Fast Fourier Transform (FFT)

Chapter 9 in the textbook

Course at a glance

Systems

Filter

Topic 9

Filter design

Digital computation of the DFT

The DFT of a finite-length sequence of length N

N-1

XK1= oAnW. k=01..N-1
n=0
The inverse DFT
1 N-1

pa—— v Z X[A']I’FIM . n=01...N-1
N k=0

Due to the duality, focus on the DFT only.

Use the number of arithmetic multiplications and
additions as a measure of computational complexity.

Fast Fourier transform (FFT) is a set of algorithms
for the efficient and digital computation of the N-
point DFT, rather than a new transform.

Direct computation of the DFT

The DFT of a finite-length sequence of Iength N

N-1

X[k]= ZT[H]H}?'. k=0l1...N-1 x|n] \ X[k]

n=(0
Direct computation: N2 complex multiplications and
N(N-1) complex additions

o Compute and store (only over one period)
Hr;? — E:"_JI: ¥ J"-].IE'

=cos(2ak / N)+ jsm(2ak / N), z'f. =01...N-1
o Compute the DFT using stored I’I and input x|]

X[k]= Z nW, k=01..N-1

W aud 1[;;]11133 be complex

Direct computation of the DFT

For each k
N-1
XK= [(Re{x[n]}Re {7y} — (Im {x[n]} Im {I7,7'})
n=0

+ j(Re{x[n]yIm {7} + Im{x[n]} Re 77"}). k=0.1..N-1

Therefore, for each value of k, the direct computation
of X[K] requires 4N real multiplications and (4N-2)
real additions.

The direct computation of the DFT requires AN
real multiplications and N(4N —2) real additions.

The efficiency can be improved by exploiting the
symmetry and periodicity properties of 7,

Symmetry and periodicity of complex exponential

Complex conjugate symmetry
W = = (W) =Re Wy — jIm {7}

Periodicity in n and K

]:‘I:I.:ﬁ — I,:F'ilzﬂ—ﬁr} — I:'I‘::Ek-hhr In

For example
Re{x[n]}Re{W,7"} + Re{x[N —n]} Re ;")
= (Re{x[n]} +Re{x[N —n]})Re{W"}

o The number of multiplications is reduced by a factor of
2.

FFT

Cooley and Tukey (1965) published an algorithm for
the computation of the DFT that is applicable when

N is a composite humber, i.e., the product of two or
more integers. Later, it resulted in a number of
highly efficient computational algorithms.

The entire set of such algorithms are called the fast
Fourier transform, FFT.

FFT decomposes the computation of the DFT of a
sequence of length N into successively smaller
DFTs.

Decimation-in-time FFT algorithms

Where

o decomposition is done by decomposing the sequence
Into successively smaller subsequences,

2 and both the symmetry and periodicity of complex
exponential 177" =™ /7" are exploited.

Consider N =2V and separate x[n] into two (N/2)-
point sequences
N-1
X[k]= Z An7T, k=01..N-1

n=0

X[k]= > X[n V7 + > x[n]w,>

M even nodd

Decimation-in-time FFT algorithms

X[k]= D An]Wy" + > xn]y”

neven nodd
(N/2)-1 (N/2)-1
= Z X[2r W + Z X[2r + 1] 7%
r=(r=0
(N/2)-1 (N/2)-1
= > A2r](Wg)" + Wy Z 2r +1)(W;)"
r=0 r=
(N/2)-1 (N/2)-1
= > X 2r V5, W > A 2r + 1,
r=0 r=0

=G[k]+WiH[k], k=0]l,...N-1
(only compute for £ =0.1..... N/2—1) due to the periodicity

.N - .U. -1
X(K) = 2 X(2r)WN /2+wN 5_‘, X(2r+1) WN ,2

%PO!NT DFT 5 N POINT DFT.
G(k) H(k)

X (k) = G(K)+ Wy, H(K)

z(§)2+n . N+%2

nfﬂh—(_Gn{D}
«(2)e— % -point - !
x(@o— OFT %)
(6)o— -G
y(5)0— OFT | H®@
X(7)o— F!-{S}

X (k) = G(k) +Wy H(K)

x(0)o—

(2)o— X -point -SL,
(@)o— DFT | G2
X(6) o— G(3),

X (k) = G(K) + Wy, H(k)

G(0)

x(0)o—] -

«(2)— %-point -1,
x(4)— OFT o2

E)o 6(3)
(1) o—] - H{m'ﬂ"

HeD wa\ \ \

x(3)e— N_ i
> -point
DFT H(2) wH \

% (5) o—
H(3) 'ﬂ"

x(7)o—
X(k) =
CGHWEHK (hrd) Gl
= H(k)

Flow graph of the decimation-in-time

= Periodicity is applied, e.g. G[7]=G[3]

.\‘[0] o——»

{:’ point
x[4] o——o DFT
x[6] o——
x[1] o——
.l’|3l O—> "

5 point
((lo—s—] DFT

1|7] o=—a—]

Figure 9.3 Flow graph of the
decimation-in-time decomposition of an
N-point DFT computation into two

(N /2)-point DFT computations

(N = 8).

Decimation-in-time FFET

= Further break down

(N/2)-1 (N/4)-1 (N/4)-1
= 2 el = e+ X g2+
r=0 I= [=0

(N/4)-1 N/4)-1
= > g2, + W, Z o[21 + 17,
I=0
(N/4)-1 (N/4)-1

HIK)= SR =7 Y217,

=0

X [f}] O—— N _ 2 _fr' i”'-[

e point H"r_{ }

DFT
x4 o——— =
[4] =

x[2]o——1 _.._; ™ Figure 9.4 Flow graph of the

:_j ~ paint decimation-in-time decomposition of an

| : NET (N /2)-point DFT computation into two

x[6] o—— . (N /4)-point DFT computations

(N = 8).

Combination of Fig. 9.3 and 9.4

%’ - poim
DFT

y point
DFT

X (5] o=

N pomnt

1
DFT

x[7] o——

%' - pomt

DFT

Figure 9.5 Result of substituting the
structure of Figure 9.4 into Figure 9.3.

2-point DFT

x[0] o——
\>(Wy =1
2T
x[4] (,Z :L)

Wy = W= -1

Figure 9.6 Flow graph of a 2-point
DFT.

Flow graph

- - X0
t[0] o=t —a> e pX (0]
o WE N /‘,'f 0 Wy
..-"'"-.___ W /| [
[4] o= £ 1H“‘"-_¢. E i \'\ Y]
1 = > - i
I’ 4 e - r/D\‘-.ﬁ \ / -
,,-’.‘ LY . * 4 ‘N
, . ", oo
3 ey i S X[2
W0 o x\“‘ra ‘x{ . }/ Wi
- T % T, WL
6] o= * o s \}{ \V aX[3]
|. 4 5]
' W W \R/‘>(f il ,.{‘__;
l"
L f
[1] o—> . f s X/ ..\;...‘u 4]
i e ™
o T Y P AVAVAN:
< Wy . AWR S WA
- . M Sl R ST T
" [_;Il — - “-u-._,.xk . ;__.-" Pl i LY 4 1"«._ — Y hl
Wy A, L W
> Wy S/ N,
e ke oL L VO
3] o< o }Kﬁ: ; (6]
:*H ':Tvxl ;.H'f -1: ;’; ‘:!L“‘
- 2 /)
r[7] o= - St e — =B X[7]
F i L] pl
Wy W W,

log, NV stages and
each stage has N
complex multiplications
and N complex
additions .

In total, yjog, v COMplex
multiplications and additions

eg.
N=2"=1024

N* =1048576

Nlog, N =10,240

A reduction of 2 orders!
Figure 9.7 Flow graph of complete

decimation-in-time decomposition of an
8-point DFT computation.

N=2"

{ N POINT DFT N?
- 2 2 N\2, N
2 Y POINT DFT's + 2(%)1%: (3) —2(3)+3
1 2 2 2
4 B PoNT DFT's+ 4() -IIH+H (B —2(F)+%
] 2 N2 2 N
8 X POINT DFT's+ E(% NN+ () —2(M)+ Y
|
'
NN+ +N

» TIMES

Flow graph of butterfly computation

(71— 1)st
stage

(r+ Ni2) Figure 9.8 Flow graph of basic
" butterfly computation in Figure 9.7.

(m—1)st mith

/ \ Figure 9.9 Flow graph of simplified

butterfly computation requiring only one
= complex multiplication.

Flow graph

= The number of complex multiplications are reduced
by a factor of 2 over the humber in Fig. 9.7.

-1“]]‘:'_"_{'15_ >

N A
Wy ,>" ‘“i:
-1

x[4] o—=

Figure 8.10 Flow graph of 8-peint DFT
using the butterfly computation of
Figura 8.9.

In-place computation

"ﬂ"'

XN
l:i;
wx i

X/,

M‘WA

pX[0]
X[1]
X2
X[3]

b X4

X[3]
X[6]

X1

Figure 9.10 Flow graph of 8-point DFT
using the butterfly computation of
Figure 9.9,

Normal order input — Bit-reversed output

x[0] o= ——a XD
JUE 'Ayv -- X4
NB\V/£.0 G

e N T NS N
) VA Co e
PPLLAYAY.AYA S "
ST
oA\ XK
wﬁ, mw Figure 9.14 Rearrangement of

: X[7] Figure 9.10 with input in normal order

x[7]c
-1 -1 1 and output in bit-reversed order.

Normal order input — normal order output

: :vvw ‘"£ |
v ”A’AQ‘ 59‘\

X[3]
. i) g /\-
F70
o B ' Figure 9.15 Rearrangement of

o X[1] Figure 9.10 with both input and output in
normal order.

Sequential memory

Figure 9.16 Rearrangement of
Figure 9.10 having the same geometry
for each stage, thereby permitting
sequential data accessing and storage.

~N o0 O s W -0

Bit-reverse order

Storage
Register
000
001
010
o111
100
101
110
111

X(0)
X(4)
X(2)
X(6)
X(1)
X(5)
X(3)
X(7)

Data Index

000
100
010
110
001
101
011
111

x(n)=x (22n2+21n1+2ﬂnn)

No

1O

x(n)

ny na
0 Q2 600
L ! 400
i ? 010
L 110
B EEEYY

0

Decimation-in-frequency FFT algorithms

-1

h[3] W3
—

N/2- point
DFT

—»——0 X[0]

—»—0o X[4]

>0 X[2]

—=—0a X[6]

N/2- point
DFT

——0a X[1]

———0 X[3]

——0 X[3]

———0 X[7]

Decimation — in — frequency FFT

N
— - point
g P
DFT

——0 X[0]

—r——oX[4]

N .
— - point
L
- DFI

——0 X[2)

——o0 X[6]

N .
— — point
4pm
DFT

-r-—oX:l]

——0 X[9]

= —point
DFT

——r-—-oX[3]

+0X[7]

Figure 9,18 Flow graph of
decimation-in-frequency decomposition
of an 8-point DFT into four 2-point DFT
computations.

2-point DFT for decimation-in-frequency

Xv—l[p] Xv[p]

Figure 9.19 Flow graph of a typical
2-point DFT as required in the last stage
X,_la] X[O decimat;qn-in-frequency

-1 decomposition.

Flow graph of DIF of an 8-point DFT

x[0] - - :
VD=4

1] — ; :
2 \x .x X Wy _:
v#’v’ o
” A#‘#‘A Wy e
i AV
oL\ XK

WEVAX D

-1 -1 -1

o X[0]
0 X[4
0 X[2]
0 X[6]
0 X[1]
0 X[5]
0 X[3]

0 X[7]

Figure 9.20 Flow graph of complete
decimation-in-frequency decomposition
of an 8-point DFT computation.

Typical Butterfly for DIF FFT

Xm-l[p] > _OXm[p]

Figure 9.21 Flow graph of a typical
X, _\[dl —o——oX[g butterfly computation required n
- Figure 9.20.

Normal order output — bit-reversed order input

LNy
e 8

AV
- XX\
e
. ,"w‘) 5
s i v’AﬂlA\ i
>/ N/

o X[1

0 X[0]

0 X[2

o X[3]

0 X[4

0 X[3]
X[6]

0 X[7]

Figure 9.22 Flow graph of a
decimation-in-frequency DFT algorithm
obtained from Figure 9.20. Input in
bit-reversed order and output in normal
order. (Transpose of Figure 9.14.)

Normal order output — normal order input

p——0 X[0]
p——0 X[l]

0 X[2]

Figure 9.23 Rearrangement of
Figure 9.20 with both input and output
in normal order. (Transpose of

Figure 9.15.)

Sequential memory

x[2] ¢
o evien

’ ’\.' ; .
'5: /)‘ ‘: /A\,z " X[

NIV
\

X

¢
x[5] ¢ ‘

/
A2
| \ ‘ Figure 9.24 Rearrangement of
x[6] € O>——0 . o X[6] Figure 9.20 having the same geometry
A A A W for each stage, thereby permitting
X[7] ¢ b ¢ b ¢ o x[7] Sequential data accessing and storage.

-1 -1 -1 (Transpose of Figure 9.16.)

Some computational considerations

1. Inverse DFT:
- 1/N scaling
- conjugate powers of W (coefficients) or,

- flipping input x(-n)

2. Bit-reversal (in-place computation)
0 2 3.4 5 7
Swap place 1, 4
0 2 1 5 7 Swap place 3,6

3. Dealing with coefficients:

- store them in a table

- generate them as they are needed
In FFT DIF W - normal order
In FFT DIT W - bit-revered order

FFT for convolution / correlation

For avoiding bit-reversed order

« DFT — choose algorithm where input is in normal order and
output is in bit-reversed order.

« Store impulse response in bit-reversed order

« Do multiplication

* IDFT — choose an FFT algorithm where input is in bit-reversed
order and output in normal order

DFT: decimation-in-time (normally order input, bit-reversed output)
* Coefficients Wy, are in bit-reversed order

IDFT: decimation-in-frequency (bit-reversed input, normally order output)
* Coefficients Wy, are in normal order

To match up coefficients order:
-Decimation-in-frequency (normally input, bit-reversed output)
* Coefficients are in normal order
-Decimation-in-time (bit-reversed input, normally output)
*Coefficients are in normal order

General Radix FFT

« All of the previous algorithms are Radix-2 FFT Algorithms ,i.e. N=2V

* N can be any integer number — general Radix FFT algorithms

