Course at a glance

Topic 9

Filter design



System implementation

= LTI systems with rational system function e.g.
by +bz"

H(z)= —. |Z[>|a|

l—az
= Impulse response
hin]=b,a"uln]+b, a"uln—1]
= Linear constant-coefficient difference equation
vinl—av[n—-1]=byx[n]+bx[n—-1]
Three equivalent representations!

How to implement, i.e. convert to an algorithm or
structure?



S}"S tem implementﬂtinn

The input-output transformation x[n] = v[n] can be
computed in different ways — each way is called an
Implementation

2 An implementation is a specific description of its
internal computational structure

1 The choice of an implementation concerns with
computational requirements

memory requirements,

effects of finite-precision,
and so on



System implementation

» Impulse response
h[n) = bya"u[n]+ba" uln-1]
v[n]= x[n]*h[n]

Is infinite-duration, impossible to implement in this way.

= However, linear constant-coefficient difference
equation provides a means for recursive computation
of the output

vin]—av[n—1]= byx[n]+ bx{n—-1]
W)= nr_r[n;l] +byx(n]+bxn-1]




Basic elements

= Implementation based on the recurrence formula
derived from difference equation requires

o adders vin] = av[n =1]+b,x[n]+ bx[n—1]
o multipliers -

o memory for storing delayed sequence values

; rFigure 6.1 Block diagram symbols
¢ |n] ¥l - 1] (2) Addition of TwD SBQUBnCas

() Multiplication of a sequence by a
<l constant. (¢) Unil delay




Example of block diagram representation

= A second-order difference equation

winl=ay[n=11+a,y[n-2]+b,x[n]

h
H(z)= —
l—az" —a,z
t[n] (O— I
Demonstrates the _
complexity, the steps, e 1 yln-1]
the amount of resources e
required.
i y[m=1]

Figure 6.2 Example of a block diagram representation of a difference equation.



General Nth-order difference equation
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N M
v|n]= Z a. vin—rK]+ Z b.x[n—k] Z b =k
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: A cascade of two systems!
i X[n]=2v[n]., v[n]=2y[n]

raprasentation for a genaral Ath-order

'..I - g

: Figure 6.3 Block diagram
< il
. vle =N difierance equation.




Rearrangement of block diagram

= A block diagram can be rearranged in many ways
without changing overal function, e.g. by reversing

the order of the two cascaded systems.

=] |x]
{3 S O Wy

i.
J Figure 6.4 Rearrangement of block
[ ‘ diagram of Rgure 6.3. We assuma for
N
wijn = |

3 comveniencethat N =W U N L M
- soma al tha coeffickents will be 2ero




System function dECGmPUSitiDIl
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In the time domain

N M
v[n]= Z a. vin—FkJ]+ Z b.x[n—k]
k=1 k=0

[ M
v[n]= Zbkﬁ:[n — K]
J—— k=0

) -
v[n]= Z a. vin—k]+v[n]
g k=1

r.‘n‘[H] = i awin—rk]+xn]

k=1

M
v[n]= Zbku[n — k]
. k=0



Minimum delay implementation

= One big difference btw the two implementations
concerns the number of delay elements

w | i .I.M + .ﬂr{
?— r L Q ¥ l ¥ F i I—l:l
- . max(N. M)
Q % “-_! 1 & I

Filpure 6.5 Combination of delays in

Firsiire 5 4




Direct form I and 11

Direct form | as shown in Fig. 6.3
o A direct realization of the difference equation

Direct form Il or canonic direct form as shown in Fig.

6.5

o There is a direct link between the system function
(difference equation) and the block diagram



An example

= Direct form | and direct form Il implementation
1+2z7

H(z)=
- _-1 )
1-1.5z7+0.9:
e e e
x[m] L l L
1 |
2 1.0
o * -l & "’T"- =
T x| N Q -1 I""-uL-""r vin|
|
-9 O 1.5 2
!
Figure 5.6 Direc! form | implementation of Eq. (6.16) ; ‘
[ 1L

Figure 6.7 Direct form Il implemeniation of Eqg. {6.16).



Signal flow graph (SFG)

= As an alternative to block diagrams with a few
notational differences.

= A network of directed branches connecting nodes.
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_ - B Figure 6.8 Example of nodes and
variable odle & ~  branches in a signal flow graph.
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graph showing source and sink nodes.



i 2 i Nodes in SFG represent
‘ J both branching points
- and adders (depending

N o . on the number of

noded 12 B 3 wde3  jncoming branches),
‘Il \  “|Deay while in the diagram a
. | special symbol is used
e for adders and a node
(b) has only one incoming

branch.
SGF is simpler to draw.
w, [n wln] )
r[n] v T i ’ L
> |7 A



From flow graph to system function

-1 '-'l'||_|']i- Ck I-L:I.l'.'l

L
|

[
7 / I
\ / ! wy[n] = wy[n]—x{n]
¥ [n] [ ;,rf'){wh [ _1:.:] Lt n]= mt’l[ﬂ]
o —_ue'; - N * ws[n]=w;[n]+x{n]
wsln] = wyn] Wy :H- — Wg[ﬂ_l]

Figure 6.12 Flow graph not in standard direct form. v[n]=ws[n]+w,[n]
= Not a direct form,
o cannot obtain H(z) by inspection.

o But can write an equation for each node

« w,[n]=w,[n-1] involve feedback, difficult to solve
= By z-transform = linear equations



From flow graph to system function

W@ =W,)-X@)
W,(z)=alW/(z) W,(z)=a(W,(z)-X(z))
W@ =M@ XE)
W,(2) =" W;(2) W,(2) =27 (1 (2) + X(2))
Y(2)=W,(2)+W,(2) Y(2)=W,(2)+W,(2)
-
() =[1_ : ]X(:)
H(z)= = —a If o is real the systemis?  All-pass
1—az™?

h[n]=a™ uln —1]—a™ uln] Causall



From flow graph to system function

i
0 i3 = i’ ¥ {F * i o
x|n) T /T ; T ¥ln]
=1 1\ - I
#f"ff ’ h‘"'“—l
Figure 6.13  Direct form | equivalent of Figure 6.12.
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Figure 6. 12 Flow graph nat in standard direct form.

Different implementations, different amounts of
computational resources



Basic structures for |IR systems  pirect form I

N M

M
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Figure 6.14 Signal flow graph of direct form | structure for an Nth-order system.



Direct form 11

N y =
Wm=> ayn—kl+ > bx{n—k] S bz
k=1 k=0

_—1 k=0
H(- _ N
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Figure 6.15 Signal flow graph of

|
|
|
|
|
— - 4 &
‘ €y J B direct form |l structure for an
== — Nth-order system.
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Figure 6.16 Direct form | structure for Example 6.4.
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Figure 6.17 Direct form Il structure for Example 6.4.



Cascade form

Factor the numeratﬂr and denc}mmatnr polynomials

be"’ ]_[(1 ftfl]]_[(l g2 -gz™)
H(z)=—""% =AX

M

1- Ea,,:‘ 1‘[:;1 —c,z ]]‘[(1 22 (1—dz ™)
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Figure 6,18 Cascade structure for a sixth-order system with a direct form I
realization of each second-order subsystam,



An exa:mple: from 2™_grder to 1st-order cascade

H(z) = P2 gz O Q+z ) {a+z)
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Figure 6.19 Cascade structures for Example 6.5. (a) Direct form | .
(b Direct tarm |l subsections. Rigne BT Direct torm Il svpetere Tor Ecumpie 6.4



Parallel form by partial fraction expansion
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Figure 6.20 Parallel-form structure for sidth-order system {M = N = B) with
the real and comglex poles grouped in pairs. S
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Feedback in IIR systems

Dl iyt r o
x[m] \ v[n]

AN ] E Feedback loop: a closed path
. ”\"\R | Necessary but not sufficient
a un] k condition for IIR system
(Feedback introduced poles
o T I 7 7, could be cancelled by zeros)

t|nl

] ke l—a 2
h-':' :ﬂ—| A - —LlL
i ! H(- :' I _1

- =1+az™
y[n] = ay[n]+ x[n] L f'_,f' — az

ynl=x{n]/(1-a)

All loops must contain at least
one unit delay element

= Figure 6.23 (a) System with feedback
loop. (b} FIR system with feedback loop.
ic) (¢} Noncomputable system



Transposed form for a first-order system

Flow graph reversal or g [ D
transposition also ‘
provides alternatives:
reversing the directionsFigure 6.24 Flow graph of simple first-order system.
of all branches and P Y O D
reversing the input and b i gy A
output ‘

Resulting in same H(z)
Figure 6.25 Transposed form of Figure 6.24.
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Figure 6.26 Structure of Figure 6.25 redrawn with input on left



Transposed direct form II and direct form II

The transposed direct form |l implements the zeros
first and then the poles, being important effect for

finite-precision existing ,,
TR | ’ I ]
5 ¥ ; T

-




Basic structures for FIR systems Direct form

So far, system function has both poles and zeros.
FIR systems as a special case.

Causal FIR system function has only zeros (except
for poles as z=0)

M (b,. n=01...M
v[n]=D bx[n—k] h[n]=-
k=0

0. otherwise

= Form | and form |l are the same.
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Cascade form

Factoring the polynomial system function

H(z)= i hn)z"" = ﬁ by, +b, 27 +D,,277)

k=1

B o Bong,
Leoee il - o - o F ——— — — 'y . P SR
x[n] - v|n
- .1 i g IT . 1 ¥ )
r) | _L .I|i||: hi.”-._
o g -.Il I'_.- F -\.\_:l I'_.- r g i)
T * k 1y i 1y i
: by bas bang,

Figure 6.33 Cascade-form realization of an FIR system.



