Part II: Discrete-time signals

- \bullet Introduction (Course overview)
- \bullet Discrete-time signals
- \bullet Discrete-time systems
- Linear time-invariant systems

Part II: Discrete-time signals

Sequence operations

- \blacksquare The product and sum of two sequences $x[n]$ and y[n]: sample-by-sample production and sum, respectively.
- Multiplication of a sequence x[n] by a number α : multiplication of each sample value by α .
- \blacksquare Delay or shift of a sequence x[n]

 $y[n] = x[n - n_0]$ where n is an integer

Basic sequences

Unit sample sequence (discrete-time impulse, impulse) l.

$$
\delta[n] = \begin{cases} 0, & n \neq 0, \\ 1, & n = 0, \end{cases}
$$

Any sequence can be represented as a sum of scaled, delayed impulses

$$
x[n] = a_{-3}\delta[n+3] + a_{-2}\delta[n+3] + ... + a_5\delta[n-5]
$$

• More generally

$$
x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

Unit step sequence

 \blacksquare Defined as

$$
u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0, \end{cases}
$$

Related to the impulse by

$$
u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \dots
$$

or

$$
u[n] = \sum_{k=-\infty}^{\infty} u[k]\delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k]
$$

Conversely,

$$
\delta[n] = u[n] - u[n-1]
$$

Exponential sequences

- Extremely important in representing and analyzing LTI systems.
- Defined as

$$
x[n] = A\alpha^n
$$

- **If** A and α are real numbers, the sequence is real.
- **If** $0 < \alpha < 1$ and A is positive, the sequence values are positive and decrease with increasing n.
- **If** $-1 < \alpha < 0$, the sequence values alternate in sign, but again decrease in magnitude with increasing n.
- **If** $|\alpha|>1$, the sequence values increase with $x[n] - 2(0.5)^n$ increasing n. $x[n]-2(-0.5)^{n}$

 $x[n]-2-2^*$

Combining basic sequences

An exponential sequence that is zero for $n < 0$

$$
x[n] = \begin{cases} A\alpha^n, & n \ge 0, \\ 0, & n < 0 \end{cases}
$$

 $x[n] = A \alpha^n u[n]$

Sinusoidal sequences

$$
x[n] = A\cos(\omega_0 n + \phi), \qquad \text{for all } n
$$

with A and ϕ real constants.

The $A\alpha^n$ **with complex** α **has real and imaginary** parts that are exponentially weighted sinusoids.

If
$$
\alpha = |\alpha| e^{j\omega_0}
$$
 and $A = |A| e^{j\phi}$, then
\n
$$
x[n] = A\alpha^n = |A| e^{j\phi} |\alpha|^n e^{j\omega_0 n}
$$
\n
$$
= |A| |\alpha|^n e^{j(\omega_0 n + \phi)}
$$
\n
$$
= |A| |\alpha|^n \cos(\omega_0 n + \phi) + j |A| |\alpha|^n \sin(\omega_0 n + \phi)
$$

Complex exponential sequence

When $|\alpha|=1$,

 $x[n] = |A|e^{j(\omega_0 n + \phi)} = |A| \cos(\omega_0 n + \phi) + j |A| \sin(\omega_0 n + \phi)$

- \blacksquare By analogy with the continuous-time case, the quantity ω_0 is called the frequency of the complex sinusoid or complex exponential and ϕ is call the phase.
- *n* is always an integer \rightarrow differences between discrete-time and continuous-time

An important difference – frequency range

■ Consider a frequency $(\omega_0 + 2\pi)$

$$
x[n] = Ae^{j(\omega_0 + 2\pi)n} = Ae^{j\omega_0 n}e^{j2\pi n} = Ae^{j\omega_0 n}
$$

• More generally $(\omega_0 + 2\pi r)$, r being an integer,

$$
x[n] = Ae^{j(\omega_0 + 2\pi r)n} = Ae^{j\omega_0 n}e^{j2\pi n} = Ae^{j\omega_0 n}
$$

 \blacksquare Same for sinusoidal sequences

 $x[n] = A\cos[(\omega_0 + 2\pi r)n + \phi] = A\cos(\omega_0 n + \phi)$

■ So, only consider frequencies in an interval of 2π such as

 $-\pi < \omega_0 \leq \pi$ or $0 \leq \omega_0 < 2\pi$

Another important difference – periodicity

- \blacksquare In the continuous-time case, a sinusoidal signal and a complex exponential signal are both periodic.
- In the discrete-time case, a periodic sequence is defined as

 $x[n] = x[n+N]$, for all n

where the period N is necessarily an integer.

\blacksquare For sinusoid,

 $A\cos(\omega_0 n + \phi) = A\cos(\omega_0 n + \omega_0 N + \phi)$

which requires that $\omega_0 N = 2\pi k$ or $N = 2\pi k / \omega_0$ where k is an integer.

Another important difference – periodicity

Same for complex exponential sequence $e^{j\omega_0(n+N)} = e^{j\omega_0n}$

which is true only for $\omega_0 N = 2\pi k$

■ So, complex exponential and sinusoidal sequences

- a are not necessarily periodic in *n* with period $(2\pi/\omega_0)$
- a and, depending on the value of ω_0 , may not be periodic at all.
- Consider

 $x_1[n] = \cos(\pi n/4)$, with a period of $N = 8$

 $x_2[n] = \cos(3\pi n/8)$, with a period of $N = 16$

Increasing frequency \rightarrow increasing period!

Another important difference – frequency

■ For a continuous-time sinusoidal signal $x(t) = A\cos(\Omega_0 t + \phi),$

as Ω_0 increases, $x(t)$ oscillates more and more rapidly

 \blacksquare For the discrete-time sinusoidal signal

 $x[n] = A\cos(\omega_0 n + \phi),$

as ω_0 increases from 0 towards π , $x[n]$ oscillates more and more rapidly as ω_0 increases from π towards 2π , the oscillations become slower.

Part II: Discrete-time systems

- lntroduction
- Discrete-time signals
- Discrete-time systems
- Linear time-invariant systems

Discrete-time systems

A transformation or operator that maps input into \blacksquare output

$$
y[n] = T\{x[n]\}
$$

$$
x[n] \longrightarrow T\{\cdot\} \longrightarrow y[n]
$$

Examples: \blacksquare

\n- ■ The ideal delay system
\n- $$
y[n] = x[n - n_d], \quad -\infty < n < \infty
$$
\n
\n- ■ A memoryless system
\n- $$
y[n] = (x[n])^2, \quad -\infty < n < \infty
$$
\n
\n

Linear systems

A system is linear if and only if

```
additivity property
```

$$
T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\} = y_1[n] + y_2[n]
$$

and

 $T\{ax[n]\}=aT\{x[n]\}=ay[n]$ scaling property where a is an arbitrary constant

- Combined into superposition $T\{ax_1[n]+bx_2[n]\}=aT\{x_1[n]\}+aT\{x_2[n]\}=ay_1[n]+ay_2[n]$
- Example 2.6, 2.7 pp. 19

Time-invariant systems

■ For which a time shift or delay of the input sequence causes a corresponding shift in the output sequence.

 $x_1[n] = x[n - n_0] \Rightarrow y_1[n] = y[n - n_0]$

 \blacksquare Example 2.8 pp. 20

Causality

- **The output sequence value at the index** $n=n_0$ depends only on the input sequence values for $n \le n_0$.
- \blacksquare Example $y[n] = x[n-n_a],$ $-\infty < n < \infty$
	- Causal for n_d >=0 \Box
	- \Box Noncausal for n_d <0

Stability

A system is stable in the BIBO sense if and only if every bounded input sequence produces a bounded output sequence.

 \blacksquare Example $y[n] = (x[n])^2$, $-\infty < n < \infty$ stable

Part III: Linear time-invariant systems

- Course overview
- Discrete-time signals
- Discrete-time systems
- Linear time-invariant systems

Linear time-invariant systems

- Important due to convenient representations and significant applications
- A linear system is completely characterised by its impulse response

$$
y[n] = T\{x[n]\} = T\{\sum_{k=-\infty} x[k]\delta[n-k]\}
$$

$$
= \sum_{k=-\infty}^{\infty} x[k]T\{\delta[n-k]\} = \sum_{k=-\infty}^{\infty} x[k]h_k[n]
$$

Time invariance $h_k[n] = h[n-k]$

$$
y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]
$$

= $x[n]^* h[n]$ Convolution sum

Forming the sequence h[n-k]

23

Computation of the convolution sum

$$
y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]
$$

- \blacksquare Obtain the sequence h[n-k]
	- □ Reflecting h[k] about the origin to get h[-k]
	- \Box Shifting the origin of the reflected sequence to $k=n$
- Multiply x[k] and h[n-k] for $-\infty < k < \infty$
- Sum the products to compute the output sample y[n]

Computing a discrete convolution

Computing discrete convolution - Tabular method

Finite-discrete sequence: $y[n] = x[n] * g[n]$

```
x[n] = {x[0], x[1], x[2], x[3], x[4]}g[n] = {g[0], g[1], g[2], g[3]}
```


What is the maximum length of y[n]?

Computing discrete convolution - Tabular method

Example: consider the following two finite-length sequences,

 $x[n] = \{-2 \ 0 \ 1 \ -1 \ 3 \}$ h[n] = $\{1 \ 2 \ 0 \ -1 \}$ \uparrow $n=0$ n=0

Find $y[n] = x[n] * h[n]$?

Properties of LTI systems

- Defined by discrete-time convolution
	- □ Commutative

 $x[n] * h[n] = h[n] * x[n]$

a Linear

 $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$

Cascade connection (Fig. 2.11 pp.29) \Box

 $h[n] = h_1[n]^* h_2[n]$

□ Parallel connection (Fig. 2.12 pp.30) $h[n] = h_1[n] + h_2[n]$

Properties of LTI systems

- Defined by the impulse response
	- a Stable

$$
S = \sum_{k=-\infty}^{\infty} |h[k]| < \infty
$$

□ Causality

$$
h[n]=0, \qquad n<0
$$

 \blacksquare If $x[n]$ and $h[n]$ are causal sequences, then $y[n] = x[n]^*h[n]$ is also a causal sequence.

Simple Interconnection Schemes

Cascade connection:

$$
\longrightarrow h1([n]\longrightarrow h2([n]\longrightarrow h2([n]\longrightarrow h1([n]\longrightarrow h1([n]*h2[n]\longrightarrow
$$

Cascade of stable systems is stable

Parallel connection:

Parallel of stable systems is also stable

→

Simple Interconnection Schemes -example

h1([n] $^+$ Jz $h1[n] = δ[n] + 0.5δ[n-1]$ $h2[n] = 0.5\delta[n] - 0.25\delta[n-1]$ h1([n] $h3[n] = 2δ[n]$ h1([n] $^+$ h4[n] = -2(0.5)ⁿ u[n] Find the overall impulse response h[n]? h1([n]

Linear Constant-Coefficient Difference Equations (LCCDE)

Illustration On the board:

LCCDE

Frequency Response of LTI systems:

Why it is important:

A- easily obtained directly from unit sample response.

B – Freq. Resp. allows us to obtain the response of system to sinusoidal excitation. And an arbitrary sequence can be represented as a linear combination of complex exponential or sinusoidal sequences.

Properties of Freq. Response:

A- function of continuous variable ω (changes continuously)

B – periodic function of ω . period = 2π

Matlab Functions

Plot signals:

-stem(xn) -plot(n,xn)

Computing Convolution:

- conv(xn,hn)

Computing Cross-correlation (Rxy) and auto-correlation (Rxx):

- -Rxy = conv(xn,fliplr(yn)
- Rxy = <mark>xcorr(</mark>xn,yn)
- $-Rxx = xcorr(xn)$