Discrete Fourier Transform (DFT)

Chapter 8 in the textbook

Course at a glance

The discrete-time Fourier transform (DTFT)

- \blacksquare The DTFT is useful for the theoretical analysis of signals and systems.
- \blacksquare But, according to its definition

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

computation of DTFT by computer has several problems:

- \Box The summation over *n* is infinite
- \Box The independent variable w is continuous

The discrete Fourier transform (DFT)

- \blacksquare In many cases, only finite duration is of concern
	- □ The signal itself is finite duration
	- □ Only a segment is of interest at a time
	- □ Signal is periodic and thus only finite unique values
- For finite duration sequences, an alternative Fourier representation is DFT
	- \Box The summation over *n* is finite
	- □ DFT itself is a sequence, rather than a function of a continuous variable
	- □ Therefore, DFT is computable and important for the implementation of DSP systems
	- □ DFT corresponds to samples of the Fourier transform

Part I: The discrete Fourier series

- **The discrete Fourier series**
- \blacksquare The Fourier transform of periodic signals
- Sampling the Fourier transform
- \blacksquare The discrete Fourier transform
- \blacksquare Properties of the DFT
- **Linear convolution using the DFT**
- A periodic sequence with period N $\widetilde{x}[n] = \widetilde{x}[n + rN]$
- Periodic sequence can be represented by a Fourier series, i.e. a sum of complex exponential sequences with frequencies being integer multiples of the fundamental frequency $(2\pi/N)$ associated with the $\widetilde{x}[n]$ $\widetilde{x}[n] = \frac{1}{N} \sum_{i} \widetilde{X}[k] e^{j(2\pi/N)kn}$ The frequency of the periodic sequence.
	- \Box Only N unique harmonically related complex exponentials since

$$
e^{j(2\pi/N)(k+mN)n} = e^{j(2\pi/N)kn}e^{j2\pi mn} = e^{j(2\pi/N)kn}
$$

a so $\widetilde{x}[n] = \frac{1}{N} \sum_{n=1}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)kn}$

The Fourier series coefficients

\blacksquare The coefficients

$$
\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)k}
$$

$$
\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{X}[n] e^{-j(2\pi/N)kn}
$$

- \blacksquare The sequence is periodic with period N $\widetilde{X}[k+N] = \sum_{n=1}^{N-1} \widetilde{X}[n] e^{-j(2\pi/N)(k+N)n} = \widetilde{X}[k]$ 21 J O
- **For convenience, define** $W_N = e^{-j(2\pi/N)}$

Synthesis equation
$$
\widetilde{x}[n] = \frac{1}{N} \sum_{k=1}^{N-1} \widetilde{X}[k] W_N^{-kn}
$$

Analysis equation
$$
\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n]W_N^{kn}
$$

Very similar equations \rightarrow duality

Periodic Convolution

Figure 8.3 Procedure for forming the periodic convolution of two periodic sequences.

DFS of a periodic impulse train

 \blacksquare Periodic impulse train $\widetilde{x}[n] = \sum \delta[n-rN]$

- \blacksquare The discrete Fourier series coefficients $\widetilde{X}[k] = \sum^{N-1} \delta[n] W_N^{kn} = 1$ n. 0
- \blacksquare By using synthesis equation, an alternative representation of $\tilde{x}[n]$ is

$$
\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} e^{j(2\pi/N)kn}
$$

Part II: The Fourier transform of periodic signals

- The discrete Fourier series
- The Fourier transform of periodic signals
- Sampling the Fourier transform
- \blacksquare The discrete Fourier transform
- Properties of the DFT
- **Example 1.5** Linear convolution using the DFT

The Fourier transform of periodic signals

■ Fourier transform of complex exponentials

$$
x[n] = \sum_{k} a_k e^{j\omega_k n}, \qquad -\infty < n < \infty
$$
\n
$$
X(e^{j\omega}) = \sum_{k}^{\infty} \sum_{k} 2\pi a_k \delta(\omega - \omega_k + 2\pi)
$$

Example 1 Fourier transform of $\widetilde{x}[n]$

$$
\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)kn}
$$

$$
\widetilde{X}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \widetilde{X}[k] \delta(\omega - \frac{2\pi k}{N})
$$

 $\widetilde{X}(e^{j\omega})$ has the required periodicity with period 2π

Fourier transform of a periodic impulse train

Periodic impulse train $\widetilde{p}[n] = \sum \delta[n-rN]$ $r = \omega$ □ The discrete Fourier series coefficients $\widetilde{P}[k] = \sum_{N} \delta[n] W_N^{kn} = 1$ n Fourier transform $\widetilde{P}(e^{j\omega})=\sum_{k=-\infty}^{\infty}\frac{2\pi}{N}\delta(\omega-\frac{2\pi k}{N})$ **Finite duration signal** $x[n]$ ($x[n] = 0$ outside of [0, $N-1$]) **Q** Construct $\widetilde{x}[n]$ $\widetilde{x}[n] = x[n]^* \widetilde{p}[n] = x[n]^* \sum \delta(n - rN) = \sum x(n - rN)$ □ Its Fourier transform

$$
\widetilde{X}(e^{j\omega}) = X(e^{j\omega})\widetilde{P}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N}X(e^{j(2\pi/N)k})\delta(\omega - \frac{2\pi k}{N})
$$

The Fourier transform of periodic signals

\blacksquare Compare

$$
\widetilde{X}(e^{j\omega}) = X(e^{j\omega})\widetilde{P}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} X(e^{j(2\pi/N)k})\delta(\omega - \frac{2\pi k}{N})
$$

$$
\widetilde{Y}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \widetilde{Y}(k) S(\omega - \frac{2\pi k}{N}) \implies \text{First represent it as For}
$$

$$
\widetilde{X}(e^{j\omega}) = \sum_{k=-\infty} \frac{2\pi}{N} \widetilde{X}[k] \delta(\omega - \frac{2\pi k}{N})
$$

 \rightarrow First represent it as Fourier series and then calculate Fourier transform

\blacksquare Conclude that

$$
\widetilde{X}[k] = X(e^{j(2\pi/N)k}) = X(e^{j\omega})\big|_{\omega = (2\pi/N)k}
$$

i.e. the DFS coefficients of $\widetilde{x}[n]$ are samples of the Fourier transform of the one period of $\widetilde{x}[n]$

$$
x[n] = \begin{cases} \widetilde{x}[n], & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}
$$

Part III: Sampling the Fourier transform

- The discrete Fourier series
- The Fourier transform of periodic signals
- Sampling the Fourier transform
- The discrete Fourier transform
- Properties of the DFT
- **Example 1.5 Linear convolution using the DFT**

Sampling the Fourier transform

An aperiodic sequence and its Fourier transform

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \leftrightarrow x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega
$$

- Sampling the Fourier transform $X[k] = X(e^{j\omega})|_{\omega=(2\pi/N)k} = X(e^{j(2\pi/N)k})$
	- generates a periodic sequence in k with period N since O the Fourier transform is periodic in ω with period 2π

Points on the unit circle at Figure 8.7 which $X(z)$ is sampled to obtain the periodic sequence $X[k]$ ($N = 8$).

Sampling the Fourier transform

 A | II |

Now we want to see if the sampling sequence $\tilde{X}[k]$ is the sequence of DFS coefficients of a sequence $\tilde{x}[n]$ this can be done by using the synthesis equation

$$
\frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}
$$
\n
$$
= \frac{1}{N} \sum_{k=0}^{N-1} \left[\sum_{m=-\infty}^{\infty} x[m] e^{-j(2\pi/N)km} \right] W_N^{-kn}
$$
\n
$$
= \sum_{m=-\infty}^{\infty} x[m] \left[\frac{1}{N} \sum_{k=0}^{N-1} W_N^{-k(n-m)} \right] = \sum_{m=-\infty}^{\infty} x[m] \widetilde{p}[n-m]
$$
\n
$$
= \sum_{r=-\infty}^{\infty} x[n-rN]
$$
\n
$$
= \widetilde{x}[n] \qquad \text{A periodic sequence resulting from aperiodic convolution}
$$

Figure 8.8 (a) Finite-length sequence $x[n]$. (b) Periodic sequence $\bar{x}[n]$ corresponding to sampling the Fourier transform of $x[n]$ with $N = 12$.

 \blacksquare In this case, the Fourier series coefficients for a periodic sequence are samples of the Fourier transform of one period

Examples

Figure 8.9 Periodic sequence $\bar{x}[n]$ corresponding to sampling the Fourier transform of $x[n]$ in Figure 8.8(a) with $N = 7$.

- In this case, still the Fourier series coefficients for $\tilde{x}[n]$ are samples of the Fourier transform of $x[n]$. But, one period of $\tilde{x}[n]$ is no longer identical to $x[n]$
- \blacksquare This is just sampling in the frequency domain as compared in the time domain discussed before.

Sampling in the frequency domain

- **The relationship between** $x[n]$ and one period of $\tilde{x}[n]$ in the undersampled case is considered a form of time domain aliasing.
- **Time domain aliasing can be avoided only if** $x[n]$ **has** finite length, just as frequency domain aliasing can be avoided only for signals being bandlimited.
- **If** $x[n]$ has finite length and we take a sufficient number of equally spaced samples of its Fourier transform (specifically, a number greater than or equal to the length of $x[n]$), then the Fourier transform is recoverable from these samples, equivalently $x[n]$ is recoverable from $\tilde{x}[n]$.

Sampling in the frequency domain

Recovering $x[n]$

$$
x[n] = \begin{cases} \widetilde{x}[n], & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}
$$

i.e. recovering $x[n]$ does not require to know its Fourier transform at all frequencies

Application: represent finite length sequence by using Fourier series (coefficients) \rightarrow DFT

 $x[n] \rightarrow \tilde{x}[n] \rightarrow DFS, \tilde{X}[k] \rightarrow \tilde{x}[n] \rightarrow x[n]$

Sampling the Fourier transform

- **Fourier transform** $X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t} d\Omega$
- Discrete-time Fourier transform

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega
$$

■ Discrete Fourier transform

$$
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)kn}
$$

$$
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j(2\pi/N)kn}
$$

- The discrete Fourier series
- The Fourier transform of periodic signals
- Sampling the Fourier transform
- \blacksquare The discrete Fourier transform
- \blacksquare Properties of the DFT
- Linear convolution using the DFT

The discrete Fourier transform

- Consider a finite length sequence $x[n]$ of length N samples (if smaller than N, appending zeros) □ Construct a periodic sequence $\widetilde{x}[n] = \sum x[n - rN]$ Assuming no overlap btw $x[n - rN]$ $\widetilde{x}[n] = x[(n \mod 10]N)] = x[(n)]_N$ □ Recover the finite length sequence
	- $x[n] = \begin{cases} \widetilde{x}[n], & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}$
- \blacksquare To maintain a duality btw the time and frequency domains, choose one period of $\widetilde{X}[k]$ as the DFT
 $X[k] = \begin{cases} \widetilde{X}[k], & 0 \le k \le N-1 \\ 0, & \text{otherwise} \end{cases}$

The DFT

Periodic sequence and DFS coefficients $\widetilde{X}[k] = \sum^{N-1} \widetilde{x}[n] W^{kn}_N$ $\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$ Since summations are calculated btw 0 and (N-1) $X[k] = \begin{cases} \sum_{n=0}^{N} x[n] W_N^{kn}, & 0 \le k \le N-1 \\ 0, & \text{otherwise} \end{cases}$ Generally $X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}$
 $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]W_N^{-kn}$ $x[n] = \begin{cases} \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}$

The DFT

- A finite or periodic sequence has only N unique values, $x[n]$ for $0 \le n \le N$
- Spectrum is completely defined by N distinct frequency samples
- DFT: uniform sampling of DTFT spectrum

• The DFT corresponds to sampling the z-transform of $X(z)$ at N-points equally spaced in angle around the unit circle.

 N points equally spaced on the unit circle

Example:

Let f_s = 8000 Hz, Number of sample(N) = 1000 Frequency resolution = $\frac{f_s}{N} = \frac{8000}{1000} = 8Hz$ $f_0 = 0$, $f_1 = 8$ Hz, $f_2 = 16$ Hz, ... $f_{999} = 8000$ Hz

$$
X[k] = \sum_{0}^{999} x[n]e^{-jn(\frac{2\pi k}{1000})}
$$

$$
k=0,1,2,3,\ldots
$$

Example:

A speech signal is sampled at a rate of 20000 samples/sec. A sequence of length (N) 1024 samples is selected and the 1024-point DFT is computed.

(1) What is the time duration of segment of speech? Duration = no of samples \times sampling period. $= 1024 (1/20000) = 51.2$ ms (2) What is the frequency resolution (spacing in Hz) between the DFT values.

$$
Resolution = \frac{f_s}{N} = \frac{20000}{1024} = 19.531 Hz
$$

The frequency resolution (Δf) can be made as small as desired by increasing the value of N (window size being analysed)

Padding with Zeros and frequency Resolution

$$
DFT: \quad X[k] = \sum_{n=0}^{N-1} x[n]e^{-jn\frac{2\pi k}{N}} \qquad k = 0, 1, 2, 3, \dots N
$$

- To obtain more points in the DFT sequence, we can always increase the duration of x/n by adding additional zero-valued elements. This procedure is called padding with zeros.
- These zero-valued elements contribute nothing to the sum in the above equation, but act to decrease the frequency spacing $(2\pi/N)$.
- The zero padding gives us a highdensity spectrum and provided a better displayed version for plotting.
- But it does not give us a high resolution spectrum because no new information is added to the signal.
- Only additional zeros are added in the data.

Three Sample Averager

<u>Part V</u>: Properties of the DFT

- The discrete Fourier series
- The Fourier transform of periodic signals
- Sampling the Fourier transform
- The discrete Fourier transform
- \blacksquare Properties of the DFT
- **Example 1.5** Linear convolution using the DFT

Properties of the DFT – linearity

Linearity

DFT $ax_1[n]+bx_2[n] \leftrightarrow aX_1[k]+bX_2[k]$

The lengths of sequences and their DFTs are all equal to the maximum of the lengths of $x_1[n]$ and $x_2[n]$

Circular shift of a sequence

Given
\n
$$
x[n] \leftrightarrow X[k]
$$
\n
$$
x_1[n] \leftrightarrow X_1[k] = e^{-j(2\pi k/N)m} X[k]
$$
\nThen
\n
$$
x_1[n] = \begin{cases} \tilde{x}_1[n] = \tilde{x}[n-m] = x[((n-m))_N], & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}
$$

an example

Duality

DFT $x[n] \leftrightarrow X[k]$ DFT $X[n] \leftrightarrow Nx[((-k))_N]$, $0 \le k \le N-1$

$$
x_{3}[n] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \widetilde{x}_{2}[n-m], \quad 0 \le n \le N-1
$$

=
$$
\sum_{m=0}^{N-1} x_{1}[(m)]_{N} x_{2}[(n-m)]_{N}], \quad 0 \le n \le N-1
$$

=
$$
\sum_{m=0}^{N-1} x_{1}[m] x_{2}[(n-m)]_{N}], \quad 0 \le n \le N-1
$$

 \blacksquare In linear convolution, one sequence is multiplied by a time -reversed and linearly shifted version of the other. For convolution here, the second sequence is circularly time reversed and circularly shifted. So it is called an N-point circular convolution

 $x_1[n] = x_1[n]\hat{N}x_2[n]$

•Circular convolution of x(n) and h(n) is defined as the convolution of $h(n)$ with a periodic signal $x_p(n)$:

$$
y_p(n) = x_p(n) * h(n)
$$

where

$$
x_p(n) = x(n \bmod N), \qquad -\infty < n < \infty
$$

N-point circular convolution can be computed using Matrix form:

$$
\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N-1) \end{bmatrix} = \begin{bmatrix} h(0) & h(N-1) & h(N-2) & \dots & h(1) \\ h(1) & h(0) & h(N-1) & \dots & h(2) \\ h(2) & h(1) & h(0) & \dots & h(3) \\ \vdots & \vdots & \vdots & \vdots \\ h(N-1) & h(N-2) & h(N-3) & \dots & h(0) \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{bmatrix}
$$

- Elements in each row are obtained by circularly rotating the elements of the previous row to the right by 1.

Example: Determine 4-point circular convolution of the two length-4 sequences **x(n) = {1 2 0 1}** and **h(n)={2 2 1 1}**, 0≤n≤3.

Method1: use DFT equation

Method2: Graphical (cylinders)

Method3: use Matrix computation method

Example: circular convolution of two rectangular pulses

N-point circular convolution of two sequences of length N.

Example: circular convolution of two rectangular pulses (continue)

Given two sequences of length L, assume that we add L zeros on its end, making an N=2L point sequence – referred to as zero padding

N-point circular convolution of two sequences of length L, where N=2L.

N-point circular convolution of two sequences of length L, where N=2L (continue). Note that by zero padding, we can use circular convolution to compute convolution of two finite length sequences.

Part VI: Linear convolution of the DFT

- The discrete Fourier series
- \blacksquare The Fourier transform of periodic signals
- Sampling the Fourier transform
- \blacksquare The discrete Fourier transform
- \blacksquare Properties of the DFT
- **Linear convolution using the DFT**

Linear convolution using the DFT

- **Procedure**
	- □ Compute the N-point DFTs $X_1[k]$ and $X_2[k]$ of two sequences $x_1[n]$ and $x_2[n]$, respectively
	- **□** Compute the product of $X_1[k] = X_1[k]X_2[k]$ for $0 \le k \le N-1$
	- \Box Compute the sequence $x_3[n] = x_1[n]\widehat{N}$ $x_2[n]$ as the inverse DFT of $X_{1}[k]$
- As we know, the multiplication of DFTs corresponds to a circular convolution of the sequences. To obtain a linear convolution, we must ensure that circular convolution has the effect of linear convolution.

Example of circular convolution of two sequences

An Interpolation of circular convolution

Re-Arrangement of the operations of forming circular convolution

"Circular Convolution = Linear Convolution + Aliasing" $\hat{x}_{7}(n) = x_{1}(n) * x_{2}(n)$ $x_3(n) = x_1(n)$ (N) $x_2(n)$ $x_3(n) = \left[\sum_{r=-\infty}^{+\infty} \hat{x}_3(n+rN)\right] R_N(n)$

Example of forming circular convolution by linear convolution followed by aliasing:

Obtaining linear convolution through the use of circular convolution

Overlap – Add Method

