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Part ll: Discrete-time signals

= Sequences of numbers i

x = {x[n]}. —wm<n<w A1 a1 x{n]

where n 1s an integer
= x[2]

= Periodic sampling of an

analog signal
x[n] = x,(nT). —®o<n<w
where T 1s called the sampling period.
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Sequence operations

= The product and sum of two sequences x[n] and
y[n]: sample-by-sample production and sum,
respectively.

= Multiplication of a sequence x[n] by a number « :
multiplication of each sample value by .

= Delay or shift of a sequence x[n]

y[n]=x[n—-n,]

where » 1s an integer



Basic sequences

« Unit sample sequence (discrete-time impulse,
impulse)

it samp)

0, n=0, :
On — — Tt 0 = O-o - 0009 0o
] {1, n=0, ’ g

= Any sequence can be represented as a sum of
scaled, delayed impulses

x[n]=a_;0[n+3]+a_,0[n+3]+...+a0[n->5].

= More generally

x{n]= > x{kloln—k]
| -



Unit step sequence

= Defined as

uln] = {1. T J.” '

0. n=<0. .

» Related to the impulse by
u[n)=o[n]+o[n—-1]+d[n—-2]+...

or

uln]= i ulklo[n—k]= i o[n—k]
B ka0
= Conversely,

o[n]=u[n]—u[n—-1]



Exponential sequences

»« Extremely important in representing and analyzing
LTI systems.

» Defined as
x[n]=Aa

n

« If A and « are real numbers, the sequence is real.

« If O<a <1 and A is positive, the sequence values
are positive and decrease with increasing n.

» If -1<a <0, the sequence values alternate in sign,
but again decrease in magnitude with increasing n.

« If |a|>1 ,the sequence values increase with

increasing n. o

xi{n]=2-2"



Combining basic sequences

= An exponential sequence that is zero for n<0

i n
Aa’. n=0.

x[n] =+
0. n<0

\

x{n]=Aa"uln]



Sinusoidal sequences

x[n]= Acos(am,n+ ). for all n S

11 ‘

: ,J“—er Tj:_.‘ .
with Aand ¢ real constants. - Tl ' [T ;

= The A4«"with complex « has real and imaginary
parts that are exponentially weighted sinusoids.

Ifo=lale’™ and 4= 4|e’?. then

n]=Aa" =| 4|’ |a|" /™"

A
A

4

24

n ej((oon+¢)

"cos(on+@)+ j| Al e sin(o,n+ @)
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Complex exponential sequence

When | =1.

n]= 4| ™ = 4] cos(wyn + @)+ j| A| sin(@yn + @)

= By analogy with the continuous-time case, the
quantity @, is called the frequency of the complex
sinusoid or complex exponential and ¢ Is call the

phase.

= nis always an integer - differences between
discrete-time and continuous-time



An important difference — frequency range

= Consider a frequency (@, +27)

o | 5. |
x[n]= P PrAS R L PV L L B TP L

= More generally (», + 2). r being an integer,
x[n] = Ae’ @M = 4ol = fol o0

= Same for sinusoidal sequences
x[n] = Acos[(®, + 2@ )n + @] = Acos(@yn + @)

= S0, only consider frequencies in an interval of 27

such as
—-T<@y<mor 0<w, <27
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Another important difference — periodicity

= In the continuous-time case, a sinusoidal signal and
a complex exponential signal are both periodic.

= In the discrete-time case, a periodic sequence is

defined as
x[n]=x[n+ N]. foralln

where the period N is necessarily an integer.

» For sinusoid,
Acos(myn + @) = Acos(@yn + oy N + @)

which requires that o N =27k or N =27k / o,

where £ 1s an integer.
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Another important difference — periodicity

= Same for complex exponential sequence
ej'wo(n+l\") — ejwon
which 1s true only for @y N =27k

= S0, complex exponential and sinusoidal sequences
a are not necessarily periodic in n with period (27 / @,)

a and, depending on the value of @, , may not be periodic at
all.

= Consider
x,[n] = cos(/m/ 4). with a periodof N =8

x,[n]=cos(3m/8). with a periodof N =16

Increasing frequency - increasing period!
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Another important difference — frequency

= For a continuous-time sinusoidal signal
x(r) = Acos(Q,t + @),

as Q, mcreases, x(t) oscillates more and more rapidly
= For the discrete-time sinusoidal signal

x[n] = Acos(a,n+ @),
as @, increases from 0 towards 7, x[n] oscillates more and more rapidly
as @, increases from 7 towards 2z, the oscillations become slower.
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Part II: Discrete-time systems

= Introduction
s Discrete-time signals

= Discrete-time systems
= Linear time-invariant systems
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Discrete-time systems

» A transformation or operator that maps input into
output
yin]=Tx[n]}

x[n]  — T} F—  yn]

= Examples:
a The ideal delay system

y[n]=x[n-n,;]. —D<N<D
2 A memoryless system

y[n] = (1{n])2. — D LN LD



Linear systems

= A system is linear if and only if
additivity property

T{x,[n]+ x,[n]} = T{x,[n]} + T{x,[n]} = y,[n]+ y,[n]
and

T{ax[n]} = aT{x[n]} = ay[n]  scaling property
where a 1s an arbitrary constant

=« Combined into superposition
T{ax;[n]+bx,[n]} = aT{x|[n]} + aT{x,[n]} = ay,[n]+ ay,[n]

= Example 2.6, 2.7 pp. 19
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Time-invariant systems

= For which a time shift or delay of the input sequence
causes a corresponding shift in the output sequence.

xy[n]=x[n—ny]= y[n]=y[n-n]

= Example 2.8 pp. 20
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Causality

» The output sequence value at the index »=n,
depends only on the input sequence values for
H<=HO.

o Example y[n]=x[n-n,]. — NN LD

a Causal for ng>=0
a Noncausal for ng<0
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Stability

= A system is stable in the BIBO sense if and only if
every bounded input sequence produces a
bounded output sequence.

= Example

y[n] = (x[n])’. —D<N<D
stable

20



Part III: Linear time-invariant systems

m Course overview

s Discrete-time signals
s Discrete-time systems
= Linear time-invariant systems
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Linear time-invariant systems

= Important due to convenient representations and
significant applications

= A linear system is completely characterised by its
Impulse response

yin]=Tx[n]j=T {Zﬂk]c?[" klj

k=—x0

- i X[kIT{5[n—k]} = i x[k]h,[n]

k=—x k=—x

= [ime invariance h,[n]=h[n-k]

Mn]= Ylﬂ'lh[" —k]

k-—a::

= x{n]* h[n] Convolution sum
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Forming the sequence h[n-k]




Computation of the convolution sum

x

Mn]=x{n]* hn]= 3" x{k]hln— k]

k-—@

= Obtain the sequence h[n-K]
2 Reflecting h[k] about the origin to get h[-k]
2 Shifting the origin of the reflected sequence to k=n

= Multiply x[k] and h[n-K] for —o <« < =
=« Sum the products to compute the output
sample y[n]
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Computing a discrete convolution

Example 2.13 pp.26

Impulse response
hin]=u[n]—u[n—N]
|, 0snsN-1,
_{ 0. otherwise.

input
x[n]=a"u[n]
0. n <0,
_ n+l
}{ﬂ]:#l = 0<n<N-1
l-a
y l—a‘v
" s | ). N-l<n.
l-a

H H'.i;:};’.;

,[ l' [Liinesss
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Computing discrete convolution - Tabular method

= Finite-discrete sequence: y[n] = x[n] * g[n]

x[n] = {x[O], x[1], x[2], x[3], x[4]}
g[n] = {g[0], g[1], g[2], g[3]}

nn| o0 1 2 3 4
x([n] | x[O] x[1] x[2] x[3]  x[4]
g([n] | gl[O] g[1] g[2] g[3]

x[0]gl0] x[1]g[0] x(2]gl0] x[3]g[0] x[4]g[0]
 x[0lgl1] x[1]gl1] x[2lg1] xI3el1] x(4]g[1]
| x[0Jg[2] x[1lg[2] x(2]gl2] x[3]g[2] x[4]g[2]

2 - xI0jel3] x(1]gl3] x(2lel3] xI3e(3] x(4]gl3]

What is the maximum length of y[n]?

Oyl 2l s gl gl VIS vIe
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Computing discrete convolution - Tabular method

Example: consider the following two finite-length sequences,
X[n]={-2 01 -1 3 } hin]={1 2 0 -1 }

! !

n=0 n=0

Find y[n] = x[n] * h[n]?
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Properties of LTI systems

= Defined by discrete-time convolution
a Commutative

x[n]*h[n] = h[n]*x{n]

a Linear
x{n]* ([n]+ hy[n]) = x[n]* by [n] + x[n] * by [n]

a Cascade connection (Fig. 2.11 pp.29)
h[n] = Iy[n]* hy[n]

o Parallel connection (Fig. 2.12 pp.30)
hn)=y[n]+hy[n]

28



Properties of LTI systems

=« Defined by the impulse response
a Stable

S= 3| HK]I< o0

| S

o Causality
h[n]=0, n<o

= |f x[n] and h[n] are causal sequences,
then y[n] = x[n]*h[n] is also a causal sequence.
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Simple Interconnection Schemes

» Cascade connection:

—1 h1([n] h2([n]

—>1 h2([n]

Cascade of stable systems is stable

» Parallel connection:

h1([n]

h2([n]

O—

Parallel of stable systems is also stable

hi([n] > —

h1([n]*h2[n]

— h1([n]+h2[n]




Simple Interconnection Schemes -example

h1l[n] = §[n] + 0.56[n-1]
h2[n] =0.58[n] — 0.258[n-1]
h3[n] = 26[n]

h4[n] =-2(0.5)" u[n]

Find the overall impulse response h[n]?

h1([n]

h1([n]

h1([n]

h1([n]
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Linear Constant-Coefficient Difference Equations (LCCDE)

lllustration On the board:
LCCDE
Frequency Response of LTI systems:

Why it is important:

A- easily obtained directly from unit sample response.

B — Freq. Resp. allows us to obtain the response of system to sinusoidal
excitation. And an arbitrary sequence can be represented as a linear
combination of complex exponential or sinusoidal sequences.

Properties of Freq. Response:
A- function of continuous variable w (changes continuously)
B — periodic function of w. period = 2n
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Matlab Functions

Plot signals:
-stem(xn)
-plot(n,xn)

Computing Convolution:
- conv(xn,hn)

Computing Cross-correlation (Rxy) and auto-correlation (Rxx):
- Rxy = conv(xn,fliplr(yn)

- Rxy = xcorr(xn,yn)

- -Rxx = xcorr(xn)
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