Digital Signal Processing (DSP), Fall 2014

Lecture 1: Introduction,

Discrete-time signals and systems

Abualsoud Hanani

Department of Electrical and Computer Engineering Birzeit University.

ahanani@birzeit.edu

Part I: Introduction

- Introduction (Course overview)
- Discrete-time signals
- Discrete-time systems
- Linear time-invariant systems

General information

Prerequisites: ۲

Background in advanced calculus including complex variables, Laplace- and Fourier transforms.

0%

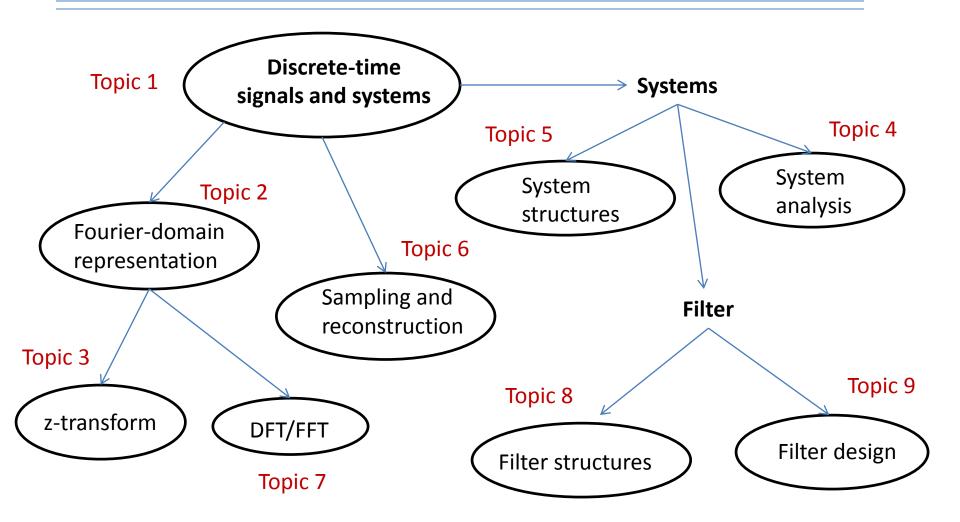
30%

Required Textbook •

- Discrete-Time Signal Processing,
- Prentice Hall, 2nd Edition
- Alan Oppenheim, Ronald Schafer, John Buck

Grading •

- Attendance / participation 5% Project 15% 10%
- Quizzes
- Assignments
- Midterm Exam
- **Final Exam** 40%


Useful References

- [1] Digital Signal Processing, Sanjit H. Mitra. Mc Graw Hill, 3rd Ed. 2006
- [2] Dimitris G. Manolakis and Vinay K. Ingle, Applied Digital Signal Processing, Cambridge University Press, 2011.
- [3] Real-Time Digital Signal Processing, Sen M. Kuo and Bob H. Lee, Wiley, 2001.
- [4] Digital Signal Processing, A. Oppenheim and R. Schafer, Prentice Hall, 1986.
- [5] Optimum Signal Processing, S. Orfanidis, MacMillan,

Useful References

- [6] Digital Signal Processing: Principles, Algorithms, and Applications, J.G. Proakis and D.G Manolakis. Prentice Hall, 1996
- [7] Digital Signal Processing, R.A. Roberts and C.T. Mullis. Addison-Wesley, 1996
- [8] Matrix Computations, G. Golub, C. Van Loan, Johns Hopkins University Press, 1983.
- [9] MATLAB Reference Guide: High-Performance Numeric Computation and Visualization Software, The MathWorks, Inc., South Natick, MA.

Course at a glance

Course objectives (Part I)

- To give the students a comprehension of the concepts of discrete-time signals and systems.
- To give the students a comprehension of the Z- and the Fourier transform and their inverse.
- To give the students a comprehension of the relation between digital filters, difference equations and system functions.
- To give the students knowledge about the most important issues in sampling and reconstruction.

Course objectives (Part II)

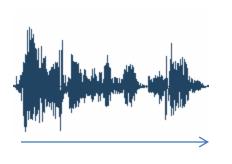
- To make the students able to apply digital filters according to known filter specifications.
- □ To provide the knowledge about the principles behind the discrete Fourier transform (DFT) and its fast computation.
- To make the students able to apply Fourier analysis of stochastic signals using the DFT.
- To be able to apply the MATLAB program to digital processing problems and Presentations.

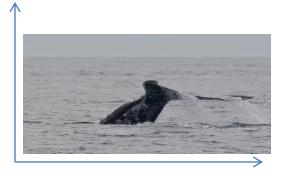
Where is DSP

DSP is Everywhere

- Sound applications
 - Compression, enhancement, special effects, synthesis, recognition, echo cancellation,...
 - Cell Phones, MP3 Players, Movies, Dictation, Text-to-speech,...
- Communication
 - Modulation, coding, detection, equalization, echo cancellation,...
 - Cell Phones, dial-up modem, DSL modem, Satellite Receiver,...
- Automotive
 - ABS, GPS, Active Noise Cancellation, Cruise Control, Parking,...

DSP Application


- Medical
 - Magnetic Resonance, Tomography, Electrocardiogram,...
- Military
 - Radar, Sonar, Space photographs, remote sensing,...
- Image and Video Applications
 - DVD, JPEG, Movie special effects, video conferencing,...
- Mechanical
 - Motor control, process control, oil and mineral prospecting,...


What is a signal ?

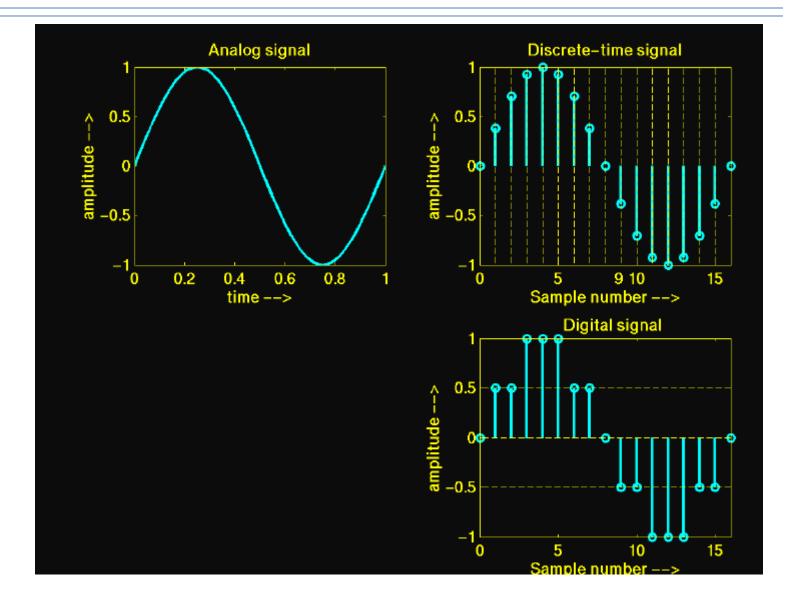
- □ A flow of information
- (mathematically represented as) a function of independent variables such as time (e.g. speech signal), position (e.g. image), etc.
- A common convention is to refer to the independent variable as time, although may in fact not.

Example signals

- **D** Speech: 1-Dimension signal as a function of time s(t);.
- Grey-scale image: 2-Dimension signal as a function of space *i*(*x*,*y*)
- □ Video: 3 x 3-Dimension signal as a function of space and time {*r*(*x*,*y*,*t*), *g*(*x*,*y*,*t*), *b*(*x*,*y*,*t*)}.

Types of signals

The independent variable may be either continuous or discrete

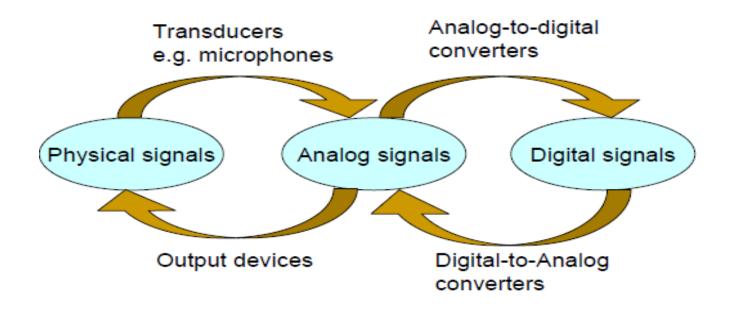

- Continuous-time signals
- Discrete-time signals are defined at discrete times and represented as sequences of numbers

The signal amplitude may be either continuous or discrete

- Analog signals: both time and amplitude are continuous
- Digital signals: both are discrete
- Computers and other digital devices are restricted to discrete time

Signal processing systems classification follows the same lines

Types of signals


Digital signal processing

Modifying and analyzing information with computers – so being measured as sequences of numbers.

Representation, transformation and manipulation of signals and information they contain

Typical DSP system components

Input lowpass filter to avoid aliasing
Analog to digital converter (ADC)
Computer or DSP processor
Digital to analog converter (DAC)

Limitations of Analog Signal Processing

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration

Limitations of Analog Signal Processing

- Sensitivity to electrical noise
- Inflexibility to changes
- Limited dynamic range for voltage and currents
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information

Pros and cons of DSP

Pros:

- Easy to duplicate
- Stable and robust: not varying with temperature, storage without deterioration
- Flexibility and upgrade: use a general computer or microprocessor

Cons:

- Limitations of ADC and DAC
- High power consumption and complexity of a DSP implementation: Unsuitable for simple, low power applications
- Limited to signals with relatively low bandwidth

History of DSP

Prior to 1950's: analog signal processing using electronic circuits or mechanical devices

1950's: computer simulation before analog implementation, thus cheap to try out

1965: Fast Fourier Transforms (FFTs) by Cooley and Tukey – make real time DSP possible

□ 1980's: IC technology boosting DSP