

Faculty of Engineering & Technology

 Electrical & Computer Engineering Department

Applied Cryptography ENCS4320

Hash Length Extension Attack Lab

Prepared by:

Hasan Hamed 1190496

Shorooq Ngjar 1192415

Instructor: Dr. Ahmad Alsadeh

Section: 1

Date: 4/9/2022

I

1. Abstract

This lab aims to learn how to verify the integrity of the request using MAC, how to generate the MAC by

using a one-way hash and the key and learn the Hash Length Extension attack which allows attackers to

modify the message while still being able to generate a valid MAC based on the modified message, without

knowing the secret key, and to learn the importance of padding in these kinds of attacks, and finally to learn

how to mitigate this attack using HMAC (a keyed hash message authentication code.

II

Table of Contents

1. Abstract ... I

2. Theory ... 1

2.1. Introduction ... 1

2.2. Padding .. 2

2.3. Hash Length Extension Attack ... 3

2.4. HMAC ... 5

3. Procedure and Results .. 6

3.1. Lab Environment.. 6

3.2. Task 1: Send Request to List Files .. 8

3.3. Task 2: Create Padding .. 12

3.4. Task 3: The Length Extension Attack ... 15

3.5. Task 4: Attack Mitigation using HMAC .. 18

4. Conclusion .. 27

5. References .. 28

III

Table of Figures

Figure 2.1: Hash Functions ... 1

Figure 2.2: SHA-256 hash values of two texts that differ by one character ... 2

Figure 3.1: Adding Entry to /etc/hosts file ... 6

Figure 3.2: Building Container Image ... 7

Figure 3.3: Starting The Container.. 8

Figure 3.4: Calculating MAC for Listing Directories .. 9

Figure 3.5: Server Response for Listing Directories .. 10

Figure 3.6: Calculating MAC for Download .. 11

Figure 3.7: Server Response for Downloading ... 12

Figure 3.8: SHA256 Padding Python Code .. 13

Figure 3.9: Shell Script to change /x to % ... 14

Figure 3.10: Padding Output .. 15

Figure 3.11: Generating MAC, Padding and Generating New MAC ... 16

Figure 3.12: Generating New Mac Code .. 16

Figure 3.13: Hash Length Extension Attack Result ... 17

Figure 3.14: Changing lab.py Function ... 18

Figure 3.15: Editing Message in Hmac.py Code ... 19

Figure 3.16: Generating a MAC for the Message Using HMAC .. 19

Figure 3.17: Server Response for HMAC Request .. 20

Figure 3.18: Editing HMAC Code for the New Request .. 21

Figure 3.19: Obtaining the New Request MAC ... 21

Figure 3.20: New Request Response .. 22

Figure 3.21: Generating SHA256 MAC .. 23

Figure 3.22: SHA256 Response Due to HMAC .. 24

Figure 3.23: Obtaining MAC and Padding .. 25

Figure 3.24: Hash Length Extension Attack Failed ... 26

1

2. Theory

2.1. Introduction

SHA-256, which stands for secure hash algorithm 256, is a cryptographic hashing algorithm (or function)

that’s used for message, file, and data integrity verification. It’s part of the SHA-2 family of hash functions

and uses a 256-bit key to take a piece of data and convert it into a new, unrecognizable data string of a fixed

length. This string of random characters and numbers, called a hash value, is also 256 bits in size.

Figure 2.1: Hash Functions

Let’s consider the following example. Say you write the message “Good morning” and apply a SHA-256

hash function to it. It will look like this:

 90a90a48e23dcc51ad4a821a301e3440ffeb5e986bd69d7bf347a2ba2da23bd3, Now, say you decide to do

the same with a similar message, “Good morning!” It will result in an entirely different string of hexadecimal

characters of the same length.

The following graphic shows the SHA-256 hash values of two texts that differ by one character:

2

Figure 2.2: SHA-256 hash values of two texts that differ by one character

SHA 256 ensures data integrity so that both parties can be sure that the communication is actually from the

person they think it is. The recipient device creates a hash of the original message and compares it to the

hash value sent by the sender. If both hash values are equal, the message has not been tampered with during

transit.[1]

2.2. Padding

The block size of SHA-256 is 64 bytes, so a message M will be padded to the multiple of 64 bytes during

the hash calculation. According to RFC 6234, paddings for SHA256 consist of one byte of \x80, followed

by a many 0’s, followed by a 64-bit (8 bytes) length field (the length is the number of bits in the M). Assume

that the original message is M = "This is a test message". The length of M is 22 bytes, so the padding is 64

- 22 = 42 bytes, including 8 bytes of the length field. The length of M in term of bits is 22 * 8 = 176 = 0xB0.

SHA256 will be performed in the following padded message: "This is a test message" "\x80"

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

"\x00\x00\x00"

"\x00\x00\x00\x00\x00\x00\x00\xB0"

It should be noted that the length field uses the Big-Endian byte order, i.e., if the length of the message is

0x012345, the length field in the padding should be: "\x00\x00\x00\x00\x00\x01\x23\x45"

It should be noted that in the URL, all the hexadecimal numbers in the padding need to be encoded by

changing \x to %. For example, \x80 in the padding should be replaced with %80 in the URL above. On the

server side, encoded data in the URL will be changed back to the binary numbers. See the following example:

"\x80\x00\x00\x99" should be encoded as "%80%00%00%99".[2]

3

2.3. Hash Length Extension Attack

In cryptography and computer security, a length extension attack is a type of attack where an attacker can

use Hash(message1) and the length of message1 to calculate Hash (message1 ‖ message2) for an attacker-

controlled message2, without needing to know the content of message1. Algorithms like MD5, SHA-1 and

most of SHA-2 that are based on the Merkle–Damgård construction are susceptible to this kind of attack.

Truncated versions of SHA-2, including SHA-384 and SHA-512/256 are not susceptible, nor is the SHA-3

algorithm.

When a Merkle–Damgård based hash is misused as a message authentication code with construction

H(secret ‖ message), and message and the length of secret is known, a length extension attack allows anyone

to include extra information at the end of the message and produce a valid hash without knowing the secret.

Since HMAC does not use this construction, HMAC hashes are not prone to length extension attacks.

A server for delivering waffles of a specified type to a specific user at a location could be implemented to

handle requests of the given format:

Original Data: count=10&lat=37.351&user_id=1&long=-119.827&waffle=eggo

Original Signature: 6d5f807e23db210bc254a28be2d6759a0f5f5d99

The server would perform the request given (to deliver ten waffles of type eggo to the given location for

user "1") only if the signature is valid for the user. The signature used here is a MAC, signed with a key not

known to the attacker. (This example is also vulnerable to a replay attack, by sending the same request and

signature a second time.)

It is possible for an attacker to modify the request, in this example switching the requested waffle from

"eggo" to "liege." This can be done by taking advantage of a flexibility in the message format if duplicate

content in the query string gives preference to the latter value. This flexibility does not indicate an exploit

in the message format, because the message format was never designed to be cryptographically secure in the

first place, without the signature algorithm to help it.

Desired New Data: count=10&lat=37.351&user_id=1&long=-

119.827&waffle=eggo&waffle=liege

In order to sign this new message, typically the attacker would need to know the key the message was signed

with, and generate a new signature by generating a new MAC. However, with a length extension attack, it

is possible to feed the hash (the signature given above) into the state of the hashing function, and continue

4

where the original request had left off, so long as you know the length of the original request. In this request,

the original key's length was 14 bytes, which could be determined by trying forged requests with various

assumed lengths, and checking which length results in a request that the server accepts as valid

In order to sign this new message, typically the attacker would need to know the key the message was signed

with, and generate a new signature by generating a new MAC. However, with a length extension attack, it

is possible to feed the hash (the signature given above) into the state of the hashing function, and continue

where the original request had left off, so long as you know the length of the original request. In this request,

the original key's length was 14 bytes, which could be determined by trying forged requests with various

assumed lengths, and checking which length results in a request that the server accepts as valid.

The message as fed into the hashing function is often padded, as many algorithms can only work on input

messages whose lengths are a multiple of some given size. The content of this padding is always specified

by the hash function used. The attacker must include all of these padding bits in their forged message before

the internal states of their message and the original will line up. Thus, the attacker constructs a slightly

different message using these padding rules:

New Data: count=10&lat=37.351&user_id=1&long=-119.827&waffle=eggo\x80\x00\x00

 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

 \x00\x00\x00\x02\x28&waffle=liege

This message includes all of the padding that was appended to the original message inside of the hash

function before their payload (in this case, a 0x80 followed by a number of 0x00s and a message length,

0x228 = 552 = (14+55)*8, which is the length of the key plus the original message, appended at the end).

The attacker knows that the state behind the hashed key/message pair for the original message is identical

to that of new message up to the final "&." The attacker also knows the hash digest at this point, which

means he knows the internal state of the hashing function at that point. It is then trivial to initialize a hashing

algorithm at that point, input the last few characters, and generate a new digest which can sign his new

message without the original key.

New Signature: 0e41270260895979317fff3898ab85668953aaa2

By combining the new signature and new data into a new request, the server will see the forged request as a

5

valid request due to the signature being the same as it would have been generated if the password was

known.[3]

2.4. HMAC

In cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-

based message authentication code) is a specific type of message authentication code (MAC) involving a

cryptographic hash function and a secret cryptographic key. As with any MAC, it may be used to

simultaneously verify both the data integrity and authenticity of a message.

HMAC can provide authentication using a shared secret instead of using digital signatures with asymmetric

cryptography. It trades off the need for a complex public key infrastructure by delegating the key exchange

to the communicating parties, who are responsible for establishing and using a trusted channel to agree on

the key prior to communication.[4]

6

3. Procedure and Results

3.1. Lab Environment

The domain www.seedlab-hashlen.com was used to host the server program. In the VM, this hostname was

mapped to the web server container (10.9.0.80). by adding the following entry to the /etc/hosts file as shown

in Figure 3.1.

Figure 3.1: Adding Entry to /etc/hosts file

Then the container image was build using the following command:

$ docker-compose build

As shown in Figure 3.2.

http://www.seedlab-hashlen.com/

7

Figure 3.2: Building Container Image

Then, the container was started using the following command:

$ docker-compose up -d

As shown in Figure 3.3, since it’s already up it shown that it is up to date.

8

Figure 3.3: Starting The Container

3.2. Task 1: Send Request to List Files

The request will be sent as follows:

http://www.seedlab-hashlen.com/?myname=<name>&uid=<need-to-fill-> &lstcmd=1&mac=<need-to-

calculate>

uid 1001 was used and its key 123456 and name Shorooq Ngjar.

The MAC will be calculated using the following command:

$ echo -n "123456:myname=ShorooqNgjar&uid=1001&lstcmd=1" | sha256sum

As shown in Figure 3.4.

9

Figure 3.4: Calculating MAC for Listing Directories

The request was constructed as shown below:

http://www.seedlab-

hashlen.com/?myname=ShorooqNgjar&uid=1001&lstcmd=1&mac=98b0e6d42e81d0a883e5340c1017d0c

d54e1bbb7b03b79ef125f6b4eee9eba37

The request was sent to the server using Firefox and the response is shown in Figure 3.5.

10

Figure 3.5: Server Response for Listing Directories

Now, sedning a download command to the server.

First the MAC was obtained using the following command:

$ echo -n "123456:myname=HasanHamed&uid=1001&lstcmd=0&download=secret.txt” | sha256sum

As shown in Figure 3.6.

11

Figure 3.6: Calculating MAC for Download

The request was constructed as shown below:

http://www.seedlab-hashlen.com/?myname=HasanHamed&uid=1001&lstcmd=1&download=secret.txt

&mac=c5df06a22cf02eca66544a88374e74fa83a387d56c54a769729da2655988cb1d

The request was sent to the server using Firefox and the response is shown in Figure 3.7.

12

Figure 3.7: Server Response for Downloading

As shown in both requests since both MAC’s for both requests were valid, the server responded and sent the

request response which was a list request in the first part and a download request in the second one.

3.3. Task 2: Create Padding

A python program was created for padding messages according to the algorithm:

paddings for SHA256 consist of one byte of \x80, followed by a many 0’s, followed by a 64-bit (8 bytes)

length field (the length is the number of bits in the M). as shown in Figure 3.8.

13

Figure 3.8: SHA256 Padding Python Code

It should be noted that in the URL, all the hexadecimal numbers in the padding need to be encoded by

changing \x to %. And because of that a shell script was created to change them as shown in Figure 3.9.

14

Figure 3.9: Shell Script to change /x to %

Using both codes, the padding for the message was created:

123456:myname=Hasan&uid=1001&lstcmd=1

As shown in Figure 3.10.

15

Figure 3.10: Padding Output

3.4. Task 3: The Length Extension Attack

In this task, a valid MAC for a URL will be generated without knowing the MAC key. Assume that the

MAC of a valid request R is known, and the size of the MAC key is also known. The job is to forge a new

request based on R, while still being able to compute the valid MAC.

First a valid MAC for the following request will be generated (where and the MAC key should be obtained

from the LabHome/key.txt file):

http://www.seedlab-hashlen.com/?myname=<name>&uid=<uid>&lstcmd=1&mac=<mac>

First of all, the MAC will be generated for the following message:

123456:myname=Hasan&uid=1001&lstcmd=1

As shown in Orange Figure 3.11.

Then, a padding for the same message was created as shown in yellow in Figure 3.11.

16

Figure 3.11: Generating MAC, Padding and Generating New MAC

Then, a new MAC for the new message was generated using the original MAC as shown in Figure 3.12

using the given C code in the manual.

Figure 3.12: Generating New Mac Code

17

Then, the C code was excuted as shown in Green by returning to Figure 3.11.

Finally, a new request was created with the following format:

http://www.seedlab-

hashlen.com/?myname=<name>&uid=<uid>&lstcmd=1<padding>&download=secret.txt&mac=<new-

mac>

Since name, uid, padding and the new MAC were obtained, a new request will be created as follow:

http://www.seedlab-

hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%00%00%00%00%00%00%00%00%00%00%0

0%00%00%00%00%00%00%00%00%00%00%00%00%00%01%28&download=secret.txt&mac=9b08a4

79d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

The request response was got as shown in Figure 3.13.

Figure 3.13: Hash Length Extension Attack Result

As shown in Figure 3.13, a valid MAC for a URL was generated without knowing the MAC key. Knowing

the MAC of a valid request R and the size of the MAC key and a new request based on R was forged while

still being able to compute a valid MAC.

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

18

3.5. Task 4: Attack Mitigation using HMAC

In the tasks so far, it was observed the damage caused when a developer computes a MAC in an insecure

way by concatenating the key and the message. In this task, the mistake made by the developer will be fixed.

The standard way to calculate MACs is to use HMAC. The server program’s verify mac() function should

be modified and Python’s hmac module will be used to calculate the MAC. The function resides in lab.py.

Given a key and message (both of type string), the HMAC can be computed as shown below:

real_mac = hmac.new(bytearray(key.encode(’utf-8’)), msg=message.encode(’utf-8’, ’surrogateescape’),

digestmod=hashlib.sha256).hexdigest()

The function was changed in the file lab.py as shown in Figure 3.14.

Figure 3.14: Changing lab.py Function

After making the changes, all the containers were stopped using docker-compose down command and then

were rebuilt using docker-compose build and all the containers were started again using docker-compose up

-d by following the steps in section 3.1. after that the changes took places.

Then, a MAC was generated for the following message:

myname=Hasan&uid=1001&lstcmd=1

By editing the message in the Hmac.py code shown in Figure 3.15.

19

Figure 3.15: Editing Message in Hmac.py Code

The MAC was generated after executing the code as shown in Figure 3.16.

Figure 3.16: Generating a MAC for the Message Using HMAC

Then a request was constructed as shown below:

20

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=

821b43abda6ca6d90375fc41f02ad05d64a6c40b82230cdf118484af9fa9a9af

And the response got is shown in Figure 3.17.

Figure 3.17: Server Response for HMAC Request

Then, a MAC for a request for download was generated as shown in Figure 3.18, the code was first edited.

21

Figure 3.18: Editing HMAC Code for the New Request

Then, the code was executed and the new MAC was obtained as shown in Figure 3.19.

Figure 3.19: Obtaining the New Request MAC

22

Then a request was constructed as shown below:

http://www.seedlab-

hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9

e14b08382cfc58d5087371c74c38516d21bd88a801d3

And the response after sending the request to the server was got as shown in Figure 3.20.

Figure 3.20: New Request Response

Now a new request using SHA256 will be sent.

First the MAC will be generated as shown in Figure 3.21.

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3

23

Figure 3.21: Generating SHA256 MAC

Then, a new request was made as shown below:

http://www.seedlab-

hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca0708

05fe1a36154544bb38561cf0aa

The request was sent using Firefox and the response is as shown in Figure 3.22.

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa

24

Figure 3.22: SHA256 Response Due to HMAC

As shown in Figure 3.22, the server response tells that the MAC is not valid since HMAC is used.

Now the Hash Length Extension attack will be tested. The original MAC and padding were obtained as

shown in Figure 3.23.

25

Figure 3.23: Obtaining MAC and Padding

Now the request was constructed as shown below:

http://www.seedlab-

hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%00%00%00%00%00%00%00%00%00%00%0

0%00%00%00%00%00%00%00%00%00%00%00%00%00%01%28&download=secret.txt&mac=9b08a4

79d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

The request was sent to the server using Firefox as shown in Figure 3.24.

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

26

Figure 3.24: Hash Length Extension Attack Failed

As shown in Figure 3.24 that Hash Length Extension attack was failed due to using HMAC since it’s secure

against those attack and checks the integrity.

27

4. Conclusion

In conclusion, we understand the MAC and how it give the integrity for messages, and we understand how

to generate the MAC’s using one way hash such as SHA256, and we understand how to launch Hash

Extension attacks for SHA256 using padding and original MAC and a new MAC to generate a new request

without knowing the key, and finally HMAC was understood and how it’s stronger and more secure for

those kind of attacks.

28

5. References

[1] https://sectigostore.com/blog/sha-256-algorithm-explained-by-a-cyber-security-consultant/

Accessed 4 September 2022

[2] Hash Length Extension Attack Lab PDF by SEED Labs

Accessed 4 September 2022

[3] https://en.wikipedia.org/wiki/Length_extension_attack

Accessed 4 September 2022

[4] https://en.wikipedia.org/wiki/HMAC

Accessed 4 September 2022

https://sectigostore.com/blog/sha-256-algorithm-explained-by-a-cyber-security-consultant/
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.wikipedia.org/wiki/HMAC

