Sampling, Quantization and Encoding

Analogue to digital conversion Process

 \rightarrow Before any DSP algorithm can be performed, the signal must be in a digital form. The A/D conversion process involves the following steps: The signal (Band-limited) is first sampled, converting the analogue signal into a discrete-time signal

 \Box The amplitude of each sample is quantised into one of 2*^B* levels (where *B* is the number of bits used to represent a sample in the A/D converter) The discrete amplitude levels are represented or encoded into distinct binary words each of length B bits

A practical representation of the A/D conversion process is shown in the Figure below:

Sample and hold (S/H) takes a snapshot of the analogue signal every *T* sec and then holds that value constant for *T* secs until the next snapshot is obtained.

An example of "sample and hold" process to convert analogue signals into digital signals

Example:

An example of sampling analogue signals to discrete-time signals. The sampling period is T

Example: $4-bit (B = 4) A/D converter (bipolar)$

Input-output characteristic of 4-bit quantiser (linear) (two's complement notation)

Quantisation and encoding

 \rightarrow Before conversion to digital, the analogue sample is assigned one of 2*^B* values. This process, termed quantization, introduces an error,

which cannot be removed.

 \Box A 12 bit A/D converter (bipolar) with an input voltage range of ±10V will have a least significant bit (LSB) of

 $\frac{20V}{2^{12}-1}mV = 4.9mV$ (resolution) 0111 1111 1111 12 bits Resolution (step-size) 2¹² levels = 4096 $\Delta V = \frac{20V}{2^{12} - 1} = 4.9mV$ 1000 0000 0000 $-$ 12 *J*bits

 \Box For an A/D converter with Binary digits the number of quantisation level is 2*^B* , and the interval between levels, that is the quantisation step size (ΔV) – resolution is given by

$$
\Delta V = \frac{V}{2^B - 1} \approx \frac{V}{2^B}
$$

 \Box V-full scale range of the A/D converter with bipolar signal inputs. The maximum quantisation error, for the case where the values are rounded up or down

 \Box For a sine wave input of amplitude A, the quantisation step size becomes

 The quantisation error (*e*) for each sample, is normally assumed to be random and uniformly distributed in the interval with zero mean

 In this case, the quantisation noise power or variance is given by

e = actual amplitude - quantised amplitude

(Note : Uniform quantisation - all steps are of equal size)

 \Box For the sine wave input, the average

signal power is
$$
\frac{A^2}{2}
$$
, ie. $\left(\frac{A}{\sqrt{2}}\right)^2$ rms value

 \Box The signal-to-quantisation noise power ratio (SQNR) in decibles

$$
SQNR = 10 \log \left(\frac{A^{2}}{\frac{\Delta V^{2}}{12}} \right) = 10 \log \left(\frac{A^{2}}{\frac{(2A/2^{B})^{2}}{12}} \right)
$$

$$
= 10 \log \left(\frac{3 \times 2^{2B}}{2} \right)
$$

 $SQNR = 6.02B + 1.76$ \mathbf{dB} \Box The SQNR increases with the number of bits, B. In many DSP applications, an A/D converter resolution between 12 and 16 bits is adequate

Thus, the signal-to-quantisation noise ratio increases approximately 6dB for each bit.

Summary: Analogue to Digital Converter

Example:

Sampling frequency

- In practice, the A/D is proceeded by a sample and hold (S/H) which freezes the signal during conversion.
- \blacksquare Two parameters related to S/H:

aperture time \approx 25 ns (for example) acquisition time \approx 2 µs (for example)

• Then the maximum frequency that can be converted becomes

$$
f_s|_{\text{max}} = \frac{1}{(35 + 2 + 0.025)10^{-6}} = 27kHz
$$

maximum sampling frequency for the above A/D \blacksquare converter.

Example:

Consider the analogue signal

 $x(t) = 3 \cos 50 \pi t + 10 \sin 300 \pi t - \cos 100 \pi t$

What is the **Nyquist** rate for this signal?

The frequencies present in the signal above are

$$
f_1 = 25Hz; f_2 = 150 Hz; f_3 = 50 Hz
$$

Hence, $f_{max} = 150 Hz$

 $f_{sampling}$ > $2f_{max}$ = 300 Hz

The Nyquist rate is $f_N = 2 f_{max} = 300 Hz$.

Note: Consider $x(t) = 10 \sin 300 \pi t$ $fs \geq 2 \times f = 300$ Hz

 \Box We are sampling the analogue sinusoid at its zero-crossing points and hence we miss the signal completely. The situation will not occur if the sinusoid is offset by some phase (here).

 In such case we have $x(t) = 10\sin(300\pi t + \phi)$ and $T = \frac{1}{f_s}$, where $f_s = 300$ Hz.

 $|x|n| = 10\sin(\pi n + \phi)$ = $10[\sin(\pi n)\cos(\phi) + \cos(\pi n)\sin(\phi)]$ for n = 0,1,2,.. $=10\cos(\pi n)\sin(\phi)$

Since cos(πn) = (-1)*n*, x [n]= (-1)^{*n*}10 sin(ϕ) If $\theta \neq 0$ or $\theta \neq \pi$, the samples of the sinusoid taken at the Nyquist rate are not all zero

Note: $x(t) = A \cos(2\pi f_0 t)$ is a continuous-time sinusoidal sign

$$
x(n) = A \cos \left(2\pi \frac{f_0}{f_s} \right) n
$$

$$
-\frac{f_s}{2} \le f_0 \le \frac{f_s}{2}
$$

Example :

 \Box Consider the analogue signal

 $x(t) = 3\cos(2000\pi t) + 5\sin(6000\pi t) + 10\cos(12000\pi t)$

(a) What is the Nyquist rate for this signal?

The frequencies existing in the analogue signal are: *f1 = 1 kHz; f2 = 3 kHz; f3 = 6 kHz*

Thus *fmax = 6 kHz* and according to the sampling theorem,

> *fs* > 2 *f*max = 12 kHz The Nyguist rate is $= 12$ kHz

(b) Assume now that we sample this signal *x(t)* using a sampling rate *fs* = 5 *KHz* (samples/sec). What is the discrete-time signal obtained after sampling?

$$
f_s = 5000 Hz \Rightarrow \frac{J_s}{2} = 2500
$$

*x(t) = 3 cos (2*π × *1000t) + 5 sin(2*π × *3000t) + 10 cos(2*π×*6000t)*

$$
x[n] = 3\cos\left(2\pi\frac{1000}{5000}n\right) + 5\sin\left(2\pi\frac{3000}{5000}n\right) + 10\cos\left(\frac{6000}{5000}n\right)
$$

= $3\cos\left(2\pi\left(\frac{1}{5}\right)n\right) + 5\sin\left(2\pi\frac{3}{5}n\right) + 10\cos\left(2\pi\left(\frac{6}{5}\right)n\right)$
= $3\cos\left(2\pi\left(\frac{1}{5}\right)n\right) + 5\sin\left(2\pi\left(1-\frac{2}{5}\right)n\right) + 10\cos\left(2\pi\left(1+\frac{1}{5}\right)n\right)$
= $3\cos\left(2\pi\left(\frac{1}{5}\right)n\right) + 5\sin\left(-2\pi\frac{2}{5}n\right) + 10\cos\left(2\pi\left(\frac{1}{5}\right)n\right)$

$$
x[n] = 13\cos\left(2\pi\left(\frac{1}{5}\right)n\right) - 5\sin\left(2\pi\left(\frac{2}{5}\right)n\right)
$$

(c) What is the analogue signal *y(t)* we can reconstruct from the samples if we use ideal interpolation.

 \rightarrow Since only frequency components at 1 kHz and 2 kHz are present in the sampled signal, the analogue signal we can recover is, *y(t)*=13cos(2000π*t*)-5sin(4000π*t*) which is obviously different from the original signal *x(t)*. The distortion of the original analogue signal was caused by the aliasing effect, due to the low sampling rate used.

Example:

An analogue signal *x(t)* =sin(480π*t*)+3sin(720π*t*) is sampled 600 times per second.

(a) Determine the Nyguist sampling rate for *x(t)*

(b) Determine the folding frequency (or half the sampling frequency)

(c) What are the frequencies, in radians, in the resulting discrete time signal *x[n]*?

(d) If *x[n]* is passed through an ideal D/A converter what is the reconstructed signal *y(t)*

(a) *x(t)* = sin(2π 240*t*) + 3sin(2π 360*t*) *f*1 = 240 Hz *f*2 = 360 Hz ∴ *f*max = 360 Hz ∴ *F*Nyquist = 2 × *f*max = 720 Hz

(b) *fs* = 600 Hz ∴*f*fold or *fs/2* = 300 Hz

(c)

$$
x[n] = x(t)|_{t=nT} = \sin\left(2\pi \frac{240}{600}n\right) + 3\sin\left(2\pi \frac{360}{600}n\right)
$$

$$
= \sin\left(\frac{4\pi}{5}n\right) + 3\sin\left(\frac{6\pi}{5}n\right)
$$

$$
= \sin\left(\frac{4\pi}{5}n\right) + 3\sin\left(\left(2\pi - \frac{4\pi}{5}\right)n\right)
$$

$$
= \sin\left(\frac{4\pi}{5}n\right) - 3\sin\left(\frac{4\pi}{5}n\right)
$$

$$
= -2\sin\left(\frac{4\pi}{5}n\right)
$$

(d)

Note : (a) bit rate $=$ $fs \times$ no of bits

 $= 8000$ samples/sec \times 12

```
=96,000 samples/sec
```

$$
x(t) = \frac{12 \text{ bits AD}}{(f_s = 8,000)} \times [n]
$$

(b) In the case of PCM, speech signals are filtered to remove effectively all frequency components above 3.4 kHz and the sampling rate is 8000 samples per sec

 $f_{\rm s}$ = 8000 Hz (8000 samples/sec)

Bit rate (bits per second)

- = sampling frequency × bits/sample
- = 8000 samples/second × 8-bits/sample
- = 64,000 bits/sec

