Course at a glance

System implementation

■ LTI systems with rational system function e.g.

$$
H(z) = \frac{b_0 + b_1 z^{-1}}{1 - az^{-1}}, \quad |z| > |a|
$$

Impulse response

$$
h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1]
$$

■ Linear constant-coefficient difference equation

$$
y[n] - ay[n-1] = b_0 x[n] + b_1 x[n-1]
$$

Three equivalent representations!

How to implement, i.e. convert to an algorithm or structure?

System implementation

- The input-output transformation $x[n] \rightarrow y[n]$ can be computed in different ways - each way is called an implementation
	- □ An implementation is a specific description of its internal computational structure
	- □ The choice of an implementation concerns with
		- \blacksquare computational requirements
		- memory requirements,
		- \blacksquare effects of finite-precision,
		- \blacksquare and so on

System implementation

• Impulse response $h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1]$ $y[n] = x[n]^* h[n]$

is infinite-duration, impossible to implement in this way.

However, linear constant-coefficient difference equation provides a means for recursive computation of the output

> $v[n]-av[n-1]=b_0x[n]+b_1x[n-1]$ $y[n] = ay[n-1] + b_0x[n] + b_1x[n-1]$

Basic elements

- Implementation based on the recurrence formula derived from difference equation requires
	- adders m

$$
y[n] = ay[n-1] + b_0x[n] + b_1x[n-1]
$$

- multipliers \Box
- memory for storing delayed sequence values \Box

Example of block diagram representation

A second-order difference equation

Example of a block diagram representation of a difference equation. Figure 6.2

General Nth-order difference equation

A cascade of two systems! $X[n] \rightarrow V[n], \quad V[n] \rightarrow V[n]$

Figure 6.3 Block diagram representation for a general Nth-order difference equation.

Rearrangement of block diagram

A block diagram can be rearranged in many ways without changing overal function, e.g. by reversing the order of the two cascaded systems.

System function decomposition

In the time domain

$$
y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]
$$

$$
\frac{v[n] = \sum_{k=0}^{M} b_k x[n-k]}{y[n] = \sum_{k=1}^{N} a_k y[n-k] + v[n]}
$$

$$
\begin{cases} \n\mathbf{w}[n] = \sum_{k=1}^{N} a_k \mathbf{w}[n-k] + x[n] \\
\mathbf{y}[n] = \sum_{k=0}^{M} b_k \mathbf{w}[n-k] \n\end{cases}
$$

Minimum delay implementation

One big difference btw the two implementations \mathbb{R}^n concerns the number of delay elements

 $N+M$ $max(N, M)$

Direct form I and II

- Direct form I as shown in Fig. 6.3
	- □ A direct realization of the difference equation
- Direct form II or canonic direct form as shown in Fig. 6.5
	- o There is a direct link between the system function (difference equation) and the block diagram

An example

Direct form I and direct form II implementation

Direct form II implementation of Eq. (6.16). Figure 6.7

Signal flow graph (SFG)

- \blacksquare As an alternative to block diagrams with a few notational differences.
- A network of directed branches connecting nodes.

Figure 6.8 Example of nodes and branches in a signal flow graph.

Nodes in SFG represent both branching points and adders (depending on the number of incoming branches), while in the diagram a special symbol is used for adders and a node has only one incoming branch.

SGF is simpler to draw.

From flow graph to system function

Figure 6.12 Flow graph not in standard direct form.

- \blacksquare Not a direct form,
	- cannot obtain $H(z)$ by inspection. \Box
	- But can write an equation for each node \Box
		- $w_4[n] = w_3[n-1]$ involve feedback, difficult to solve
		- By z-transform \rightarrow linear equations

From flow graph to system function

$$
\begin{cases}\nW_1(z) = W_4(z) - X(z) \\
W_2(z) = \alpha W_1(z) \\
W_3(z) = W_2(z) + X(z) \\
W_4(z) = z^{-1}W_3(z)\n\end{cases}\n\begin{cases}\nW_2(z) = \alpha(W_4(z) - X(z)) \\
W_4(z) = z^{-1}(W_2(z) + X(z)) \\
Y(z) = W_2(z) + W_4(z)\n\end{cases}
$$

$$
Y(z) = \left(\frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}\right) X(z)
$$

\n
$$
H(z) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}
$$
 If α is real, the system is ? All-pass
\n
$$
h[n] = \alpha^{n-1} u[n-1] - \alpha^{n+1} u[n]
$$
 Causal!

From flow graph to system function

Direct form I equivalent of Figure 6.12. Figure 6.13

Flow graph not in standard direct form. **Figure 6.12**

Different implementations, different amounts of computational resources

Signal flow graph of direct form I structure for an Nth-order system. Figure 6.14

Direct form II

Figure 6.16 Direct form I structure for Example 6.4.

Direct form II structure for Example 6.4. Figure 6.17

Cascade form

Figure 6.18 Cascade structure for a sixth-order system with a direct form II realization of each second-order subsystem.

An example: from 2nd-order to 1st-order cascade

(b) Direct form II subsections.

Figure 6.17 Cirect form II structure for Example 6.4.

Parallel form by partial fraction expansion

Figure 6.20 Parallel-form structure for sixth-order system ($M = N = 6$) with the real and complex poles grouped in pairs.

Feedback in IIR systems

Feedback loop: a closed path Necessary but not sufficient condition for IIR system (Feedback introduced poles could be cancelled by zeros)

$$
H(z) = \frac{1 - a^2 z^{-2}}{1 - az^{-1}} = 1 + az^{-1}
$$

All loops must contain at least one unit delay element

(a) System with feedback Figure 6.23 loop. (b) FIR system with feedback loop. (c) Noncomputable system.

Transposed form for a first-order system

Flow graph reversal or transposition also provides alternatives: of all branches and reversing the input and output

reversing the directions Figure 6.24 Flow graph of simple first-order system.

Resulting in same $H(z)$

Figure 6.26 Structure of Figure 6.25 redrawn with input on left

Transposed direct form II and direct form II

The transposed direct form II implements the zeros first and then the poles, being important effect for finite-precision existing $_{ba}$

- So far, system function has both poles and zeros. FIR systems as a special case.
- Causal FIR system function has only zeros (except for poles as $z=0$)

$$
y[n] = \sum_{k=0}^{M} b_k x[n-k]
$$

$$
h[n] = \begin{cases} b_n, & n = 0,1,...,M \\ 0, & \text{otherwise} \end{cases}
$$

• Form I and form II are the same.

Cascade form

Factoring the polynomial system function

$$
H(z) = \sum_{n=0}^{M} h[n]z^{-n} = \prod_{k=1}^{M_s} (b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2})
$$

Figure 6.33 Cascade-form realization of an FIR system.