S5 !
BIRZEIT UN|VERS|TY

Faculty of Engineering & Technology
Electrical & Computer Engineering Department
Applied Cryptography ENCS4320
Hash Length Extension Attack Lab
Prepared by:
Hasan Hamed 1190496
Shorooq Ngjar 1192415
Instructor: Dr. Ahmad Alsadeh
Section: 1
Date: 4/9/2022

1. Abstract

This lab aims to learn how to verify the integrity of the request using MAC, how to generate the MAC by
using a one-way hash and the key and learn the Hash Length Extension attack which allows attackers to
modify the message while still being able to generate a valid MAC based on the modified message, without
knowing the secret key, and to learn the importance of padding in these kinds of attacks, and finally to learn

how to mitigate this attack using HMAC (a keyed hash message authentication code.

Table of Contents

AN o] 4 - Tl T TP VOO PSP PP PPPRTOPRTUPRRIOt I
B =Y o TSR 1
B8 O [4 oY [0 4T o HU T O PO S T UPTO PP 1
B S To Lo |1 V- TR 2
2.3. Hash Length EXTENSION ATEACK ...cceviiii et s e e e te e e e et te e e e e aba e e e e e abaee e e abaeeeennnees 3
2L HIMAGC . ..ttt st ettt e b e bt s bt e ae e et e e bt e eh e e S he e eae e et e e bt e b e e b e e e he e ea et e R e et e e nheeshbesane e be e be e reennees 5
3. ProCEAUIE @Nd RESUITSeiiiieiietie ettt ettt he e sttt et e b e bt e s b e e s ae e e st e et e e nbeesheesatesaseeabeebeenneennees 6
3.0, Lab ENVIFONMENT. ettt ettt sttt et e b e s bt e s ae e sae e st e e bt e bt e sbeeeaeeea s e et e e beesheesaeesabeeabeebeenneennees 6
3.2. Task 1: Send REQUEST 10 LIST FIlESciiiiiiiieiiiee ettt e e et e e e bre e e e e bae e e e abae e e e abeeeeeennes 8
I T - 1 [O == <l o= To [[T =Rt 12
3.4, Task 3: The Length EXTENSION ATLACKoiiiiiiiiieeee et e e e e te e e e et e e e e ebte e e e enraeeeeans 15
3.5. Task 4: Attack Mitigation USING HIMACccuiiiiicieee ettt ettt e et e e e ette e e e et ee e e sataeeesantaeeesstaeeeennsanaeanns 18
i 6o o Tol (V1o RO OO ST PP TSP PTOPPTOPPRRPRROPRRRPOON 27
D RETBIENCES .ttt ettt h e bt s a e et e e bt e bt e eh e e shtesat e s a bt e bt e bt e b e e ebeeehe e et e e beenbeenheesanesareeane 28

Table of Figures

Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:

HASH FUNCLIONS ...ttt ettt et sa e s bt e e s ab e e s bt e e sateesabeeesabeesabeesneeesaneeesnneas 1
SHA-256 hash values of two texts that differ by one character.......cccocveviieieiiicce e, 2
Adding ENtry 10 /@EC/NOSTS il woonveeieeie ettt ettt e e be e eetee e eateeeeaeeeereeens 6
2 TUT] o oY= e Yot = g =T ol 1o T SRR 7
) =Y o= I TN oY] =11 1= SRS 8
Calculating MAC fOr LiSting Dir@CLOTIES ...eeeicuvieeeeiiieeeeciieeeectee e eetee e e ree e e ette e e s e sabeeeeeabaeesenbeeeeennseeesennnens 9
Server Response fOr ListiNg Dir@CTONIES.cciicuiieeecciiiee ettt ectte e et e e e ette e e e e ateeeeebteeeesbtaeeessteeaeaans 10
Calculating MAC fOr DOWNIOAMoooiiiiiiciiie ettt et e et e e e e ctte e e e et e e e e e bee e e e enbeeeeeennteeaeansens 11
Server Response fOr DOWNIOAINGccocviiii ittt e et e e e eate e e e seara e e e sbte e e e sbtaeeesentaeeeaans 12
SHA256 Padding PYLNON COU@.........uuiiiiciiiee ettt ettt e e ettt e e e et e e e e eate e e e sataeeesntaeaesntaeeesesseeeesnns 13
Shell SCript t0 ChANEE /X 10 ..uviiiieieeieecie ettt st e e e e te e s te e sreesraesnteenteereenreeseeas 14
oY Lo [T oY= @ 111 4 o 11 | PRSP 15
Generating MAC, Padding and Generating NEW IMACc..oieieciiieeeiieee et ectee e evtee e e ecvtee e e eeraee e 16
GENErating NEW MaC COUEoiiiiiiiee ettt e ettt e e ettt e e e et e e s e ebtee e s settaeeeebtaeeesstasaeestaeeesastasassnssnnansnns 16
Hash Length Extension Attack RESUILveeiieiiiiiiiee et e e e s e 17
Changing [ab.pY FUNCLION c....uiiiieee et et e et e e e s bte e e s sateeeesntaeeesseaeesanns 18
Editing Message in HMAC.PY COUEuviiiiiiiiiiiie ettt e ree e e ste e e e e abee e e e sabee e s eabeeeeeanees 19
Generating a MAC for the Message USiNg HMACooiiiiiiiii ittt eteee s svtee e s stae e s snvaee e eans 19
Server Response fOr HIMAC REQUESTciiiiiiiie ittt ettt ettt sette e e s ette e e s seateeessateeesssaaeeesneneessnns 20
Editing HMAC Code for the NEeW REQUESTc.uuiiiiiiiieeetees ettt e et e e e e e saree e e e 21
Obtaining the NEW REQUEST IMIAC.......uiiii ettt ettt et e e e s tte e e s sbte e e s sbtaeessataeeesntaaessnssneessnns 21
NEW REQUEST RESPONSE ... eeaeeeens 22
GENEIAtING SHA256 IMIAC......oeitttititiittiettttreeeeeeeeeeeae et —e et aestatetaaaestasaeatatsestatassessseaesssesensssnsrnns 23
SHA256 ReSpONSE DU 10 HIMMACciiiiiiiiiiiieieitttitttteeeeeeteteeeeeeeeeesesesesesesesesesessaestaesssesssssessssassssesssssssssnes 24
(0] o) =11 V=8 \V VX @R Ta Lo I 2= T [o |1 =SSR 25
Hash Length Extension Attack Failed ...t e e e e e 26

2. Theory

2.1. Introduction

SHA-256, which stands for secure hash algorithm 256, is a cryptographic hashing algorithm (or function)
that’s used for message, file, and data integrity verification. It’s part of the SHA-2 family of hash functions
and uses a 256-bit key to take a piece of data and convert it into a new, unrecognizable data string of a fixed

length. This string of random characters and numbers, called a hash value, is also 256 bits in size.

An Example of a Hash Function

— ACSDBA40

Your 27B8576A
Plaintext — 8RO18854
Message 18254B77
398CB120

Input Message SHA-1 Hash Function Hash Value

Figure 2.1: Hash Functions
Let’s consider the following example. Say you write the message “Good morning” and apply a SHA-256
hash function to it. It will look like this:
90a90a48e23dcc5lad4a821a301e3440ffeb5e986bd69d7bf347a2ba2da23bd3, Now, say you decide to do
the same with a similar message, “Good morning!” It will result in an entirely different string of hexadecimal
characters of the same length.

The following graphic shows the SHA-256 hash values of two texts that differ by one character:

Text |Good moming
Hash |90a90a48e23dcc51ad4a821a301e3440ffeb5e986bd69d7bf347a2ba2da23bd3

Text |Good moming!
Hash | c9ebfb6f4b8e880908a737b8d770aa3a518fb6053b327720e8dcc79609c32858

Figure 2.2: SHA-256 hash values of two texts that differ by one character
SHA 256 ensures data integrity so that both parties can be sure that the communication is actually from the

person they think it is. The recipient device creates a hash of the original message and compares it to the
hash value sent by the sender. If both hash values are equal, the message has not been tampered with during
transit.[1]
2.2. Padding
The block size of SHA-256 is 64 bytes, so a message M will be padded to the multiple of 64 bytes during
the hash calculation. According to RFC 6234, paddings for SHA256 consist of one byte of \x80, followed
by a many 0’s, followed by a 64-bit (8 bytes) length field (the length is the number of bits in the M). Assume
that the original message is M = "This is a test message". The length of M is 22 bytes, so the padding is 64
- 22 = 42 bytes, including 8 bytes of the length field. The length of M in term of bits is 22 * 8 = 176 = 0xBO.
SHA256 will be performed in the following padded message: "This is a test message"” "\x80"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\xB0"
It should be noted that the length field uses the Big-Endian byte order, i.e., if the length of the message is
0x012345, the length field in the padding should be: "\x00\x00\x00\x00\x00\x01\x23\x45"
It should be noted that in the URL, all the hexadecimal numbers in the padding need to be encoded by
changing \x to %. For example, \x80 in the padding should be replaced with %80 in the URL above. On the
server side, encoded data in the URL will be changed back to the binary numbers. See the following example:
"\x80\x00\x00\x99" should be encoded as "%80%00%00%99".[2]

2

2.3. Hash Length Extension Attack

In cryptography and computer security, a length extension attack is a type of attack where an attacker can
use Hash(messagel) and the length of messagel to calculate Hash (messagel | message2) for an attacker-
controlled message2, without needing to know the content of messagel. Algorithms like MD5, SHA-1 and
most of SHA-2 that are based on the Merkle-Damgard construction are susceptible to this kind of attack.
Truncated versions of SHA-2, including SHA-384 and SHA-512/256 are not susceptible, nor is the SHA-3
algorithm.

When a Merkle-Damgard based hash is misused as a message authentication code with construction
H(secret | message), and message and the length of secret is known, a length extension attack allows anyone
to include extra information at the end of the message and produce a valid hash without knowing the secret.
Since HMAC does not use this construction, HMAC hashes are not prone to length extension attacks.

A server for delivering waffles of a specified type to a specific user at a location could be implemented to
handle requests of the given format:

Original Data: count=10&lat=37.351l&user id=1l&long=-119.827&waffle=eggo
Original Signature: 6d5f807e23db210bc254a28be2d6759a0£5£5d99

The server would perform the request given (to deliver ten waffles of type eggo to the given location for
user "1") only if the signature is valid for the user. The signature used here is a MAC, signed with a key not
known to the attacker. (This example is also vulnerable to a replay attack, by sending the same request and
signature a second time.)

It is possible for an attacker to modify the request, in this example switching the requested waffle from
"eggo" to "liege." This can be done by taking advantage of a flexibility in the message format if duplicate
content in the query string gives preference to the latter value. This flexibility does not indicate an exploit
in the message format, because the message format was never designed to be cryptographically secure in the
first place, without the signature algorithm to help it.

Desired New Data: count=10&lat=37.351l&user id=l&long=-
119.827&waffle=eggo&waffle=liege

In order to sign this new message, typically the attacker would need to know the key the message was signed

with, and generate a new signature by generating a new MAC. However, with a length extension attack, it

is possible to feed the hash (the signature given above) into the state of the hashing function, and continue
3

where the original request had left off, so long as you know the length of the original request. In this request,
the original key's length was 14 bytes, which could be determined by trying forged requests with various
assumed lengths, and checking which length results in a request that the server accepts as valid

In order to sign this new message, typically the attacker would need to know the key the message was signed
with, and generate a new signature by generating a new MAC. However, with a length extension attack, it
is possible to feed the hash (the signature given above) into the state of the hashing function, and continue
where the original request had left off, so long as you know the length of the original request. In this request,
the original key's length was 14 bytes, which could be determined by trying forged requests with various
assumed lengths, and checking which length results in a request that the server accepts as valid.

The message as fed into the hashing function is often padded, as many algorithms can only work on input
messages whose lengths are a multiple of some given size. The content of this padding is always specified
by the hash function used. The attacker must include all of these padding bits in their forged message before
the internal states of their message and the original will line up. Thus, the attacker constructs a slightly
different message using these padding rules:

New Data: count=10&lat=37.35l&user id=l&long=-119.827&waffle=eggo\x80\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x02\x28&waffle=liege

This message includes all of the padding that was appended to the original message inside of the hash
function before their payload (in this case, a 0x80 followed by a number of 0x00s and a message length,
0x228 = 552 = (14+55)*8, which is the length of the key plus the original message, appended at the end).
The attacker knows that the state behind the hashed key/message pair for the original message is identical
to that of new message up to the final "&." The attacker also knows the hash digest at this point, which
means he knows the internal state of the hashing function at that point. It is then trivial to initialize a hashing
algorithm at that point, input the last few characters, and generate a new digest which can sign his new
message without the original key.

New Signature: 0e41270260895979317££f£3898ab85668953aaa2

By combining the new signature and new data into a new request, the server will see the forged request as a

4

valid request due to the signature being the same as it would have been generated if the password was
known.[3]

2.4. HMAC

In cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-
based message authentication code) is a specific type of message authentication code (MAC) involving a
cryptographic hash function and a secret cryptographic key. As with any MAC, it may be used to
simultaneously verify both the data integrity and authenticity of a message.

HMAC can provide authentication using a shared secret instead of using digital signatures with asymmetric
cryptography. It trades off the need for a complex public key infrastructure by delegating the key exchange
to the communicating parties, who are responsible for establishing and using a trusted channel to agree on
the key prior to communication.[4]

3. Procedure and Results

3.1. Lab Environment

The domain www.seedlab-hashlen.com was used to host the server program. In the VM, this hostname was

mapped to the web server container (10.9.0.80). by adding the following entry to the /etc/hosts file as shown

in Figure 3.1.

(/]
Activities Gedit
Open m Bosts save | =
1127.0.0.1 localhost
2127.6.1.1 hasan-VirtualBox

3

4 # The following lines are desirable for IPv6 capable hosts
5::1 ip6-localhost ip6-loopback

6 fe00::0 ip6-localnet

7 ffe0::0 ip6-mcastprefix

8 ff02::1 ip6-allnodes

9 ff02::2 ip6-allrouters

"OBPPOES»C

2000

Plain Text Tab width: 8 Ln3,Col1 = INS
2 - E & U@ [# right et
(T PR) - e = 552 PM
88 O Type heretosearch qQ 'l, bl © Hi C m u t Au) 0 G "’ '; a F A 3 AW D) NG 9/4/2022 =

Figure 3.1: Adding Entry to /etc/hosts file
Then the container image was build using the following command:

$ docker-compose build

As shown in Figure 3.2.

http://www.seedlab-hashlen.com/

Activities &) Terminal Sep4 17:50 ¢

hasan@hasan-VirtualBox: ~/Desktop/Labsetup

" m
: s sudo docker-compose bulld
[sudo] password for hasan:
Building web-server
Ssending bulld context to Docker daemon 16.9kB
p 1/4 : FROM handsonsecurity/seed-server:flask
4199adf332
COPY app /app
ache

- e2fge
Step 3/4 : COPY bashrc /root/.bashrc

ing cache
07d8132b
--port 88 8& tatl -f /dev/null

: CMD cd /app && FLASK_APP=/app/www flask run --host ©.6.6.0
-> Using cache
f1395d98f08d
ully built f1395d98fesd
ully tagged seed-image-flask-len-ext:latest
: s

= ¥ O] @ ® rgnt ant
5:50 PM
(]

-
I O Type here to search : "'l'“'i” O H € = B ;) g € ¥ 5 v} BF AW EY N o0

22

Figure 3.2: Building Container Image
Then, the container was started using the following command:

$ docker-compose up -d

As shown in Figure 3.3, since it’s already up it shown that it is up to date.

tivities) Terminal Sep4 17:54 11

o "

hasan@hasan-VirtualBox: ~/Desktop/Labsetup

WWw-10.9.0.80 s up-to-date

B @b s 51 i 0] & [#] rh ot
5:54 PM D

W O Typeheretosearch ¥ o H € m B R D 0 C VY KB dE WA BQWEN B SO0
Figure 3.3: Starting The Container
3.2. Task 1: Send Request to List Files
The request will be sent as follows:
http://www.seedlab-hashlen.com/?myname=<name>&uid=<need-to-fill-> &Istcmd=1&mac=<need-to-
calculate>
uid 1001 was used and its key 123456 and name Shorooqg Ngjar.
The MAC will be calculated using the following command:
$ echo -n "123456:myname=ShoroogNgjar&uid=1001&Istcmd=1" | sha256sum

As shown in Figure 3.4.

Activities (2 Terminal

m

08boe6dd2e81d0a883e5340c1017d6cd54e1bbb7bo3b79ef125f6bdeeedeba37 -

E

& - = ¥ U@ ®riht cnt
343 AM

B8 O Type here to search 1 (@] Hit C " u t ;? 0 G \0' ';) 73°F Partly cloudy ~ @ & W Z dx ENG 9372022 E

Figure 3.4: Calculating MAC for Listing Directories
The request was constructed as shown below:

http://www.seedlab-
hashlen.com/?myname=ShoroogNgjar&uid=1001&Istcmd=1&mac=98b0e6d42e81d0a883e5340c1017d0c
d54e1bbb7b03b79ef125f6b4eee9ebal37

The request was sent to the server using Firefox and the response is shown in Figure 3.5.

s o EE sep3 0346 1) &0
ength Extes x |+ D & &
€ (¢} o8 seedlab-hashlen.com, ten 4 d54d b foba

S |

- Hash Length Extension Attack Lab

@ Yes, your MAC is valid

List Directory
% 1. secret.txt
2. key.txt
?
= 4
O
88 O Type heretosearch 4 O H @ m~ B = ® 0 € ¥ ¥ O ADQ®™ zZdx NG

Figure 3.5: Server Response for Listing Directories

Now, sedning a download command to the server.

First the MAC was obtained using the following command:

$ echo -n "123456:myname=HasanHamed&uid=1001&Istcmd=0&download=secret.txt” | sha256sum

As shown in Figure 3.6.

10

2 @ s = 8] & i rght ani
400 AM

BR O Type here to search W O B € =~ B : ;9 0 G "’ 'r‘ =) 73°F Partly coudy A & & W 7 dx ENG 9/3/2022 B

Figure 3.6: Calculating MAC for Download
The request was constructed as shown below:

http://www.seedlab-hashlen.com/?myname=HasanHamed&uid=1001&Istcmd=1&download=secret.txt
&mac=c5df06a22cf02eca66544a88374e74fa83a387d56c54a769729da2655988ch1d

The request was sent to the server using Firefox and the response is shown in Figure 3.7.

11

3
)

< (¢] O 8 seedlab-hashlen.com 3 | t f 5 f & @ ¥ =
0 |
- Hash Length Extension Attack Lab
@ Yes, your MAC is valid

File Content
% TOP SECRET.
@ DO NOT DISCLOSE.
2
4
2 © 0a ¥ ¢ E ¥ @ ®rht cn
\ " - = - - n £00 AM

B8 O Type hereto search } (@8 €C n u t A? 0 G g ';) 73°F Partly cloudy ~ O & W 7z dx ENG 9372022 “

Figure 3.7: Server Response for Downloading

As shown in both requests since both MAC’s for both requests were valid, the server responded and sent the

request response which was a list request in the first part and a download request in the second one.

3.3. Task 2: Create Padding

A python program was created for padding messages according to the algorithm:

paddings for SHA256 consist of one byte of \x80, followed by a many 0’s, followed by a 64-bit (8 bytes)
length field (the length is the number of bits in the M). as shown in Figure 3.8.

12

Activities @ TextEditor Sep3 1914 03

open v | M Paddingpy, save | =

length_ext.c padding.py
1 ¢! /usr/bin/python3
. 2 def padding(msg_len)
3 pad_len (msg_len + 9)
a hex_len = "\\x" + "\\x".jotn(split(hex(msg_len*s)[2:].2fFL11(16), 2))
s return "\\ + “".join(["\ for _ in range(pad_len - 1)]) + hex_len
- e
= max(1, n)
8 return [arr[i:i+n] for i in range(o, len(arr), n)]
9 Message = input()
10 MessageLength=len(Message)
11 Answer = padding(MessageLength)
% 12 print(Message+Answer)
Python Tab width: 8 Ln1,Col1 o INS
2 - = ¥)@ ®irghean
. - : _ 3 2 7:14PM
, t ¥ f &) "
B8 O Type here to search - ’\ (@}] €C n u t au) 0 G g '; (O < | 73F A O ® 7z D) NG ol q

Figure 3.8: SHA256 Padding Python Code
It should be noted that in the URL, all the hexadecimal numbers in the padding need to be encoded by

changing \x to %. And because of that a shell script was created to change them as shown in Figure 3.9.

13

Activities [#) Text Editor

Open v | @ padding save | =

length_ext.c padding.py padding

1echo "Enter The Padded Message"
2 read message
3echo $message | tr '\x' '%'

PlainText v Tab width: 8 Ln3,Col28 v NS
e = = # U@ ®roht cnt
i 5 ; N = 7:15PM
7 et iossnk % Q\ o H @ m B m » 0€ V¥ KO @& BE AW EDN oon B

Figure 3.9: Shell Script to change /x to %
Using both codes, the padding for the message was created:

123456:myname=Hasan&uid=1001&Istcmd=1
As shown in Figure 3.10.

14

1 0
hasan@hasan-VirtualBox: ~/Desktop/Labsetup

S ./padding.py

0\ x68) X00\ X80\ X068\ X00\ 00\ X80\ x08| X80\ X601\ x2
0X06%01%28

) - = 0 &) rowe ant
719 AM

o oo 40 H E R BER069HEO08 mraoamano L g

Figure 3.10: Padding Output

3.4. Task 3: The Length Extension Attack

In this task, a valid MAC for a URL will be generated without knowing the MAC key. Assume that the

MAC of a valid request R is known, and the size of the MAC key is also known. The job is to forge a new

request based on R, while still being able to compute the valid MAC.

First a valid MAC for the following request will be generated (where and the MAC key should be obtained

from the LabHome/key.txt file):

http://www.seedlab-hashlen.com/?myname=<name>&uid=<uid>&Istcmd=1&mac=<mac>

First of all, the MAC will be generated for the following message:

123456:myname=Hasan&uid=1001&Istcmd=1

As shown in Orange Figure 3.11.

Then, a padding for the same message was created as shown in yellow in Figure 3.11.

15

Activities) Terminal Sep 3 19:06
hasan@hasan-VirtualBox: ~/Desktop/Labsetup

1sanauid=1001&1stcnd=1" | sha256sum

$./padding.py
Enter Message 123456:mynam n&uid=1001&1stcmd=1
123456 :myname=Hasan&uid=1001&1stcnd=1\x80\x00\ X80\ x00\ x00)\ X080\ X80\ X006\ X006\ X060\ X00\ X80\ X80\ X00\ X0O\ X0\ X080\ X060\ X008\ X0\ X00\ X060\ X066\ X060\ X80\ X01\X28

2 $./padding
Enter The Padded Message
456

X80\ X80\ 08\ X00\ X060\ x01\x28

: $ gcc length_ext.c -o length_ext -lcrypto
length_ext.c: In function ‘main’:
length_ext.c:9:1: “SHA256_Init’ s deprecated: Since OpenssL 3.0 [
9| (&c);
|
In file included fron length_ext.c:4:
Jusr/include/openssl/sha.h:73:27: declared here
73 | OSSL_DEPRECATEDIN_3_0 int (SHA256_CTX *c);
|
length_ext.c:11 ‘SHA256_Update’ is deprecated: Since OpenSSL 3.6 [
| (&c, » 1)
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:74:27 declared here
74 | OSSL_DEPRECATEDIN_3 © int (SHA256_CTX *c,
|
length_ext.c:22:1: “SHA256_Update’ is deprecated: Since OpenSSL 3.6 [
22 | (&c, "a&download=secret.txt", 20);
|
In file included from length_ext.c
Jusr/include/openssl/sha.h:74:27 declared here
74 | OSSL_DEPRECATEDIN_3_0 int (SHA256_CTX *c,
|
length_ext.c:23:1: ‘SHA256_Final’ is deprecated: Since OpenSSL 3.0 [
3] (buffer, &c);
1
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:76:27 declared here
76 | OSSL_DEPRECATEDIN_3 @ int (unsigned char *nd, SHA256_CTX *c);

@ H = & U] @ &) right ari
il 2 Trpehecetosarch s Lo €nB@BRHOEY HEO S mE A GSw e ac S5 R

Figure 3.11: Generating MAC, Padding and Generating New MAC
Then, a new MAC for the new message was generated using the original MAC as shown in Figure 3.12

using the given C code in the manual.

&

[Text Editor Sep3 19:14

Open v | [RN save | = o x
/*length_ext.c*/

1
2
3
4 Lude
s int matn(int argc, const char*argv[])
6{
7 int {;unsigned char buffer[SHA256_DIGEST_LENGTH];
8 SHA256_CTX ¢
9 SHA256_Init(&c
10 for(i=0; i<6d; i++)
11 SHA256_Update(ac, ~*",
of the original message M (
] = htole32()
htole32()
htole32()
htole32()
)
)
)
)

htole32(

htole32(

htole32(

3 htole32(

21 // Append additional message
22 SHA256_Update(&c, » 29)3
23 SHA256_Final(buffer, &c);

3 1< 32; Lee
%02x", buffer[1]);
\n");

abb38 s61cfeas|

}
29 // original message mac 951bc787 b3fic17f 54d16ec6 b99ccfsd ca®70805 fe1a3615 45:

C Tab Width: 8 Ln29, Col 96 v INS

RO =&

B8 O Type heretosearch [\"\ O H € - B8 [~ D G C v ﬁ 0 & BF A DOmZD) NG 97/.;22?2 5

2 [#] right crl

Figure 3.12: Generating New Mac Code
16

Then, the C code was excuted as shown in Green by returning to Figure 3.11.

Finally, a new request was created with the following format:

http://www.seedlab-
hashlen.com/?myname=<name>&uid=<uid>&Istcmd=1<padding>&download=secret.txt&mac=<new-
mac>

Since name, uid, padding and the new MAC were obtained, a new request will be created as follow:
http://www.seedlab-
hashlen.com/?myname=Hasan&uid=1001&Istcmd=1%80%00%00%00%00%00%00%00%00%00%00%0
0%00%00%00%00%00%00%00%600%00%00%00%00%00%01%28&download=secret.txt&mac=9b08a4
79d8adf4e19573e929d2658427b127¢931a93a00a91661387ee3225ea6

The request response was got as shown in Figure 3.13.

)
< c O & www.seedlab-hashlen.com/?myn id=10018lstcm)%00%00%C (00%00 0%0C ‘) o 9 L =
=) R R R R R R R R,
- Hash Length Extension Attack Lab
@ Yes, your MAC is valid
File Content
é{ TOP SECRET.
i DO NOT DISCLOSE.
2
o4
o
2] @0 ¥ ¢ E® @ ®rgn cn
, ’ ¥ f a & c <) - = = ; 7:12PM
B8 O Type heretosearch - ’\ O H € » B8 : é? 0 ¢ Ny ﬁ (SO | E A B AWz D) NG 9/3/2022 q

Figure 3.13: Hash Length Extension Attack Result
As shown in Figure 3.13, a valid MAC for a URL was generated without knowing the MAC key. Knowing

the MAC of a valid request R and the size of the MAC key and a new request based on R was forged while
still being able to compute a valid MAC.

17

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

3.5. Task 4: Attack Mitigation using HMAC

In the tasks so far, it was observed the damage caused when a developer computes a MAC in an insecure
way by concatenating the key and the message. In this task, the mistake made by the developer will be fixed.
The standard way to calculate MACs is to use HMAC. The server program’s verify mac() function should
be modified and Python’s hmac module will be used to calculate the MAC. The function resides in lab.py.

Given a key and message (both of type string), the HMAC can be computed as shown below:

real mac = hmac.new(bytearray(key.encode(’utf-8’)), msg=message.encode(’utf-8’, ’surrogateescape’),
digestmod=hashlib.sha256).hexdigest()
The function was changed in the file lab.py as shown in Figure 3.14.

]

files():
90 return os.1istdir(app.config[»

flle(file):
94 path = app.config[K
not path_access_control(path):

s
ne.strip())

string and reserve the unprintable bytes
_string.decode(B)

unquote(query, errors=)

)

atrs:
atr.split('=')
Python2 v Tab Width: 8 Ln82, Col 140 NS
- = ¥ Q)& @l nont ol

2
W O Typeheretosearch a L o H €~ B =m0 E VY ¥ T3F Partlydoudy A B Q ®1 7 @) @6 et [

Figure 3.14: Changing lab.py Function
After making the changes, all the containers were stopped using docker-compose down command and then

were rebuilt using docker-compose build and all the containers were started again using docker-compose up
-d by following the steps in section 3.1. after that the changes took places.

Then, a MAC was generated for the following message:

myname=Hasan&uid=1001&Istcmd=1

By editing the message in the Hmac.py code shown in Figure 3.15.

18

Activities #) Text Editor

Open g Hmac.py

\ D& &
)
Hmac.py ab.py
. 1#1/binjenv python3
. 2 import hmac
3 tnport hashltb
4 key=
F¥ressage='nynanesHasantuid=1001&1stcmd=1"
- 6mac = hmac.new(bytearray(key.encode(),
7 msg=message. encode()).
8 digestnod=hashlib.sha256).hexdigest()
@ 9 print(mac)
(5
H
Python v Tab Width: & Lns, Col1 INS
e - =¥ 0] @ & rigne
5 ype 3 ¥ i B = O N’ i o = i 423PM
8 O Type heretosearch < 0o €@ = B m » 0 C Y ¥ 72°F Partlydoudy A B Q@ ® 7 @) N6 o0, [

Figure 3.15: Editing Message in Hmac.py Code
The MAC was generated after executing the code as shown in Figure 3.16.

(]
Activities (] Terminal Sepd 1624 L3
=t hasan@hasan-VirtualBox: ~/Desktop/Labsetup

s S ./Hmac.py
lebdsabdao:aéd%z75fc-nfozadm5du4.aoc«1ebazzia:dfusmdafsfagaaaf
5 S

& - = i 0] @ # Ront cn

B O Type heretosearch L o @~ Bm D OCE Y ¥ 73F Patlydoudy A & Q w0 7) o6 o0 (]

Figure 3.16: Generating a MAC for the Message Using HMAC

Then a request was constructed as shown below:
19

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&Istcmd=1&mac=
821b43abda6ca6d90375fc41f02ad05d64a6c40082230cdf118484af9fa9a9af

And the response got is shown in Figure 3.17.

&%

“ (o] O 8 www.seedlab-hashlen.com/’myr b ! d = 4]) g 1 f £ & @ =

[F— y
- Hash Length Extension Attack Lab
@ Yes, your MAC is valid
List Directory
é 1. secret.txt
2. key.txt
2
&
le - = # 0 ®rohe an
i Z = - - . = 437PM
B O Type heretosearch <L o €@~ B = D I EC V¥ Vi 73F Partlydoudy ~ T QO Z W) N6 oo [

Figure 3.17: Server Response for HMAC Request
Then, a MAC for a request for download was generated as shown in Figure 3.18, the code was first edited.

20

Activities [# Text Editor

Open m Hmac.py Save = a x
(S) -

1#!/bin/env python3

2 import hmac
s 3 import hashlib
. 4key="123456"

essage= 1y sank Lilstemd 02 ret. Xt

o e ey o ey .

7 msg=message.encode(B
- 8 digestmod=hashlib.sha256).hexdigest()

9 printlimac

=5 Python Tab width: 8 v Ln9, Col11 INS
Q@b 5 ¥ 0] @ #right

= vpe here to se: 4 i v’ N’ . o G: b s b
B O Type hereto search & o €@ »~ B = » 9 € ¥ [j; 73°F Partlycloudy A & QD Z ®) N6 o0, [

Figure 3.18: Editing HMAC Code for the New Request
Then, the code was executed and the new MAC was obtained as shown in Figure 3.19.

]

Activities (] Terminal Sep4 16:39 0

m hasan@hasan-VirtualBox: ~/Desktop/Labsetup Sl =l @ @ &

: S . /Hmac.py
63eacb7c8a8825a33ec9e14b08382cTc58d5687371c74c38516d21bd88ago1d3
g S

5 - E & U@ & right crt
) = e _ 439PM
B | O Type heretosearch " 4\1\ o H @ = B = D 0 ¢ ¥ ¥ 73 Partlydoudy A B QB Z W) NG g0 [

Figure 3.19: Obtaining the New Request MAC
21

Then a request was constructed as shown below:

http://www.seedlab-

hashlen.com/?myname=Hasan&uid=1001&Istcmd=1&download=secret.txt&mac=63each7c8a8825a33ec9
£14b08382cfc58d5087371¢74c38516d21bd88a801d3

And the response after sending the request to the server was got as shown in Figure 3.20.
¥a

<« (¢] o a seedlab-hashlen.com, t wlc Xt et 4t d %4 9 =

g
- Hash Length Extension Attack Lab
@ Yes, your MAC is valid

List Directory

2. key.txt
@ File Content
TOP SECRET.
‘zf DO NOT DISCLOSE.
QoS EE DGRl
| - o = :40 PM

B8 O Type here to search »* \1\ O Hi € n ' : 5() O G i” ﬂ 73°F Partlycloudy ~ & & I3 Z @) ENG y ()

9/4/2022

Figure 3.20: New Request Response
Now a new request using SHA256 will be sent.

First the MAC will be generated as shown in Figure 3.21.

22

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&download=secret.txt&mac=63eacb7c8a8825a33ec9e14b08382cfc58d5087371c74c38516d21bd88a801d3

Sep4 1649 13

hasan@hasan-VirtualBox: ~/Desktop/Labsetup

H S echo -n "123456:myname=Hasan&uid=1001&1stcmd=1" | sha256sum
951bc787b3f1c17f54d16ec6b99ccfB8dca070805fe1a36154544bb38561cfoaa -
3 S |

9 2 = & 0] & &) right i
] = - ¢ A 449 PM
B O Type here tosearch 2 0o @ » B 0 € V¥ ¢ B 73%F Partly doudy A & I Z @) tne SN [

Figure 3.21: Generating SHA256 MAC
Then, a new request was made as shown below:

http://www.seedlab-
hashlen.com/?myname=Hasan&uid=1001&Istcmd=1&mac=951bc787b3flc17f54d16ec6b99ccf8dca0708

05fela36154544bb38561cfOaa

The request was sent using Firefox and the response is as shown in Figure 3.22.

23

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1&mac=951bc787b3f1c17f54d16ec6b99ccf8dca070805fe1a36154544bb38561cf0aa

Activities ® Firefox Web Browser

+
< c O 8 www.seedlab-hashlen.com/?myn. i)1 &lstem T b3F1C17f5) ’ 05f ’ o @ =

|
- Hash Length Extension Attack Lab
@ Sorry, your MAC is not valid
,—Q':“
2
o
le] ©0a ¥ ¢ E & UG # riht crt
Bl O Type here tosearch s \'\ O H € » B8 [~ ;? d € ¥ ﬁ 73°F Partly cloudy ~ & & D) Z @) ENG ::?2;;42]

Figure 3.22: SHA256 Response Due to HMAC
As shown in Figure 3.22, the server response tells that the MAC is not valid since HMAC is used.

Now the Hash Length Extension attack will be tested. The original MAC and padding were obtained as
shown in Figure 3.23.

24

Activities) Terminal Sep4 16:55 03

s m hasan@hasan-VirtualBox: ~/Desktop/Labsetup

: $ gcc length_ext.c -o length_ext -lcrypto
length_ext.c: In function ‘main’:
length_ext.c:9:1: ‘SHA256_Init’ is deprecated: Since OpensSL 3.6 [

9| (&c);

In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:73:27: declared here
73 | OSSL_DEPRECATEDIN_3_6 int (SHA256_CTX *c);

(&c, "
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_0 int (SHA256_CTX *c,

|
length_ext.c:22:1: ‘SHA256_Update’ is deprecated: Since OpensSL 3.6 [
22 | (&c, "&download=secret.txt", 20);

In file included from length_ext.c:4:
/Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_0 int (SHA256_CTX *c,

|
@ length_ext.c:11:1: ‘SHA256_Update’ is deprecated: Since OpenssSL 3.6 [
1 | LB B

|
length_ext.c:23:1: SHA256_Final’ is deprecated: Since OpensSL 3.0 [
23 | (buffer, &c);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:76:27: declared here
76 | OSSL_DEPRECATEDIN_3_0 int (unsigned char *md, SHA256_CTX *c);

: / 9-py
Enter Message 123456:myname=Hasan&uid=1001&1stcnd=1
123456 :mynane=Hasanauid=1001&stcnd=1\x80)\x06\x80\x00\x60\ X080\ Xx00\ X80\ X060\ X80\ X00\ X80\ X08\ X80\ X08\ X060\ 60\ X00\ X00\ X00\ X6\ X080\ X600\ X08\X00\X01\X28
: s ./padding
B Enter The Padded Message
: 90\ X688 X060\ XBB) X8O\ X8BY X0\ XO0) XOB) XO0) X88)\ X0\ X868\ X8O\ X0 X0\ X80\ 90\ X068\ X80\ X068\ X800\ x01\x28

s

B8 O Type heretosearch » ’\“'\ (@) haj] €C n u t ;? 0 iiéi

Figure 3.23: Obtaining MAC and Padding
Now the request was constructed as shown below:

http://www.seedlab-

2] ©0a ¥ =¥ 0@ ®rgn crt
3 _ 455PM
BFE AGODED) N 0 O

hashlen.com/?myname=Hasan&uid=1001&Istcmd=1%80%00%00%00%00%00%00%00%00%00%00%0

0%00%00%00%00%00%00%00%00%00%00%00%00%00%01%28&download=secret.txt&mac=9b08a4

79d8adf4e19573e929d2658427b127¢931a93a00a91661387ee3225ea6
The request was sent to the server using Firefox as shown in Figure 3.24.

25

http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6
http://www.seedlab-hashlen.com/?myname=Hasan&uid=1001&lstcmd=1%80%01%28&download=secret.txt&mac=9b08a479d8adf4e19573e929d2658427b127c931a93a00a91661387ee3225ea6

+
< c O 8 www.seedlab-hashlen.com/?myn. i)1 &lstem %00%00%C 00%00%00%00! J0%0C ¢) dor €7 © =

Hash Length Extension Attack Lab

Sorry, your MAC is not valid

OCePPOR S

200

le] ©0a ¥ ¢ E & 0@ # right crt

Bl O Type here tosearch - ‘\'\ O Hi €C n u : ;? 0 G "' ﬁ E AT ODED) NG ;/f/sz;;dz =]

Figure 3.24: Hash Length Extension Attack Failed
As shown in Figure 3.24 that Hash Length Extension attack was failed due to using HMAC since it’s secure

against those attack and checks the integrity.

26

4. Conclusion

In conclusion, we understand the MAC and how it give the integrity for messages, and we understand how
to generate the MAC’s using one way hash such as SHA256, and we understand how to launch Hash
Extension attacks for SHA256 using padding and original MAC and a new MAC to generate a new request
without knowing the key, and finally HMAC was understood and how it’s stronger and more secure for

those kind of attacks.

27

5. References

[1] https://sectigostore.com/blog/sha-256-algorithm-explained-by-a-cyber-security-consultant/
Accessed 4 September 2022

[2] Hash Length Extension Attack Lab PDF by SEED Labs

Accessed 4 September 2022

[3] https://en.wikipedia.org/wiki/Length_extension_attack

Accessed 4 September 2022

[4] https://en.wikipedia.org/wikiiHMAC

Accessed 4 September 2022

28

https://sectigostore.com/blog/sha-256-algorithm-explained-by-a-cyber-security-consultant/
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.wikipedia.org/wiki/HMAC

