Logical Operator Description
& AND
| OR
~ NOT
Examples:
» tf=~(A>4)
tf =
1 1 1 1 0 0 0 0 0
» tf=(A>2) & (A<6)
tf =
0 0 1 1 1 0 0 0 0
Other relational and logical operators are:
Operator Description
XOr(x,y) Exclusive OR operation. Returns ones
where either x or y is nonzero (True).
Returns zeros if both x and y are zero
(False) or nonzero (True)
any(x) Return one if any element of the vector x
is nonzero. Return one for each column
in a matrix x that has nonzero elements.
all(x) Return one if all elements are nonzero

Chapter 3

Page 26

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

3.3 Control flow

3.3.1 “for” loops

“for” loops allow a group of commands to be repeated a fixed, predetermined number of times. The
general form of a “for” loop is:
for x=array

commands...
end

The commands... between the “for” and “end” statements are executed once every column in

“array”. At each interaction, “x” is assigned to the next column of “array’, i.e. during the n™ time
through the loop, x=array.

Example:

» for n=1:10

x(n) =sin(n*pi/10);
end;

» X

X =
Columns 1 through 7

0.3090 0.5878 0.8090 0.9511 1.0000 0.9511
0.8090

Columns 8 through 10

0.5878 0.3090 0.0000

Also the “for” loops can be nested as desired:

clear all
for k=1:10
for 1=1:5
x(1,k)=5*sqgrt (k*1);
end;
end;

Columns 1 through 7

5.0000 7.0711 8.6603 10.0000 11.1803 12.2474
13.2288
7.0711 10.0000 12.2474 14.1421 15.8114 17.3205
18.7083
8.6603 12.2474 15.0000 17.3205 19.3649 21.2132
22.9129
10.0000 14.1421 17.3205 20.0000 22.3607 24.4949
26.4575

Chapter 3 Page 27

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

11.1803 15.8114 19.3649 22.3607 25.0000 27.3861
29.5804

Columns 8 through 10

14.1421 15.0000 15.8114
20.0000 21.2132 22.3607
24.4949 25.9808 27.3861
28.2843 30.0000 31.6228
31.6228 33.5410 35.3553

Sometimes it is possible to avoid “for” loops. This is very good because we make the program
faster. For example the first example on this paragraph can be also done:

» n=1:10;
» Xx=sin(n*pi/10)

X =
Columns 1 through 7

0.3090 0.5878 0.8090 0.9511 1.0000 0.9511
0.8090

Columns 8 through 10

0.5878 0.3090 0.0000

3.3.2 “while” Loops

While a “for” loop evaluates a group of commands a fixed number of times, a “while” loop
evaluates a group of commands an identified number of times. The general form of a “while” loop
is:

while expression

Commands
end

The command between the “while” and “end” statements are executed as long as all elements in
expression are true. For example:

» a=10;

» while a>0
y(a)=a*10;
a=a-1;

end;

» v

'y=

10 20 30 40 50 60 70 80 90 100

Chapter 3 Page 28

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

3.3.3 if-else-end Constructions

Many times sequences of commands must be conditionally evaluated based on a relational test.
This can be accomplished by the if-else-then construction. The simplest form is:

if expression
commands...
end

The commands... between the “if” and “end” statements are evaluated if all elements in expression
are true (nonzero). The following M-file gives an example:

k=input ('Give me your age ');

if k<0| k>100
disp('you are a liar')
end;

If there are two alternatives we can use:

l=input ('Give me the value of the product ');
k=input ('Give me the discound (%)');

if k<10 | k>50

disp ('Discound value unacceptable ')
else Cost=1-1*k/100
end;

When there are more than two alternatives then we can use:

l=input ('Give me the value of the product ');
k=input ('Give me the discound (%)');

if k<O
disp ('Wrong discound value ')
elseif k<10 & k>=0
disp ('Discound value too small ')
elseif k>50 & k<=80
disp('Discound value too big ')
elseif k>80
disp ('Are you crazy??? ')
else
Cost=1-1*k/100
end;

Chapter 3 Page 29

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

CHAPTER 4: Polynomials, Integration & Differentiation

4.1 Polynomials

Finding the roots of a polynomial is a problem that arises in many disciplines. Matlab solves this
problem and provides other polynomial manipulation tools as well. In Matlab, a polynomial is
represented by a row vector of its coefficients in descending order. For example the polynomial

x*=12x* +25x+116 is entered as:
» p=[1 -12 0 25 116]
p =

1 -12 0 25 116

Note that terms with zero coefficients must be included.

The roots of a polynomial can be found by the function “roots”:
» g=roots (p)
q =

11.7473
2.7028
-1.2251 + 1.46721i
-1.2251 - 1.46721i

If we have the roots we can find the polynomial by using the function “poly”:
» pl=poly(q)

pl =

1.0000 -12.0000 -0.0000 25.0000 116.0000

To multiply two polynomials we use the command “conv”:

» p=[1 -12 0 25 1161;
» r=[1 11;
» pr=conv(p,r)

pr =

1 -11 -12 25 141 116

To divide two polynomials we use the command “deconv”:

» a=[1 1 2];
» b=[2 0 0 1];
» [g,r]l=deconv(b,a)

q:

Chapter 4 Page 30

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

[T} (7]

The result says that the quotient of the division is “q” and the remainder is “r’.
The differentiation of a polynomial is found by using the function “polyder”:

» pd=polyder (p)
pd =
4 -36 0 2
To evaluate a polynomial at a specific point we use the function “polyval”:
» polyval(p,-1+7)
ans =

63.0000 + 1.00001

If we have the ratio of two polynomials we manipulate them as two different polynomials:
» num=[1 -10 100]; % numerator
» den=[1 10 100 0]; % denominator
» zeros=roots (num)

Zeros =

5.0000 + 8.66031
5.0000 - 8.66031

» poles=roots (den)
poles =
0

-5.0000 + 8.66031
-5.0000 - 8.66031

But if we want to find the derivative of this ratio we use the command “polyder” in the next form:

» [numd, dend] =polyder (num, den)
numd =

-1 20 -100 -2000 -10000

Chapter 4 Page 31

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

Columns 1 through 6
1 20 300 2000 10000 0
Column 7

0
Finally the command “residue” finds the partial fractions of the ratio:

» [r,p,k]=residue(num,den)

r =
0.0000 + 1.15471i
0.0000 - 1.15471i
1.0000
p =
-5.0000 + 8.66031
-5.0000 - 8.66031
0
k =
[]
where :
num(s) _ 1, r n

+ +
den(s) s—p, s—p, S—p;

vt k(s)

4.2 Numerical Integration

The integral, or the area under a function, is yet another useful attribute. Matlab provides three

functions for numerically computing the area under a function over a finite range: “trapz”, “quad”
and “quad8”:

» x=(0:0.1:1) *pi;
» y=sin(x) ;

» area=trapz(x,y)
area =

1.9835

» x=(0:0.1:2) *pi;
» y=sin(x) ;
» area=trapz(x,y)

area =

-1.3878e-016

Chapter 4 Page 32

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

The function “trapz’ approximates the area under the function “sin” as trapezoids. If we want better
approximation we have to reduce the size of those trapezoids. We can clearly see that, this
approximation calculation inserts an error. This is obvious in the second example where the “area”
is equal to a very small number but not to zero. The functions “quad” and “quad8” are used in a
different format and give better approximation than trapz:

» area=quad('sin',0,2*pi)

area =

0

4.3 Numerical Differentiation

Compared to integration, numerical differentiation is much more difficult. Integration describes an
overall or macroscopic property of a function, whereas differentiation describes the slope of a
function at a point, which is a microscopic property of a function. As a result, integration is not
sensitive to minor changes in the shape of a function, whereas differentiation is. Any small
changes in a function can easily create large changes in its slope in the neighbourhood of the
change.

Because of this inherent difficulty with differentiation, numerical differentiation is avoided wherever
it is possible, especially if the data are obtained experimentally. In this case it is best to perform a
least squares curve fit to data and then find the resulting polynomial. To find a polynomial that fits

“y,n w, N

at a set of data we use the command “polyfit(x,y,n)’, where “x” are the data of the x-axis, “y” are
the data for the y-axis and “n” are the order of the polynomial that we want to fit. So to find the
derivative at a specific point we use:

i ;:? g 447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
p=polyfit(x,y,2)

p =

-9.8108 20.1293 -0.0317
» pd=polyder (p)
pd =
-19.6217 20.1293
» slope of p=polyval(pd,0.5)
slope of p =
10.3185

Matlab provides on the other hand a function that computes, very rough, the derivative of the data
that describe a function. This is the function “diff” :

» dy=diff (y)./diff (x)

dy=

Chapter 4 Page 33

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

Columns 1 through 7

24.2500 13.0200 28.8000 9.2000 2.6000 3.2000
19.0000

Columns 8 through 10

-0.8000 -1.8000 19.0000

Note the last function is well to be avoided and to be used only when it is necessary.

4.4 Functions

When you use in Matlab functions such as: “inv”, “abs”, “angle”... Matlab takes the variables you
pass it, computes the required results using your input, and then passes those results back to you.
Functions are a very powerful tool inside Matlab and can reduce the size and the complexity of a
program. The next example helps us to understand the use of functions:

Suppose we want to add two arrays and give back only the outcome. To do this we need as inputs
the two arrays and as output Matlab will return the sum. We chose the name of our function as
“fun1”. We go to the same place as the M-file and we type:

function z=funl (x,y)

This is a demo

of how to use functions

This function finds the sum of two matrices (x,y)
and stores the outcome at the matrix "z"

o® o° 0@ o°

Z=X+Y;

Later at the command prompt we type:

» a=[1 1;2 2];
» b=[3 3;4 4];
» outcome=funl (a,b)

outcome =
4 4
6 6

If we want to see the help of this function we type:

» help funl

This is a demo

of how to use functions

This function finds the sum of two matrices (x,y)
and stores the outcome at the matrix "z"

4.4.1 Rules and Properties
1) The function name and file name are IDENTICAL.

2) Comment lines up to the first noncomment line in a function M-file are the help text
returned when you request help.

Chapter 4 Page 34

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

3) Each function has each own workspace separate from the Matlab workspace. The only
connections between the variables within a function and the Matlab workspace are the
function’s input and output variables. If a function changes the value of a variable this
appear only inside the function. If a variable is created inside a function does NOT appear
at the Matlab workspace.

4) Functions can share the same variables if we use the command “global”:

function z=funl (x,y)

This is a demo

of how to use functions

This function finds the sum of two matrices (x,y)
and stores the outcome at the matrix "z"

o9 o° o° o°

global gl;
gl=10;
Z=X+Y;

function z=fun2 (x)

This is a demo

of how to use functions

This function finds the product of a matrix and
the global variable gl

and stores the outcome at the matrix "z"

0% o° o° o° o°

global gl
z=gl*x;
» outcomel=£fun2 (a)
outcomel =
10 10
20 20

Finally inside a function can be used other functions as well:

function z=fun3 (x)

% This is a demo

% of how to use functions

% This function finds the product of a matrix and

% the global variable gl, then it finds the square root of the
% elements

% and stores the outcome at the matrix "z"

global gl

zl=gl*x;

z=sqgrt(zl) ;

» outcome2=fun3 (a)

outcome2 =
3.1623 3.1623
4.4721 4.4721

Chapter 4 Page 35

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

CHAPTER 5: Introduction to Simulink

5.1 Introduction

Simulink is a time based software package that is included in Matlab and its main task is
to solve Ordinary Differential Equations (ODE) numerically. The need for the numerical
solution comes from the fact that there is not an analytical solution for all DE, especially
for those that are nonlinear.
The whole idea is to break the ODE into small time segments and to calculate the
solution numerically for only a small segment. The length of each segment is called
“step size”. Since the method is numerical and not analytical there will be an error in the
solution. The error depends on the specific method and on the step size (usually
denoted by h).
There are various formulas that can solve these equations numerically. Simulink uses
Dormand-Prince (ODES5), fourth-order Runge-Kutta (ODE4), Bogacki-Shampine (ODE3),
improved Euler (ODE?2) and Euler (ODE1). A rule of thumb states that the error in ODE5S
is proportional to h°, in ODE4 to h* and so on. Hence the higher the method the smaller
the error.
Unfortunately the high order methods (like ODES5) are very slow. To overcome this
problem variable step size solvers are used. When the system’s states change very
slowly then the step size can increase and hence the simulation is faster. On the other
hand if the states change rapidly then the step size must be sufficiently small.
The variable step size methods that Simulink uses are:
An explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair (ODE45).
An explicit Runge-Kutta (2,3) pair of Bogacki and Shampine (ODE23).
A variable-order Adams-Bashforth-Moulton PECE solver (ODE113).
A variable order solver based on the numerical differentiation formulas (NDFs)
(ODE15s).
A modified Rosenbrock formula of order 2 (ODE23s).
e An implementation of the trapezoidal rule using a "free" interpolant (ODE23t).
An implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage
that is a trapezoidal rule step and a second stage that is a backward
differentiation formula of order two (ODE23tb).
Note the solvers that contain the letter ‘s’ are stiff solvers. For more information about
stiff solvers and ODE in general you can look at the Simulink help file files or at some
specialised books about numerical solutions.

To summarise the best method is ODE5 (or ODE45), unless you have a stiff problem,
and a smaller the step size is better, within reason.

5.2 Solving ODE

Since the key idea of Simulink is to solve ODE let us see an example of how to
accomplish that. Through that example many important features of Simulink will be
revealed.

To start Simulink click on the appropriate push button from the command window:

Chapter 5 Page 36

UNIVERSITY OF NEWCASTLE UPON TYNE

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

<) MATLAB

File Edk View Web Window " ep

) g"‘ & B ok ‘ Ll ‘CurrEnID\reclury.IC"MATLABEpS\Wnrk

IC:\MATLABEFS\WU:){ =] 1| £ | i1y 1=
= This is & Classroom License for instructiomal use only.
MATLAE Files | Fite Tyme Research and commercial use is prohibived.
[yhdvance Control Folder ||| wvsing Toolbox Path Cache. Type "help toolbox_path_cache” for more info.
. Folder Toolbox Path Cache read in 0.03 seconds.
MATLAE Fath initialized in 0.39 seconds.
(] feedback Folder
[Gzewal Folder To get started, select "MATLAE Help” from the Help men.
CMsc_project Folder -
(3 PhD Folder
] students Folder
(03 temp Folder
@ coil.mal Hodel
[E@dopl.n H-file
[Eitiqures_design.u H-file
@ fuzy3.wal Model
[@narriz.n H-file
in k£7 djal.mal Hodel
[@nass_spring.mal Model
[e#inss. nax HAT-file
i@ rendulun. ma1 Hodel
21 wwarkspace Current Directory
clear
simulink3
0.1*5 -
s-- B/04/03 3:00 BN —-% ZI ol e

][]

4\ Start

The next window will appear:

E Simulink Library Browser

File Edit ‘iew Help

=101x]

01 = Ha Find ||

Continuous: simulink/Continuous

EE Simnulink.

| Continuous

----- 2 Discontinuities

..... 2| Discrete

..... 2 Look-Up Tables
| Math Operations
..... | Model Verification
..... 2 Model-wide Utilities
..... | Ports & Subsystems
| Signal Attributes
..... 2 signal Routing

----- 24 sources

----- 2 User-Defined Functions
- W Communications Blockset
. | Control System Toolbox
- W DSP Blocksat

- Nl Fixed-Paink Blockset

- W Fuzzy Logic Toolbox

. @ MPC Blocks

.\ NCD Blackset

. i Mewral Metwork Blockset
. i Real-Time: Workshop

. i 5-function demos

- W SimPowerSystems

. | Simulink Extras

. g Stateflow

- W Systern ID Blocks

[s W e

F T WO e WO e WO e B |
== £ Rl R R R |

Ready

I 2 FLE

Mi=c

2n
QA

81 [:E|

Swbs
FER

.ﬂ
e

1
¥

£

|+

Dizcontinities
Dizcrete

Look-Up Tables
tdath Operations

M odel Verification
Modelwide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing
Sinks

Sources

Uszer-Defined Functions ;I

4

Chapter 5

Page 37

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

These are the libraries of Simulink. As it can be seen there are many of them and even
more sub-libraries. In order to be able to find the appropriate blocks you must spend
some time in looking in those libraries. After some time you will be able to find quickly
any blocks that you may need.

To create a new model click on the white page push button:
=lolx|

File Edt ‘iew Simulation Format Todls Help

DISE&| 4+ B2y =fom TleE s BB G ®

Ready [100% [[|odeds 4

The most important menu that you must know is the parameters menu which can be
found:

Funtitled _|ol x|
Filz Edit Wiew | Simulation Format Tools Help

D= HEé :::: el 'Normal cllEE e B

Simulation parameters... Ctr+E

» Marmal

External

Show the simulation parameters dialog [100% |odeds v

Then this window will appear:

Chapter 5 Page 38

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

-} Simulation Parameters: untitled 0] x|
Solver Wu:urkspau:el.-’[ll Diagnnsticsl .&dvancedl Heal-TimeWDrkshupl

Simulation time

Stark tirne: I n.a Stap tirme: | 10.0

Solver optiohs
Type: I‘Jariable-step j I odedd [Dormand-Prince| j

b ax step size: I auto Relative tolerance: | 13
Min step size: I auta Absolute tolerance: I auto
Iritial step size: I auto

Output options

Refine output j Refine tactor: I 1

] | Eancell Help | Ay

Here you can define the start and stop time of the simulation and the solver options
where you can choose variable or fixed step size, the solver method and the step size.
If you choose a variable step size, remember that the minimum step size must be less
than the maximum.

Let’s solve now a very easy ODE.

5.2.1 Example 1

Consider the coil shown in the next figure.
The voltage supply is equal to:

u(t)=i(t)R +%. Assuming that the

inductance of the coil is constant the above

equation is: u(z‘):i(z)R+Ld;—(:). This is a

linear 1% order ODE. What is the response of
the current to a sudden change of the voltage,
assuming zero initial conditions? To answer
this we must solve the above ODE. There are

various ways to solve it (Laplace...). Here we
will try to solve it numerically with Simulink.

o Step 1: First of all we must isolate the highest derivative: d;—(tt) = %(u(t)—i(t)R)

e Step 2: We will use as many integrators as the order of the DE that we want to solve:
The integrator block is in:

Chapter 5 Page 39

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

UNIVERSITY OF NEWCASTLE UPON TYNE

MATLAB BASICS

E Simulink Library Browser

File

Edit View Help

=lol x|

O

= Ha Find ||

Integrator: Continuous-time integration of the input signal,

B
E

-

[

= gl Simnulink

----- g Conkinuous

----- g Discontinuities

..... 2| Discrete

----- 2 Look-Up Tables

..... 2 Math Operations

----- 2] Model Werification
..... 21 Model-wide Utilities
----- 2 Ports & Subsystems
..... 2| signal Attributes

..... 2| signal Routing

..... #] Sinks

.....] Sources

-----] User-Defined Functions
B Communications Blockset
B Control System Toolbox
W D5P Blockset

W8 Fixed-Point Blockset
§| Fuzzy Logic Toolbox

B MPC Blacks

B NCD Blockset

W Neural Network Blockset
B Real-Time Workshop
B s-function demos

E SimPower Syskems

BB simulink Extras

B stateflow

B System ID Blocks

Ready

dufdt

1
= rkegrato
Integratar

Derivative

State-5pace

Transfer Fen

Tranzport Delay

Zero-Pole

Just click and drag the block to the model:

Filz Edit

Wieww Simulation Format

Tools

Help

=101 %]

0 |[i¥ (== | EEEN o |::2 G | P = INDnnm

e |

Ready

1
s i o

[T

Integrator

100% |

|ode4s

A

o Step 3: Beginning at the input of the integrator we construct what we need, hence

1
here we must create the factor z(u(t)— i(t)R) which is equal to Di(t). First put a gain

of%:

Chapter 5

Page 40

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

i x]

File Edit Wwiew Simulation Format Tools Help

D|EWH§|-}IDE|EQ|P IINDrmaI j|$|ﬂ||]

1
T %’ s [T
zain Integrator
Ready [100% | | |ode4s &
To set the value of the gain block double click on it and then change its value:
i
—Gain
Element-wize gain [y = K. *u] or matrix gain [V = E25u or y = u#k].
— Parameters
5 air:
1L
Multiplication: IEIement-wise[K.*u] j
| Shaow additional parameters --------------

k. I Cancel | Help F¥um 1 |

o Step 4: Now the term [u(t)-I()R] must be constructed, we will need a summation
point and another gain:

i x]

File Edit Wwiew Simulation Format Tools Help

D|EWH§|-}IDE|EQ|P IINDrmaI j|$|ﬂ||]

1
iy P o ’\”L oo T F [e

zain Integrator

Ready 100% |ode4s &

Chapter 5 Page 41

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

=10l x|
File Edit Wwiew Simulation Format Tools Help
D|EWH§|-}IDE|EQ|P IINDrmaI j|$|ﬂ||]
e 0 . 1 -
uit) [uit kiR Diigy s ity
zain Integrator
Ready [100% | | |ode4s &

e Step 5: Now we must add an input signal to simulate the voltage change and
something to see the response of the current. For the voltage change we chose to
use a step input of amplitude 1 and for the output we can use a scope:

i x]

File Edit Wwiew Simulation Format Tools Help

D|EWH§|-}IDE|EQ|P IINDrmaI j|$|ﬂ||]

1 L]
J_ utt) BEHER] ’\”L o P s [W »
Step Gain Integrator Scope
Ready [100% | | |ode4s &

e Step 6: To run the simulation we must give values to L, R. In the workspace we type:
R=0.01; L=0.01.

e Step 7: To see the solution we must run the simulation and then double click on the
Scope:

Chapter 5 Page 42

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

il
leE|lcep ABB BPE &

Time offzet: 0

5.2.2 Example 2

The second example is a classical mass-spring system:

X
—

F K

I R G G G T

B

By applying Newton’s second law: ZF =ma , or. F(t)— Kx(t)— Bu(t) =ma(t), where F

is the external force applied on the mass (m), K is the spring constant, a is the
acceleration of the mass, u is the speed of the mass, x is the distance that is covered

dx(t) d>x(t)

and B is the friction factor. F(¢)—K —-B=m . The question here is what is

going to be the behaviour of the mass due to a sudden force change, assuming again
zero initial conditions. To solve we will follow the previous steps:

2
First isolate the highest derivative: M = i(F(;) — K_dx(t) — Bj
dt m dt

Secondly place as many integrators as the order of the DE:

]

Integratar

]

Integratar

Beginning from the end construct everything that you need:

1 1] |
@D“ﬂx F; [F; ¥ > |

Integratord Integrator Scope

Chapter 5 Page 43

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS
| |7

Step il I~ i —...:l
O"u 5 O =

Integratar Integratar Scope

I : i

Step 1_ —.’D
5

il
=

Integrataord Integratar Scope

O

Step

1 [

il
s x

Integratar Integratar Scope

O

k=g

06

0.4+

0.2r

Chapter 5 Page 44

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

5.2.3 Example 3

The pendulum shown has the following nonlinear DE:

MR? a+ba+ MgRsin(a) =0

Its Simulink block is:

Gaind 3ain
Gain2

hl.ﬂ

1

= Oa

Integratard

|"-

Trigonometric
Function

sin |}

=

[
L

Integratar

¥

Scope

To find its response we must double click on the last integrator whose output is the angle

a and set the initial conditions to 1.

12

1

08

06

04

02

o0

02

5.2.4 Exercise

o 02 04 06 08

1 12 14 16 18 2

Solve the following nonlinear DE: m x+ 2c(x2 —l)x—kx =0. Take: m=1, ¢=0.1 k=1.

This is the Van der Pol equation and can correspond to a mass spring system with a

variable friction coefficient.

Chapter 5

Page 45

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

These are two examples of Simulink design based on a previous Matlab version.

5.3 Second Order System Example

Simulation of the impulse and step response of a second-order continuous-time transfer
function:

a)2

H(s)= 1 , 0 =1
) ss+2los+w’ "

The following cases will be investigated:

(a) Underdamped: 0<{ <l
(b) Critically damped: ¢=1
(c) Overdamped: g >1
=] untitled = Hi=] 3

File Edit “iew Simulation Fommat Tools

Ds@&| tmR[azr = | &

wn"2
e o
Input S ETTINE AN Output
Transfer Fon
Fleady |100% | | |oded5 o

1. Start the Matlab engine and type simulink3 at the Matlab command prompt. This
will start the Simulink3 library.

<) MATLAB Command Window = [O] %]

File Edit “iew Window Help
D& B2l v 8B &2

=

This version is for educational classroom use only.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

> simulink3]|

" o

Fieady [|NUM A

Chapter 5 Page 46

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

2. To open a new model select: File - New — Model
=] Library: simulink3

File Edt “iew Format

o — Inr
,:ET;_L —}*(— N -IrLI'I_ Ix y=Fitu) \ﬁ‘r"i In Cutf

Kid | At
Sources Sinks Continuous Discrete i ath Functions Monlinear Signals
& Tahbles & Systems
Blochksets & Simulink Blodk Librany 3.0 o
Toolboses Copyright (c) 1990-1998 by The Mathilio ks, (ne. Emas

(The following window should appear.)
E!unlilled _ O] x|

File Edit “iew Simulation Format Tools

D E&E eae=ely « | B

P00 | | [odeds 7

3. To save the new Simulink model select: File — Save As
=10l x|

File Edit “iew Simulation Format Tools

(A= = e R e e R A B
—— 2| x|——

Save jn: I@ work j ﬁl

File name: [exercise.mdl Save |
Save az lwpe: I"_mdl j Cancel |

Ready 100z |odeds i

Chapter 5 Page 47

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

4. Drag & drop two sine-wave blocks and a summation block from the Simulink3 libraries
as illustrated below.

E! Library: simulink3 M =] =

File Edit Yiew Format

WK - NAm | [F

A —)*(— /\ _|F"-|_ + *® y=Ffiru) In Ot
2 \ * \

h InuousNy Dizscrete hdath Functions Monlinear Signals

& Tables & Systems

Simulinl Librany 3.0
Copyright () 1990- 198G by il athiiods, Inc.

Signal
Generator

H T Library: s...ulink3/5i... M=l B3
Ramp Sine Wave " - -
File Edit “iew Format
=] Library: simulink3/Conunuous = 10] =])]
Discrete Pulse Fulse File Edit “iew Fomat
Generator Generator — — — = 24 Graph
3q b i
Clock 7 = —
Integrator Derivative Display
untitled.mat|> |I [T.U] |>
= 1 =1
- Bl — 1 untitled.mat simout
From File Fram ¥ = CukDuy =+1 EEE)
4
Motkspace State-Space v A Zero-Pole Tao File To Wokspace
Random Uniform fandem Band-Limited)M. “ariable Stop Simulation
Number Hurgher iithite Noise B Transport el ay

= untitled =

File Edit View Simulation Fomat Tools

bedalsmeafir « /

dusdt =
s+1 |, i

Step Drerivative Transter Fen Scope

Ready [100% |odeds 4

Chapter 5 Page 48

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

5. Double-click the step function block and insert the parameters as shown below.
Block Parameters: Step |

—Step

Cutput a step.

— Parameters
Step time:

f1
Iritial walue:
0

Final walue:
[
Sample time:

|n

Ok | Cancel | Help Spply

6. Repeat for the transfer function block.
W, — wn
{—>Z

Block Parameters: Transfer | x|

— Tranzfer Foh

 atrix expression for numerator, weckar expression for denominator. Dutput
width equals the number of rows in the numerator. Coefficients are far
descending powers of &

— Parameters
Murmeratar:

|[wn"2]

Denominatar:
[[1 2Z%n wn2]

(] | Cancel | Help | Al |

Right-click and drag the transfer function block to replicate it. Alternatively, you can use
the following shortcuts for the same task: click on the transfer function block and Ctrl +
C, Ctrl + V.

7. Double-click the scope block and insert the following parameters.
¥ |"Scope’ properties =] %]
Iﬁglgl ﬁl Data historyl Tip: trw right clicking on axes

General

Ares

Mumber of axes: I 2 I floating scope
Time range: I auto
Tick labels: Ibottom awiz anly 'l

S ampling
Decimation j |‘I

u] | Eancell Help | Apply |

Replicate the scope block

Chapter 5 Page 49

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

8. Connect the Simulink blocks together as shown below.

=] AnalogTF |_ (O] x|

Eile Edit Yiew Simulation Format Tools

BECEEEE

Continuous-time simulation
of a second order system

Unit Step

¥

[]

Dirac Impulse

¥

Input

wn"Z
dufdt o Impulze Responze
L TN E

Etep Derivative Unit Step Response

r

¥

¥

Transfer Fen

Cutput

wn"Z

¥

L 2 T NN 2

Transfer Fen

Ready [1003 |ode23 A

9. Specify Z (Zeta) and wn at the Matlab command prompt.
<) MATLAB Command Window M[=1E3
File Edit “iew Window Help

De|dBERl=E i 2
> 2=8.1; =

> wn=1;
>

e o

Fieady [|NUM 4

10. To enter the Simulation Parameters use the shortcut “Ctrl + E”
or choose: Simulation — Parameters.

Chapter 5 Page 50

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

| Simulation Parameters: AnalogTF | =] x|

Solver

Work&pacelx’ﬂl Diagnosticsl Heal-TimeWorkshopl

Simulation time:

Skart time: I n.a Stop bme:; I 50.0

Salver optiohz

Type: IVariabIe-slep j I ode23 [Bogacki-5hampine) j
Maw step size; | 1e2 Felative talerance: | 1e-1
Initial step size: | 1e-2 Ahbzalute tolerance: | Te-1

Output options

Refine output j Refine factor: I 1

Ok | Cancell Help | Apply |

11. To start the simulation use the shortcut “Ctrl + T” or point & click at the play
button on the toolbar. The following plots should appear (double-click the scope
blocks if not).

(To adjust the range)

#|Input (O =]
S PPPIE - | S

Unit Step

Dirac Impulze

Chapter 5 Page 51

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

< | Output

Unit 5

12. Investigate the following cases:
(a) Z=1; wn=1; (“Critically damped”)
(b) Z=1.5; wn=1; (“Overdamped”)

Chapter 5 Page 52

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

5.4 Fourier Spectrum Example

Computation of the Fourier spectrum of the sum of two sinusoids:

V()= A sinQ2r ft)+ A, sin(2x £ ,t)

where f,, =10kHz, f , =12kHz and the sampling frequency is f, =40kHz .

1. Start the Matlab engine and type simulink3 at the Matlab command prompt. This will

start the Simulink3 library.
<) MATLAB Command Window _ O] x|
File Edit Yiew ‘Window Help

D@|smelo agn 2]

B

This version is for educational classroom use only.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

> simulink3]|

Ly o

Ready [[NUM A

2. To open a new model select: File - New — Model

E! Library: zsimulink3
Fil= Edit “iew Format

WK - \ nr

(51"3) _).f.(_ /k JF'H_ :x y=fitu) ;\’1\ In Out

LA AL .

Sources Sinks Continuous Discrete hdath Functions Monlinear Signals
& Tables & Systems

Blockszets & Simulink Blodk Librany 2.0

Toalboxes Copyright (£) 1990-1998 by The MathWaks, ne. B

3. To save the new Simulink model select: File — Save As

ol
File Edit Wiew Simulation Famat Tools
{[Amp = = e - e e S N =
T T 2=l
Save jn Iawnrk ﬂ @I ﬁl
File name: sterclse.md\ Save
Save as lype: I*_m\:ﬂ j Cancel
7
Fieady [100% |odeds G

Chapter 5

Page 53

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

UNIVERSITY OF NEWCASTLE UPON TYNE

MATLAB BASICS

4. Drag & drop two sine-wave blocks and a summation block
from the Simulink3 libraries as illustrated below.

ﬁLihlaly: simulink3 M =] =
File Edit Yiew Format
whA | |wds /\ + = NAL | [0 F
e = y=fitu) In Out
Viv| Fi% ™ |3 \
Surces Sinkz Continuous Discrete hd at Functions Monlinear Signals
& Tables & Systems

Blockzets &
Taolboxes

Simulink Block Librag 3.0
Copyright () 1990-1998 by The pdathiiods, Inc.

Mi[=1E3

FlLibrary: simulink3." ources

File Edit “iew Format

-+ B L)

Constant Signal Step
Generator
LI.r‘.“J
Ramp Sine 112 Repeating
Sequence
Discrete Pulse Chirp Signal

Generator

untitled. mat |> |

Frem File From!

Randem Unifarm Random Band-LRpited
Number Humber rhite Ngize

=] Library: simulink3/Math
File Edit “iew Format

o
{ain>

{Ft

alllls =
T -

Froduet Dot Product

Slider I atriz
Gain Gain

»

ath Trigonometric Minhdax
Fughction Function

)[:||U|

fubs Sign Rounding

Function

»

Lagical Relational

Operator Operator

Fe(u) | Rem_
Tha(u) f- Im~ F

Complexto Wagnitude-Angle Complexto
Magnitude-fngle § to Complex Real-lmag
Solve
1 =
€ gz=0 °

Algebraic Constraint

Real-lmag to
Complex

E‘ exercisel *

Edit Miew Simulation | Format Tools

5%

Sine Mave

Sine Wawel

EEEEEE DR
v

Ready [100%

|odeds

Chapter 5

Page 54

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

5. Open the DSP Library by typing dsplib at the command prompt.

<) MATLAB Command Window
File Edit Yiew ‘window Help

(=] B3

Dehee(~lat(nls |

> dsplib
¢

K

Ready

This version is for educational classroom use only.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

|

o

T

6. Open the DSP Sinks library by double-clicking the corresponding icon.
E!Lihlaly: deplib¥3
Filz Edit View Fomnat

=1 E3

BV

" Bl L

% %
ez.’\l‘&; IR
P DSP hath General Estimation Filtering
urces Sinks Functions DspP

DSP Blodeet Library 2.0

Copyright () 1985-98 The MathWWods, Inc.

7. Drag & drop the buffered FFT scope block.
EILihlal_v: dspsnks2 ==1E3

File Edit “iew Format

L]

@ I atriz

N Wiewer
Time User

Time User-defined M atriz

Frame Scope Frame Scope Wi ewer

]

Freg

[| (T

Frequencoy

[]

Frame Scope Frame Scope Frame Scope

FFT B-FFT
FFT Buffered FFT

Time Display
Scope
k)
wyout yout
Signal Triggered Signal
To Wokepace To Wotspace
k)
wout yout
bl atriz Triggerad hatrix
To Wokepace To Wotspace
4}}) audio.wway
To iave Te 1!1I'a\re
Device File

=] exercisel =
File Edit “iew Simulation P

Ds@s »2edN= > =&

(2

Sine Wave

P

Sine Wavel

NI

Buffered FFT
Frame Scope

FRea|100% [

|oded5 7

Chapter 5

Page 55

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

8. Connect the Simulink blocks.

9. To enter the sine-wave block parameters double-click the corresponding icon.

5] exersizel
File Edit “iew Simulation Format Tools

(=] B3

DsE& s=2|2z|r = | &

[g—

Sine Wave

Sine Wave]

o]

B-FFT

Buffered FFT
Frame Scope

Feady [100%

|oded5

Recall: Amplitude * sin (2 * pi * Frequency * t + Phase)
where t =0, Ts, 2*Ts, 3*Ts,...
e

—

O

|

— Sine YWave

DOutput a sine wave.

Sin

— Parameters

Arnplitude:;

|1

Frequency [rad/sec):

| Zpirtet
Phase [rad):

|n

Sample time:

ITS

Ok | Cancel |

Help

Apply

Ready

100z | |

|odeds

10. Repeat for the block sine-wave1.

E’ex jzel =
59 Block Parameters: Sine 'Wa

|

R

|

O

Sir

i~ Sine Wave
Output a sine wave,

— Parameters
Amplitude:

|1

Frequency [rad/sec):

|2==pi==f.:2
Phaze [rad]:

|u

Sample tine:

|Ts

Help

Apply

eady

[100% | |

|nded5

Chapter 5

Page 56

UNIVERSITY OF NEWCASTLE UPON TYNE

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

MATLAB BASICS

11. Specify fc1, fc2, fs, and Ts at the command prompt.

<) MATLAB Command Window M= E3
File Edit Yiew ‘Window Help
D & 2R @6 &2

=

b> simulink3
5> dsplib

b= FC1=18e3;
b2 FC2=12e3;
b F5=40e3;
b Ts=1/f5;

Ready

This version is for educational classroom use only.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

| WM

vl

where fc1 and fc2 are the carrier frequencies, fs is the sampling frequency, and Ts is the

sampling time.

11. Enter the following FFT scope parameters.

Block Parameters: Bul =10)=

Eile Edt _Buftered FFT Frame Scope (mask] fiink]

H | | [z | Buffer a nonframe based input, then compute and display the

maghitude-squared FFT of each each frame of input data.
— Parameters
E FFT length [-1 ta inhert input width):
{1024
Sinem
Buffer size;
E
E Bffer owerlap:
Sine f p
Frequency units: IHertz j
Frequency range: I[D...FS] j
Sample time of original time zeriez [-1 i not zero-padded):
ITs
gz title:
IMagnitude
Amplitude scaling: | Magnituds j
MHurnber of input channels:
[1
[T Axis properties ...
[™ Line properties ...
0k, | Cancel | Help | Sl
Ready [100 [[|oded5 A

Chapter 5

Page 57

UNIVERSITY OF N

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

EWCASTLE UPON TYNE

MATLAB BASICS

12. Finally, to enter the Simulation Parameters use the shortcut “Ctrl + E”

or choose: Simulation — Parameters.

4 Simulation Parameters: exercisel !EIE

Solver Workspacela’Dl Diagr

Simulation tirme
Start time: I 0o

Salver optionz

Stop time: I 0.0

oztics | Real-Time Workzhop |

Type: IFiHed-step j

Idiscrete [ho continuous states) j

Fined step size: I Ts

Output aptions

b ode: I.&.ulo "I

Refine output

j Fefifie Factar: I 1

QK | Eancell Help | Apply |

13. To start the simulation use the shortcut “Ctrl + T”
or point & click at the play button on the toolbar.

E!exelcisﬂ =
File Edit “iew Simulation Format T
DzE& sme 22y = | &
Iﬁlu_l »i,) o (]
) B-FFT
Sine Wave
Buffered FFT
Frame Scope
Sine Wavel
Fea [100% [ode45 i

14. Once the simulation is running right click on the scope window and choose
autoscale. The following plot should appear. .

4| exercisel Buffered FFT Frame Scope _ (O] =]

P

MﬂJ‘m

Explain the resulting spectral components by considering the following Fourier transform

pair:

SNz f.t) 2ij5<f—ﬂ)—2ij6(f+ﬂ)

Chapter 5

Page 58

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

15. Change the amplitude of the sine-wave1 to 0.5, save the changes, and re-run the
simulation.

4| exercisel /Bulfered FFT Frame Scope N =] E3

R

16. Change fc2 to 25 kHz, save the changes, and re-run the simulation.
[/ crercisel /Duffered FFT Frame Scops __________ M[=IEA|

Explain the resulting spectrum.

-

i a4 Pl
Explain the spectral component at 15 kHz. Determine the spectral components for
fc2 = 35 kHz and 55 kHz (first without running the simulation). Now, verify your results
by means of simulation.

17. Try the following frequencies for fc2: 20, 60, 80, 100 kHz.

. 1
+ exercisel /Buffered FFT Frame Scope _ (O] =]
i S

Explain the resulting spectrum. Why is there is no spectral component at 20 kHz?

17. Double-click on sine-wave1 block and change the phase parameter to pi/2. Now
try the above frequencies again.

Chapter 5 Page 59

UNIVERSITY OF NEWCASTLE UPON TYNE
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
MATLAB BASICS

4| exercisel Buffered FFT Frame Scope _ (O] =]

Ui il i
Explain the resulting spectrum. Why does the magnitude of the spectral component at

20 kHz equals those at 10 and 30 kHz?
18. Now, use fundamental blocks of the DSP library to design an FFT spectrum analyser

as illustrated below.
E!exercisﬂ (=] 3
File Edit Wiew Simulation Fomat Toole
D sE& +s+=. 2> = &
Ol »,) ol
; LUJ B-FFT
Sine Wiave
Buffered FFT
Frame Scope
il
L
Sine Wawe
=) boxear = M
= —P' —PL[E]—PFFT—PIUlz—P
a Frag
Buffer Wi d owy Zaro Pad FFT hath Fraquenaoy
Function Function Frame Scope
Ready [100z |oded5 4

For the same set-up the FFT analyser should produce the same output as the Buffered
FFT Frame scope. Describe the changes required to obtain a DFT spectrum analyser.

Page 60

Chapter 5

	Release 13 - version 6.5
	CHAPTER 1: The Basics
	1.1 Introduction
	1.2 Simple math
	1.3 Matlab and variables
	1.4 Variables and simple math
	1.5 Complex numbers
	1.6 Common mathematical functions
	1.7 M-files
	1.8 Workspace
	1.9 Number display formats
	1.10 Path Browser
	1.11 Toolboxes.
	1.12 Help………..

	CHAPTER 2: Arrays and Plots
	2.1 Array construction
	2.2 Plots
	2.3 Array addressing
	2.4 Array Construction
	2.5 Array Orientation
	2.6 Array – Scalar Mathematics
	2.7 Array-Array mathematics
	2.8 Zeros, Ones, …
	2.9 Array Manipulation
	2.10 Array Searching and Comparison
	2.11 Array Size
	2.12 Matrix operations

	CHAPTER 3: Strings, Logic and Control Flow
	3.1 Strings
	3.2 Relational and Logical Operations
	3.2.1 Relational Operators
	3.2.2 Logical Operators

	3.3 Control flow
	3.3.1 “for” loops
	3.3.2 “while” Loops
	3.3.3 if-else-end Constructions

	CHAPTER 4: Polynomials, Integration & Differentiation
	4.1 Polynomials
	4.2 Numerical Integration
	4.3 Numerical Differentiation
	4.4 Functions
	4.4.1 Rules and Properties

	CHAPTER 5: Introduction to Simulink
	5.1 Introduction
	5.2 Solving ODE
	5.2.1 Example 1
	5.2.2 Example 2
	5.2.3 Example 3
	5.2.4 Exercise

	5.3 Second Order System Example
	5.4 Fourier Spectrum Example

