Discrete Fourier Transform (DFT)

Chapter 8 in the textbook
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The discrete-time Fourier transform (DTFT)

The DTFT is useful for the theoretical analysis of
signals and systems.

But, according to its definition
X(e'?) = Z x[nl™™

computation of DTFT by computer has several
problems:

o The summation over » is infinite
o The independent variable w is continuous



The discrete Fourier transform (DFT)

In many cases, only finite duration is of concern

o The signal itself is finite duration

o Only a segment is of interest at a time

o Signal is periodic and thus only finite unique values
For finite duration sequences, an alternative Fourier
representation is DFT

o The summation over » is finite

o DFT itself is a sequence, rather than a function of a
continuous variable

o Therefore, DFT is computable and important for the
implementation of DSP systems

o DFT corresponds to samples of the Fourier transform



Part I: The discrete Fourier series

= The discrete Fourier series

= [he Fourier transform of periodic signals
s Sampling the Fourier transform

= [he discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT




The discrete Fourier series

A periodic sequence with period v
xX[n]=x[n+rN]

Periodic sequence can be represented by a Fourier

series, I.e. a sum of complex exponential sequences

with frequencies being integer multiples of the

fundamental frequency (27/ N)associated with the x[#]
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The Fourier series coefficients

The coefficients
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Periodic Convolution
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Figure 8.3 Procedure for forming the periodic convolution of two periodic
sequences




DEFS of a periodic impulse train

Periodic impulse train

x[n]= > 6[n—rN]

r-—m

The discrete Fourier series coefficients
- N-1
X[k]=> o[nwy" =1
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By using synthesis equation, an alternative
representation of x[#] is
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Part II: The Fourier transtorm of periodic signals

= [ he discrete Fourier series

= The Fourier transform of periodic signals
s Sampling the Fourier transform

= [ he discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT



The Fourier transform of periodic signals

Fourier transform of complex exponentials
in]=%a,e’™". —w<n<xo

X(e') = E S 2m S(0— @, +2)
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Fourier transform of x[#]
.*f-lﬂ_
’f[n]—izﬂk]e”” N)im
..'?Illr lI_-_|:|
| = I~ 2k
X(e'®)=% XTk15(o —
(e’") 2~ [k]o(ew NJ

X(e’®) has the required periodicity with period 27



Fourier transform of a periodic impulse train

= Periodic impulse train Sin] = i ST —rNT

P

o The discrete Fourier series coefficients

— N-1
Plk] = EJ[H]WF =1
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o Fourier transform i I 2k
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= Finite duration signal x{x] { x{n] = 0 outside of [0, N —1])
o Construct x[n] ] )
x[n]=x{n]* plnl=x{n]* > S(n—rN)= 2 x(n—rN)

I =20 o=

o Its Fourier transform
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The Fourier transform of periodic signals

= Compare
= 2 5 2 ik
X(e’®) = X(e’*)P(e’™) = 3 —= X (e’ ) 5(w——)
.E'-—u:- *'“I"r _lh.i"
j.’u'{ﬁjﬂ’] — ";; Ei’[k]ﬁ{m— Eﬂk] —> First represent it as Fourier senes
b IV N and then calculate Fourier transform

= Conclude that
.%[.Iﬁ'] — X{:Ej{l.ar:'.‘u’j.i:} — I{ﬁjm}

o=(2x | N)E

l.e. the DFS coefficients of x[xn] are samples of the
Fourier transform of the one pEI‘ID of ¥[n]

_[x[n] 0<n<N-1

x[n] =
t 0. otherwise



Part I111: Sampling the Fourier transform

= | he discrete Fourier series
= [ he Fourier transform of periodic signals
= Sampling the Fourier transform

m [ he discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT




Sampling the Fourier transform

= An aperiodic sequence and its Fourier transform

X(e)= Tx[ﬂ]e_‘m" > x[n]= 2— | X(e')e'"dw
p=— T*
= Sampling the Fourier transform |
Xlk]= I[Em} @=(27/ N)k I(EJEHJ N}k}

o generates a periodic sequence in k with period N since
the Fourier transform is periodic in @ with period 27
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H-.H_+__.; which X(2) is sampled to obtain the
periodic sequence X[k] (N = 8)



Smnp]ing the Fourier transform

Now we want to see if the sampling sequence XTk]is
the sequence of DFS coefficients of a sequence x[#]

_ [ x[m]e~7Cr/Mim 7=

s 1 N-1 ke @ ~
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Figure 8.8 (a) Finite-length sequence x[n]. (b} Periodic sequence ¥{n] corre-
sponding 1o sampling the Fourler transform of x{n] with ¥ = 12,

» |n this case, the Fourier series coefficients for a
periodic sequence are samples of the Fourier
transform of one period



Examples

-
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Figure 8.9 Periodic sequence X[7] corresponding to sampling the Fourier trans-
form of x[n] in Figure 8.8(a) with N = 7.

» In this case, still the Fourier series coefficients for x[x]
are samples of the Fourier transform of af»]. But,
one period of X[#] is no longer identical to x{#]

= This is just sampling in the frequency domain as
compared in the time domain discussed before.



Sampling in the frequency domain

The relationship between x{»] and one period of x[x]
In the undersampled case is considered a form of
time domain aliasing.

Time domain aliasing can be avoided only if x[7] has
finite length, just as frequency domain aliasing can
be avoided only for signals being bandlimited.

If x{n] has finite length and we take a sufficient
number of equally spaced samples of its Fourier
transform (specifically, a number greater than or
equal to the length of x[»] ), then the Fourier
transform is recoverable from these samples,
equivalently x{»#lis recoverable from x[»].



Sampling 1n the frequency domain

Recovering x[n]

X[n], 0<n<N-1
x[n]= .
0. otherwise

..e. recovering x[7] does not require to know its
Fourier transform at all frequencies

Application: represent finite length sequence by
using Fourier series (coefficients) = DFT

x[n] = ¥[n] — DFS. X[k] — ¥[n] — x{n]




Sampling the Fourier transform

= Fourier transform Xx(;jQ) =J'ix(rje‘ﬁ’”dr
x(1) =if X(jQ)e’™do
o™

= Discrete-time Fourier transform
X(e) = x[nk™™

n=—x

1 - . .
x[n]= ﬁfﬁf(eﬁﬂje*’mdm

= Discrete Fourier transform
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Part IV: The DFT

= [ he discrete Fourier series

= [ he Fourier transform of periodic signals
s Sampling the Fourier transform

= [he discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT




The discrete Fourier transform

Consider a finite length sequence x[x] of length N
samples (if smaller than N, appending zeros)

o Construct a periodic sequence
x[n]= > x[n—rN]

Assuming no overlap btw x{n—7N]
x[n] = x{(n modulo N)] = x[((n)),]

o Recover the finite length sequence
(¥[n], 0=n=N-1
x[n] =+ _
| 0, otherwise

To maintainha duality btw the time and frequency

domains, choose one period of x7k] as the DFT
XTk] = _fI[k]; 0<k<N_1

I 0. otherwise



The DFT

Periodic sequence and DFS coefficients

N-1

Xk]= Y X[nJwy
n=0
1 M1
ilnl=—> XTk]w,"™
<V k=) —

Since summations are calculated btw 0 and (N-1)

N-1
o <k < N-—
xik]= | 2T, 0<k<N-1
0, otherwise Generally
. N-1
1 N-1 _ j;Tj
— S X[kW;™, 0<n<N-1 X[k]= 3 xn]w,
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The DFT

A finite or periodic sequence has only NV unique
values, x[n] for 0==n<N

Spectrum is completely defined by v distinct
frequency samples

DFT: uniform sampling of DTFT spectrum



= The DFT corresponds to sampling the z-transform of

X(z) at N-points equally spaced in angle around the
unit circle.

N points equally spaced on
the unit circle



Note:
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Example:

Let /. = 8000 Hz, Number of sample(V) = 1000
f. 8000

Frequency resolution = = = 8H=
=4 « N 1000

fo=0, fi=8Hz, f,=16Hz, .... fooo = 8000Hz

MH= 3

k=0,12.3, ...




Example :

= A speech signal is sampled at a rate of 20000

samples/sec. A sequence of length (V) 1024 samples
is selected and the 1024-point DFT is computed.

(1) What is the time duration of segment of speech?
Duration = no of samples x sampling period.

= 1024 (1/20000) = 51.2 ms
(2) What is the frequency resolution (spacing in Hz)
between the DFT values.




XTk]| N=156

L,
01 2 \ 255
,ﬁ,ﬁf& T frss

The frequency resolution (Af) can be made as small
as desired by increasing the value of N (window
size being analysed)




Padding with Zeros and frequency
Resolution

N-1 _J.HE
DFT: X|k|=>x|nle ™ k=0123...N
n=0

= To obtain more points in the DFT sequence,

we can always increase the duration of x/n/
by adding additional zero-valued elements.
This procedure is called padding with zeros.

= These zero-valued elements contribute
nothing to the sum in the above equation,

but act to decrease the frequency spacing (27/N).



= The zero padding gives us a high-
density spectrum and provided a better
displayed version for plotting.

= But it does not give us a high resolution
spectrum because no new information is
added to the signal.

= Only additional zeros are added in the
data.
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Zero-padded signal =
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Part V: Properties of the DFT

= [he discrete Fourier series
= [he Fourier transform of periodic signals
x Sampling the Fourier transform
m [he discrete Fourier transform

= Properties of the DF T
= Linear convolution using the DFT




Properties of the DFT — linearity

Linearity

DFT

ax,[n]+bx,[n] <> aX,[k]+DbX,[F]

The lengths of sequences and their DFTs are all equal
to the maximum of the lengths of x[»] and =x,[n]



Circular shift of a sequence

Given e
x[n] < X[k]

DFT

x[n]e X, [k]l=e”“™ " XTk]
Then

{:?l[n] =xX[n—-m]=x[((n—-m)),]. 0=n<N-1
Il[ﬂ] = .
0. otherwise
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Duality

DFT

x[n] <> XTK]

DFT

X[n] < Ne((=k)), ], 0<k<N-I



Circular convolution

N-1
[n]=> X [mlx,[n-m], 0=n<N-1

i -

S )y Il -m)yl 0<n<N-1

Ml
N-1
= > x[mlx,[(n-m)),]l 0<n<N-1

M=l

In linear convolution, one sequence is multiplied by
a time —reversed and linearly shifted version of the
other. For convolution here, the second sequence is
circularly time reversed and circularly shifted. So it is
called an N-point circular convolution

x;[n] = .‘1.:1[??]@.1:] [1]



IH\M i I‘H ri ||H||

[T iHH___L
|'_.H.--""H'i rl\HIi ||HH|
‘I \; 11 [l ||‘H|

Il 1;[ |||[ il

Convolution of two perlodlc sequences
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Circular convolution

Circular convolution of x(n) and h(n) is defined as the
convolution of h(n) with a periodic signal x,(n) :

Y, (n) =X, (n)*n(n)

where

X, (") =x(nmod N ), — 0 <N <0



Circular Convolution

X(n) length N

%k

nmlengthv - [




Circular Convolution

X(n) length N

%k

nmtengthv - [




Circular Convolution

X(n) length N

hp(n)




Circular Convolution

X(n) length N

hp(-n)




Circular Convolution

xb(n) length N

hp(n)

hp(-n) g




Circular Convolution

xb(n) length N

hp(n)

hp(-n) g




Circular Convolution

xb(n) length N

hp(-n) g




N-point circular convolution can be computed using Matrix form:

y(0) 1 [h(0) h(N=1) h(N=2) ... h(1) Tx(0)
y(1) h(1) h(0) h(N-1) ... h2) | xQ)

v2)  [=|h@)  hQ h(0) .. h@3) | x(2)

_.y(N =N _.h(N ~1) h(N=2) h(N=3) ... h(0) __;((N 1)

- Elements in each row are obtained by circularly rotating the elements of the
previous row to the right by 1.



Example: Determine 4-point circular convolution of the two length-4
sequences x(n) ={1 201} and h(n)={2 2 1 1}, 0=n<3.

Method1l: use DFT equation

Method2: Graphical (cylinders)

Method3: use Matrix computation method



Example: circular convolution of two rectangular pulses

L

H

[a)

I 1111

H
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Xaln| =x|n] l’ﬂ‘ X5 |n]

I 11111

H

N-point circular convolutlon of two sequences of length N.



Example: circular convolution of two rectangular pulses
(continue)

Given two sequences of length L, assume that we add L
zeros on its end, making an N=2L point sequence - referred
to as zero padding

SO 1111 SO

N

()

RO 111 O

N H

N-point circular convolution of two sequences of length L, where N=2L.



li{-nylb=n=N-1
]- % % % W

HU2-n)yl.0=n=N-1
M
0 L N n

()

; rn] =xq[n] N xa|n]
....rTTHHHTr
() L

N-point circular convolution of two sequences of length L, where N=2L (continue).

Note that by zero padding, we can use circular convolution to
compute convolution of two finite length sequences.
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Part VI: Linear convolution of the DFT

= [he discrete Fourier series

= [ he Fourier transform of periodic signals
s Sampling the Fourier transform

= [ he discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT




Linear convolution using the DFT

Procedure

o Compute the N-point DFTs X,[k] and X,[k] of two
sequences x[n] and x,[n], respectively

o Compute the product of X.[k]= X [k]X,[k] for0<k<N-1

o Compute the sequence x,[n]=x[n}Nx,[n] as the
inverse DFT of X [k]

As we know, the multiplication of DFTs corresponds

to a circular convolution of the sequences. To obtain

a linear convolution, we must ensure that circular

convolution has the effect of linear convolution.



Example of circular convolution of two sequences

xy(m) xo{(1-m)y

U 11001 N !

- -.-.
— il
=illi

il

0 m "0 m
Xo(m) xo((2-m))y '
,,,I‘l]ll,,,, 11!]“|1|?§:
0 m 0 m
Xo((-m))y x3(n)

J”Iﬁjﬂl 1] m 0 n



An Interpolation of circular convolution

Ry(n)

8 %2(n) Xz(n)
thn‘]"‘ (E T
0 % 2N

Xo(n)
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Re-Arrangement of the operations of forming circular convolution

IFLH{n}
'IHN'[I"I}

8(n m < (n) Xy (n)%*x5(n) o)




"Circular Convolution =
Linear Convolution+ Aliasing"

xz(n) = x,(n) % x5(n}

x=(n) = x;(n) ) x5(n)

+ @

xz(n) = [ Emi3{n+rﬂ} Rp(n)

r==



Example of forming circular convolution by linear
convolution followed by aliasing:

X4 (n)%x5(n) % pp(n)

%4(n) = x5(n)




Obtaining linear convolutionthrough the use of circular
convolution

x1(n) = x5(n) x4(n) *x5(n) *p,y,(n)
LTI Itt_,rll[‘lllx,..1||“|
O (N-n 0 2N

X4(n) % x2(n) I1(ﬂ]‘@lg{ﬂ}

ottt

0 E'H 0 E*H



Overlap — Add Method

thin)
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yx(n)

L
0 |

2L



Overlap — Add Method

Ig{n]
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L LY (n)
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Overlap — Add Method

xg(n)*h(n)

R E—

x4(n)* h{(n)

gl e

Xo(n)%* h(n)
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