ENEE2302Signals and Systems

Complex Number Review

Complex Numbers

Complex numbers arise as roots of polynomials.

Definition of imaginary # *j* and some resulting properties:

$$
j = \sqrt{-1} \Rightarrow j^2 = -1
$$

\n
$$
\Rightarrow (-j)(j) = 1
$$

\n
$$
\Rightarrow (-j)(-j) = -1
$$

Recall that the solution of differential equations involves finding roots of the "characteristic polynomial"

So…differential equations often involve complex numbers

Rectangular form of a complex number:

$$
z = a + jb
$$

\n
$$
a = \text{Re}\{z\}
$$

\n
$$
b = \text{Im}\{z\}
$$

\nreal numbers

The rules of addition and multiplication are straight-forward:

Add:
$$
(a + jb)+(c + jd) = (a+c) + j(b+d)
$$

\nMultiply: $(a + jb)(c + jd) = (ac-bd) + j(ad + bc)$

Polar Form

Polar form… an alternate way to express a complex number…

Polar Form…

good for multiplication and division

Note: you may have learned polar form as *r*∠θ… we will **NOT** use that here!!

The advantage of the *rej*^θ **is that when it is manipulated using rules of exponentials and it behaves properly according to the rules of complex #s:**

$$
(a^{x})(a^{y}) = a^{x+y} \qquad a^{x}/a^{y} = a^{x-y}
$$

Multiplying Using Polar Form

Dividing Using Polar Form

$$
\frac{(r_1e^{j\theta_1})(r_2e^{j\theta_2}) = r_1r_2e^{j(\theta_1+\theta_2)}}{z^n = (re^{j\theta})^n = r^n e^{jn\theta}} \n\begin{array}{|l|l}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\begin{array}{
$$

We need to be able convert between Rectangular and Polar Forms... this is made easy and obvious by looking at the geometry (and trigonometry) of complex #s:

Geometry of Complex Numbers

Complex Exponentials vs. Sines and Cosines

Summary of Rectangular & Polar Forms

Rect Form:

 $z = a + jb$

- $\text{Re}\{z\} = a = r\cos\theta$
- $\text{Im}\{z\} = b = r \sin \theta$

Polar Form:

$$
z = re^{j\theta} \qquad r \ge 0 \qquad \theta \in (-\pi, \pi]
$$

$$
|z| = r = \sqrt{a^2 + b^2}
$$

$$
\angle z = \theta = \tan^{-1}\left(\frac{b}{a}\right)
$$

Warning: If you calculate the angle by first dividing *b* / *a* and then taking the inverse tangent… your *calculator* will give you the **wrong answer** whenever you have $a < 0$. In other words, for z values that lie in the II and III quadrants.

You can always fix this by either adding or subtracting ^π… choose add or subtract in order to give an angle that lies between $-\pi$ and $+$ $\pi.$

Use common sense… looking at the signs of *a* and *b* will tell you what quadrant *^z* is in… make sure your angle agrees with that!!! (See the examples)

$$
\begin{vmatrix} z = a + jb & \Rightarrow & z^* = a - jb \\ z = re^{j\theta} & \Rightarrow & z^* = re^{-j\theta} \end{vmatrix}
$$

Summary of General Results

Multiplying Using Polar Form

$$
\left[(r_1 e^{j\theta_1}) (r_2 e^{j\theta_2}) = r_1 r_2 e^{j(\theta_1 + \theta_2)}
$$

$$
z^n = (re^{j\theta})^n = r^n e^{jn\theta} \left[z^{1/n} = r^{1/n} e^{j\theta/n} \right]
$$

Dividing Using Polar Form

 r_2 $r_2e^{j\omega_2}$ r_2

Finding Magn/Angle of Rect

Given:
$$
z = a + jb
$$

$$
|z| = \sqrt{a^2 + b^2} \qquad \angle z = \tan^{-1}(b/a)
$$

Finding Magn/Angle of Products

$$
z_1 z_2 = |z_1| |z_2|
$$

$$
\angle{z_1z_2}=\angle{z_1}+\angle{z_2}
$$

Finding Magn/Angle of Ratios

 $|z_1/z_2|=|z_1|/|z_2|$

$$
\angle{z_1/z_2} = \angle{z_1} - \angle{z_2}
$$

A Few Tricks

Proof:
$$
\frac{1}{j} = \frac{1}{e^{j\pi/2}} = (1/1)e^{j(0-\pi/2)} = e^{-j\pi/2} = \cos(-\pi/2) + j\sin(\pi/2) = 0 - j
$$

\n $\frac{-1 = e^{\pm j\pi}}{}$ Proof: $e^{\pm j\pi} = \cos(\pm \pi) + j\sin(\pm \pi) = -1 + j0$
\n $\frac{1 = e^{j0}}{}$ Proof: $e^{j0} = \cos(0) + j\sin(0) = 1 + j0$
\n $\frac{j = e^{j\pi/2}}{}$ Proof: $e^{j\pi/2} = \cos(\pi/2) + j\sin(\pi/2) = 0 + j1$
\n $\frac{-j = e^{-j\pi/2}}{}$ Proof: $e^{-j\pi/2} = \cos(-\pi/2) + j\sin(-\pi/2) = 0 + j(-1)$
\n $\frac{((a + j0))}{}$
\n $\frac{1}{}$
\n $\frac{1}{}$

Re

^a⁺*j*0

 $\boldsymbol{+}_{\pi}$

Example #1a: Given: $z = -4 - j3$ Convert to Polar Form Use: $z = |z| e^{j2z}$ $|z| = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16+9} = \sqrt{25} = 5$ $\angle z = \tan^{-1} \left(\frac{-3}{-4} \right) = \tan^{-1} (0.75) - \sqrt{\pi} = 0.64 - \pi \approx -2.5 \text{ rad}$ $z = -4 - j3$ $\sum z = 5e^{-j2.5}$ -3-4 **0.64 rad 0.64 -** π **rad**From this we see that z is in Quad III but our calculator gave us 0.64 which is in quadrant I. So if we subtract π we get an angle in Quad III and is between $-\pi$ and $+\pi$ Re Im_{λ}

Comparing Ex. 1a and 1b we see that they are conjugates of each other… note how conjugation just changes the sign in front of *j* for both rect form and polar form!!!

Example #3: Given: $z = je^{-j\pi/2}$ Write it in Polar Form

Isn't it ALREADY in polar form!!!??? NO!!!!!!!

View it as a product of two complex numbers… $z = [j][e^{-j\pi/2}]$
and note that the first is in rect form: $0 + j$

$$
|j| = \sqrt{0^2 + 1^2} = 1
$$

\n $\angle j = \tan^{-1}(1/0) = \pi/2$
\n $\angle j = \tan^{-1}(1/0) = \pi/2$
\n $\angle k = 1/2$
\nEasier to see graphically!

$$
z = je^{-j\pi/2} = \left[e^{j\pi/2}\right] \left[e^{-j\pi/2}\right] = e^{j(\pi/2 - \pi/2)} = e^{j0} = 1
$$

$$
z = je^{-j\pi/2} \leftrightarrow z = 1
$$

 $\bigcup_{\mathcal{A}} \bigg[e^{-j\pi/2} \bigg]$

1 z_2

1

z

Im

Example #4: Given:
$$
z = \frac{2+j3}{-3+j2}
$$
 Find magnitude and angle
\nUse: $|z_1/z_2| = |z_1|/|z_2|$
\n $\angle{z_1/z_2} = \angle{z_1} - \angle{z_2}$
\n $\left|\frac{2+j3}{-3+j2}\right| = \frac{|2+j3|}{|-3+j2|} = \frac{\sqrt{2^2+3^2}}{\sqrt{(-3)^2+2^2}} = \frac{\sqrt{13}}{\sqrt{13}} = 1$
\n $\angle{\frac{2+j3}{-3+j2}} = \angle{2+j3} - \angle{-3+j2} \approx 0.983 - (-0.588 + \pi) = 1.57 \text{ rad}$
\n $\left|\frac{2+j3}{-3+j2}\right| = 1$
\n $\angle{\frac{2+j3}{-3+j2}} \approx 1.57 \text{ rad}$
\n**Exercise:** $\frac{\text{Correcting for case when real part}}{\text{is negative (i.e., quads II & III)}}$

Example #5a: Given:
$$
z = \frac{R_1 + 1/jC}{R_2 + jL}
$$
 Find magnitude and angle

First some common manipulations:

$$
z = \frac{R_1 + 1/jC}{R_2 + jL} = \frac{jC}{jC} \frac{(R_1 + 1/jC)}{(R_2 + jL)} = \frac{jR_1C + jC/jC}{jR_2C + jCjL} = \frac{1 + jR_1C}{-LC + jR_2C}
$$

Now to find magnitude:

$$
|z| = \frac{|1 + jR_1C|}{|-LC + jR_2C|} = \frac{\sqrt{1^2 + (R_1C)^2}}{\sqrt{(-LC)^2 + (R_2C)^2}} = \frac{\sqrt{1 + (R_1C)^2}}{\sqrt{(LC)^2 + (R_2C)^2}} = \frac{\sqrt{1 + (R_1C)^2}}{C\sqrt{L^2 + R_2^2}}
$$

Now to find angle:

$$
\angle z = \angle \{1 + jR_1C\} - \angle \{-LC + jR_2C\}
$$

$$
= \tan^{-1} \{R_1C\} - [\tan^{-1} \{-R_2/L\} + \pi]
$$

$$
R_2C
$$

Add π rad

$$
-LC
$$

Calculate the result

Example #5b: Given:
$$
z = \frac{R_1 + 1/jC}{R_2 + jL}
$$
 Find magnitude and angle

A slightly different way to do it:

$$
z = \frac{R_1 + 1 / jC}{R_2 + jL} = \frac{R_1 - j/C}{R_2 + jL}
$$

Now to find magnitude:

$$
|z| = \frac{|R_1 - j/C|}{|R_2 + jL|} = \frac{\sqrt{R_1^2 + (-1/C)^2}}{\sqrt{R_2^2 + L^2}} = \frac{\sqrt{R_1^2 + 1/C^2}}{\sqrt{R_2^2 + L^2}}
$$

Now to find angle:

$$
\angle z = \angle \{R_1 - j/C\} - \angle \{R_2 + jL\}
$$

$$
= \tan^{-1}\left\{\frac{-1/C}{R_1}\right\} - \tan^{-1}\left\{L/R_2\right\}
$$

$$
= \tan^{-1}\left\{\frac{-1}{R_1C}\right\} - \tan^{-1}\left\{L/R_2\right\}
$$

Even though these have a different form than the Ex 5a results they give the exact same numerical values!!!

╲

Find magnitude:

$$
|z| = \frac{|-1|}{|R_2 + jL|} = \frac{1}{\sqrt{R_2^2 + L^2}}
$$

Now to find angle:

$$
\angle z = \angle \{-1\} - \angle \{R_2 + jL\}
$$

$$
= \pm \pi - \tan^{-1} \{L/R_2\}
$$