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Preface

In this solutions manual, we provide solutions to all the exercises in the book
Introduction to Modern Cryptography, second edition.

A significant number of the exercises ask for proofs. While we give full proofs
in many cases, for some exercises we provide only the high-level ideas behind
a solution and omit the details. This is especially so when an exercise can be
solved using a proof that is very similar to one that already appears in the
book, in which case we comment only on the necessary modifications. In all
cases, however, we would expect students to provide full and detailed proofs;
we find that students learn best by going through this process.

This solutions manual is intended for instructors teaching a course using our
book. For obvious reasons, we do not want these solutions to be widely
disseminated; please keep this in mind when using them. (For example, do
not post them online, even if password-protected. In addition, preferably
provide hardcopy print-outs of the relevant sections to TAs.)

If you find errors or typos in the solutions, or if you find an alternative so-
lution that you find superior (e.g., simpler or more instructive), please let
us know by emailing us at jkatz@cs.umd.edu and lindell@biu.ac.il with
“Introduction to Modern Cryptography” in the subject line.
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Chapter 1

Introduction – Solutions

1.1 Decrypt the ciphertext provided at the end of the section on mono-
alphabetic substitution.

Solution: The ciphertext decrypts to the following plaintext (we have
added punctuation and capitalization):

Cryptographic systems are extremely difficult to build. Never-
theless, for some reason many non-experts insist on designing
new encryption schemes that seem to them to be more se-
cure than any other scheme on earth. The unfortunate truth,
however, is that such schemes are usually trivial to break.

We would expect students to describe the methodology they used to
derive the solution.

1.2 Provide a formal definition of the Gen, Enc, and Dec algorithms for the
mono-alphabetic substitution cipher.

Solution: For this exercise, we identify numbers and letters in the
natural way. That is, a = 0, b = 1 and so on. We start with the
mono-alphabetic substitution cipher:

• Gen: Choose a random permutation π of {0, . . . , 25} and let the
key be this permutation. (A random permutation on {0, . . . , 25}
can be chosen as follows: for i = 0 to 25, set π(i) equal to a random
number from {0, . . . , 25} that has not been chosen so far.)

• Enc: Given a plaintext m = m1, . . . ,mℓ (where mi ∈ {0, . . . , 25})
and a key π, set ci := π(mi) and output c1, . . . , cn.

• Dec: Given a ciphertext c = c1, . . . , cn and key π, set mi := π−1(ci)
where π−1 is the inverse of π and output m1, . . . ,mn.

1.3 Provide a formal definition of the Gen, Enc, and Dec algorithms for
the Vigenère cipher. (Note: there are several plausible choices for Gen;
choose one.)

Solution: As in the previous exercise, we identify numbers and letters
in the natural way. That is, a = 0, b = 1 and so on.

• Gen: Choose a random period: this can be chosen uniformly in a
fixed set of some size, or it can be chosen according to some valid
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probability distribution over the integers (e.g., assign the length
5 + i with probability 2−i). Denote the chosen period by t. For
i = 0, . . . , t − 1 choose uniform ki in {0, . . . , 25}. Output the key
k = k0, . . . , kt−1.

• Enc: Given a plaintext p = p0, . . . , pn and a key k = k0, . . . , kt−1,
set ci := [pi + k[i mod t] mod 26]. Output c0, . . . , cn.

• Dec: Given a ciphertext c = c0, . . . , cn and a key k = k0, . . . , kt−1,
set pi := [ci − k[i mod t] mod 26]. Output p0, . . . , pn.

1.4 Implement the attacks described in this chapter for the shift cipher and
the Vigenére cipher.

No solution given.

1.5 Show that the shift, substitution, and Vigenère ciphers are all trivial to
break using a chosen-plaintext attack. How much known plaintext is
needed to completely recover the key for each of the ciphers?

Solution: For the shift cipher: ask for the encryption of any plaintext
character p and let c be the ciphertext character returned; the key is
simply k := [c − p mod 26]. The encryption of only a single plaintext
character thus suffices to recover the key. For the substitution cipher,
given a plaintext character pi and corresponding ciphertext character ci,
we can conclude that π(pi) = ci (where π is the permutation determining
the key as in the solution of Exercise 1.2). In order to fully determine the
key, it therefore suffices to ask for an encryption of a plaintext containing
25 distinct letters of the alphabet. (Since π is a permutation, knowing
the value of π on 25 inputs fully determines the value of π on the last
remaining input.) For the Vigenère cipher, if the period t is known then
the encryption of a plaintext of length t (consecutive) suffices to recover
the entire key. If only an upper bound tmax on t is known, then tmust be
learned as well; this can be done using a single plaintext of length O(t).
(Note: it is actually a bit challenging to determine the minimal length
of a plaintext that suffices to determine t. We only expect students to
understand that a plaintext of length O(tmax) suffices.)

1.6 Assume an attacker knows that a user’s password is either abcd or bedg.
Say the user encrypts his password using the shift cipher, and the at-
tacker sees the resulting ciphertext. Show how the attacker can deter-
mine the user’s password, or explain why this is not possible.

Solution: In the shift cipher, the relative shift between characters is
preserved. Thus an encryption of abcd will always be a ciphertext con-
taining 4 consecutive characters (e.g., lmno), whereas bedg will not.

1.7 Repeat the previous exercise for the Vigenère cipher using period 2,
using period 3, and using period 4.
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Solution: For the sake of clarity, we will mostly omit the fact that
operations are modulo 26 in this solution.

When the period is 2, it is impossible to determine which password was
encrypted. This is due to the fact that the shifts used in the first and
third (resp., second and fourth) positions are the same, and the differ-
ence between the first and third (resp., second and fourth) characters
in the first password is the same as the difference between the first and
third (resp., second and fourth) characters in the second password.

When the period is 3, it is possible to tell which password was encrypted
because the shifts used in the first and fourth positions are the same,
but the difference between the first and fourth characters of the first
plaintext is not the same as the difference between the first and fourth
characters of the second plaintext.

When the period is 4, it is impossible to tell which password was en-
crypted, because using a 4-character key to encrypt a 4-character plain-
text is perfectly secret (by analogy to the one-time pad).

1.8 The shift, substitution, and Vigenère ciphers can also be defined over
the 128-character ASCII alphabet (rather than the 26-character English
alphabet).

(a) Provide a formal definition of each of these schemes in this case.

(b) Discuss how the attacks we have shown in this chapter can be
modified to break each of these modified schemes.

Solution: We describe the solution for the Vigenère cipher, which is
the most complex case.

(a) Key generation chooses a period t (say, uniform in {1, . . . , tmax} for
some specified tmax) and then, for i = 0, . . . , t− 1, chooses uniform
ki ∈ {1, . . . , 127}. The encryption of a plaintext m = m1, . . . ,mℓ

is c = c1, . . . , cℓ, where ci = [mi + k[i mod t] mod 128]. Decryption
is done in the natural way.

(b) The exact same attacks described in the text work, though one
must be careful now to let pi be the frequency of the ith ASCII
character (so, e.g., the frequency of ‘A’ is different from the fre-
quency of ‘a,’ and frequencies of the space character and punctua-
tion is also taken into account).





Chapter 2

Perfectly Secret Encryption –
Solutions

2.1 Prove that, by redefining the key space, we may assume that the key-
generation algorithm Gen chooses a key uniformly at random from the
key space, without changing Pr[C = c |M = m] for any m, c.

Solution: If Gen is a randomized algorithm, we may view it as a deter-
ministic algorithm that takes as input a random tape ω of some length;
the distribution on the output of Gen is, by definition, the distribution
obtained by choosing uniform ω and then running Gen(ω). So, rather
than letting the key be the output of Gen, we can simply let the key be
ω itself (and redefine the key space accordingly).

Formally, given a scheme (Gen,Enc,Dec) in which Gen is randomized,
construct a new scheme (Enc′,Dec′) where the key is a uniform ω. Then
define Enc′ω(m) to compute k := Gen(ω) followed by Enck(m), and define
decryption analogously.

2.2 Prove that, by redefining the key space, we may assume that Enc is
deterministic without changing Pr[C = c |M = m] for any m, c.

Solution: As in the previous exercise, if Enc is a randomized algorithm
then we may view it as being a deterministic algorithm that also takes
a random tape ω as additional input. The distribution on the output
of Enck(m) is then, by definition, the distribution obtained by choosing
uniform ω and then computing Enck(m;ω). We then define key genera-
tion to include ω as well as k (and redefine the key space accordingly).

Formally, given a scheme (Gen,Enc,Dec) in which Enc is randomized,
construct a new scheme (Gen′,Enc′,Dec′ = Dec) as follows. Gen′ com-
putes k ← Gen and also chooses uniform ω; the key is (k, ω). Then
define Enc′(k,ω)(m) to be Enck(m;ω).

2.3 Prove or refute: An encryption scheme with message space M is per-
fectly secret if and only if for every probability distribution overM and
every c0, c1 ∈ C we have Pr[C = c0] = Pr[C = c1].

Solution: This is not true. Consider modifying the one-time pad so
encryption appends a bit that is 0 with probability 1/4 and 1 with prob-
ability 3/4. This scheme will still be perfectly secret, but ciphertexts
ending in 1 are more likely than ciphertexts ending in 0.
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2.4 Prove the second direction of Lemma 2.4.

Solution: Say (Gen,Enc,Dec) is perfectly secret. Fix two messages
m,m′ and a ciphertext c that occurs with nozero probability, and con-
sider the uniform distribution over {m,m′}. Perfect secrecy implies that
Pr[M = m | C = c] = 1/2 = Pr[M = m′ | C = c]. But

1

2
= Pr[M = m | C = c] =

Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
1
2 Pr[C = c |M = m]

Pr[C = c]
,

and so Pr[C = c | M = m] = Pr[EncK(m) = c] = Pr[C = c].
Since an analogous calculation holds for m′ as well, we conclude that
Pr[EncK(m) = c] = Pr[EncK(m′) = c].

2.5 Prove Lemma 2.6.

Solution: We begin by proving that any encryption scheme that is
perfectly secret is perfectly indistinguishable. Every adversary A par-
ticipating in PrivKeav

A,Π defines a fixed pair of plaintext messages m0,m1

that it outputs in the first step of the experiment. (Note that since A
is a deterministic algorithm, it always outputs the same pair of mes-
sages.) Fix A and fix m0,m1 output by A. By Lemma 2.4, for every
m0,m1 ∈M′ and every c ∈ C,

Pr[EncK(m0) = c] = Pr[EncK(m1) = c]. (2.1)

In particular, the above holds for m0,m1 output by A and for any c.
Let C0 (resp., C1) denote the set of ciphertexts for which A outputs 0
(resp., 1) at the conclusion of experiment PrivKeav

A,Π; since A is determin-
istic these sets are well-defined. Note that since A must output either 0
or 1, it follows that C = C0 ∪ C1. We have:

Pr[PrivKeav
A,Π = 1] =

1

2
· Pr[A outputs 0 | b = 0] +

1

2
· Pr[A outputs 1 | b = 1]

=
1

2
·
∑
c∈C0

Pr[c = EncK(m0)] +
1

2
·
∑
c∈C1

Pr[c = EncK(m1)]

=
1

2
·
∑
c∈C0

Pr[c = EncK(m0)] +
1

2
·
∑
c∈C1

Pr[c = EncK(m0)]

=
1

2
·
∑
c∈C

Pr[c = EncK(m0)] =
1

2
· (1) = 1

2
.

where the second last equality is due to Equation (2.1).

We now proceed to the other direction, that any perfectly indistinguish-
able encryption scheme is also perfectly secret. We prove the contrapos-
itive. Assume encryption scheme Π is not perfectly secret with respect
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to Definition 2.1. Then by Lemma 2.4, there must exist two messages
m0,m1 ∈M and a ciphertext c̃ ∈ C for which

Pr[EncK(m0) = c̃] ̸= Pr[EncK(m1) = c̃]. (2.2)

Let A be an adversary who outputs m0,m1 in the first step of PrivKeav
A,Π.

Then if A receives any ciphertext c′ ̸= c̃ it outputs a random bit b′; if it
receives the ciphertext c̃, it outputs b′ = 0.

Since each message is chosen with probability 1/2 in the experiment, we
have

Pr[PrivKeav
A,Π = 1]

=
1

2
· Pr[PrivKeav

A,Π = 1 |M = m0] +
1

2
· Pr[PrivKeav

A,Π = 1 |M = m1].

Next,

Pr[PrivKeav
A,Π = 1 |M = m0]

= Pr[PrivKeav
A,Π = 1 ∧ c̃ = EncK(m0)]

+ Pr[PrivKeav
A,Π = 1 ∧ c̃ ̸= EncK(m0)]

= Pr[c̃ = EncK(m0)] + Pr[PrivKeav
A,Π = 1 ∧ c̃ ̸= EncK(m0)]

= Pr[c̃ = EncK(m0)] +
1

2
· Pr[c̃ ̸= EncK(m0)]

where the second-to-last equality is because A always outputs 0 when
receiving c̃ (and when M = m0 this means that PrivKeav

A,Π = 1), and the
last equality is because A outputs a random bit when given a ciphertext
c′ ̸= c̃. A similar analysis for the case that M = m1 (the only difference
is that now Pr[PrivKeav

A,Π = 1 ∧ c̃ ̸= EncK(m1)] = 0) gives

Pr[PrivKeav
A,Π = 1 |M = m1] =

1

2
· Pr[c̃ ̸= EncK(m1)].

Putting this all together we have:

Pr[PrivKeav
A,Π = 1] =

1

2
·
(
Pr[c̃ = EncK(m0)] +

1

2
· Pr[c̃ ̸= EncK(m0)]

)
+

1

2
· 1
2
· Pr[c̃ ̸= EncK(m1)]

=
1

2
·
(
Pr[c̃ = EncK(m0)] +

1

2
· (1− Pr[c̃ = EncK(m0)])

)
+

1

2
· 1
2
· Pr[c̃ ̸= EncK(m1)]

=
1

4
+

1

4
· Pr[c̃ = EncK(m0)] +

1

4
· Pr[c̃ ̸= EncK(m1)]

̸= 1

4
+

1

4
· Pr[c̃ = EncK(m1)] +

1

4
· Pr[c̃ ̸= EncK(m1)]

=
1

4
+

1

4
=

1

2
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where the inequality is by Equation (2.2). Since Pr[PrivKeav
A,Π = 1] ̸= 1/2

we have that Π is not perfectly indistinguishable.

2.6 For each of the following encryption schemes, state whether the scheme
is perfectly secret. Justify your answer in each case.

(a) The message space is M = {0, . . . , 4}. Algorithm Gen chooses
a uniform key from the key space {0, . . . , 5}. Enck(m) returns
[k +m mod 5], and Deck(c) returns [c− k mod 5].

(b) The message space is M = {m ∈ {0, 1}ℓ | the last bit of m is 0}.
Gen chooses a uniform key from {0, 1}ℓ−1. Enck(m) returns cipher-
text m⊕ (k∥0), and Deck(c) returns c⊕ (k∥0).

Solution:

(a) The scheme is not perfectly secret. To see this, we can use the
equivalent definition of perfect secrecy given by Equation (2.1). If
the message is 0, then the ciphertext is 0 if and only if k ∈ {0, 5}.
So Pr[EncK(0) = 0] = 1/3. On the other hand, if the message is 1,
then the ciphertext is 0 if and only if k = 4. So

Pr[EncK(1) = 0] = 1/6 ̸= Pr[EncK(0) = 0].

(b) One can prove that this is perfectly secret by analogy with the one-
time pad. (Essentially the final bit of the message is being ignored
here, since it is always 0.)

2.7 When using the one-time pad with the key k = 0ℓ, we have Enck(m) =
k ⊕m = m and the message is sent in the clear! It has therefore been
suggested to modify the one-time pad by only encrypting with k ̸= 0ℓ

(i.e., to have Gen choose k uniformly from the set of nonzero keys of
length ℓ). Is this modified scheme still perfectly secret? Explain.

Solution: The modified scheme is not perfectly secret. To see this
formally, consider the uniform distribution over M = {0, 1}ℓ. For any
fixed message α ∈ {0, 1}ℓ, we have

Pr[M = α | C = α] = 0 ̸= Pr[M = α].

This contradicts perfect secrecy.

We conclude that in order to obtain perfect secrecy, it must be possible
to encrypt using the key 0ℓ. This may seem counter-intuitive, since this
key does not change the plaintext. However, note that an eavesdropper
has no way of knowing if the key is 0ℓ, so the fact that the ciphertext is
the same as the plaintext in this case is really of no help to the adversary.
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2.8 Let Π denote the Vigenère cipher where the message space consists of all
3-character strings (over the English alphabet), and the key is generated
by first choosing the period t uniformly from {1, 2, 3} and then letting
the key be a uniform string of length t.

(a) Define A as follows: A outputs m0 = aab and m1 = abb. When
given a ciphertext c, it outputs 0 if the first character of c is the
same as the second character of c, and outputs 1 otherwise. Com-
pute Pr[PrivKeav

A,Π = 1].

(b) Construct and analyze an adversary A′ for which Pr[PrivKeav
A′,Π = 1]

is greater than your answer from part (a).

Solution:

(a) Say aab is encrypted to give ciphertext c. What is the probability
that the first and second characters of c are equal? When t = 1
(which occurs 1/3 of the time) this always happens. But when
t ∈ {2, 3} this happens only if the first and second characters of
the key are equal, which occurs with probability 1/26. So

Pr[A outputs 0 | m0 is encrypted] =
1

3
+

2

3
· 1
26
≈ 0.359.

If instead abb is encrypted, then the first and second characters
of c can never be equal when t = 1, but are equal with probability
1/26 when t ∈ {2, 3}. Thus,

Pr[A outputs 0 | m1 is encrypted] =
2

3
· 1
26
≈ 0.026.

We therefore have

Pr[PrivKeav
A,Π = 1]

=
1

2
· Pr[A outputs 0 | m0 is encrypted]

+
1

2
· Pr[A outputs 1 | m1 is encrypted]

≈ 1

2
· 0.359 + 1

2
· 0.974 ≈ 0.667.

(b) There are many possible solutions; we present one. Consider the
adversary A′ who outputs m0 = aaa and m1 = abc and outputs
‘0’ iff the first and second characters in the ciphertext c are the
same, or if the first and last characters in the ciphertext are the
same. Call this event E.

Say aaa is encrypted. If t ∈ {1, 2} then E always happens. When
t = 3 all characters in the ciphertext are uniform and independent;
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rather than calculate the probability of E in this case, we just let p
denote that probability.

Say abc is encrypted. If t = 1 then E never happens. When t = 2
the first and last characters of c are never equal, but the first and
second characters are equal with probability 1/26. When t = 3
then all characters in the ciphertext are random and so E occurs
with probability p.

Putting everything together gives:

Pr[PrivKeav
A′,Π = 1]

=
1

2
· Pr[A′ outputs 0 | m0 is encrypted]

+
1

2
· Pr[A′ outputs 1 | m1 is encrypted]

=
1

2
·
(
2

3
+

1

3
· p
)
+

1

2
·
(
1−

(
1

3
· 1
26

+
1

3
· p
))

≈ 0.827.

2.9 In this exercise, we look at different conditions under which the shift,
mono-alphabetic substitution, and Vigenère ciphers are perfectly secret:

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) What is the largest message spaceM for which the mono-alphabetic
substitution cipher provides perfect secrecy?

(c) Prove that the Vigenère cipher using (fixed) period t is perfectly
secret when used to encrypt messages of length t.

Reconcile this with the attacks shown in the previous chapter.

Solution:

(a) This can be proved directly (as in the case of the one-time pad) or
using Shannon’s theorem.

(b) LetM be the set of all permutations of the alphabet (i.e., all strings
of length 26 with no repeated letter). One can prove directly that
the mono-alphabetic substitution cipher is perfectly secret for this
message space; we prove it using Shannon’s theorem. Briefly, we
have |M| = |K| = |C| = 26!, where the size of C follows from the
fact that the composition of two permutations is a permutation
(and furthermore all permutations can be obtained in this way).
This latter fact also proves the second requirement of Shannon’s
theorem: for every two permutations (namely, plaintext and cipher-
text) there exists only one permutation π that maps the plaintext
to the ciphertext. This is the largest possible plaintext space, be-
cause by Theorem 2.7 we must have |M| ≤ |K| for any perfectly
secret encryption scheme.
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(c) This can be proved directly (as in the case of the one-time pad) or
using Shannon’s theorem.

The attacks in Chapter 1 rely on longer plaintexts being encrypted.

2.10 Prove that a scheme satisfying Definition 2.5 must have |K| ≥ |M|
without using Lemma 2.6. Specifically, let Π be an arbitrary encryption
scheme with |K| < |M|. Show an A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .

Solution: Consider the following A: output uniform m0,m1 ∈ M.
Upon receiving ciphertext c, check (by exhaustive search) whether there
exists a key k such that Deck(c) = m0. If so, output 0; else output 1.

When m0 is encrypted then A always outputs 0. On the other hand,
when m1 is encrypted then there are at most |K| possible messages that
c can decrypt to; since m0 is uniform and independent of m1 the proba-
bility that m0 is equal to one of those messages, and so the probability
that A outputs 0 in this case, is at most |K|/|M| < 1. We conclude that

Pr
[
PrivKeav

A,Π = 1
]
=

1

2
· Pr[A(EncK(m0)) = 0] +

1

2
· Pr[A(EncK(m1)) = 1]

=
1

2
+

1

2
· (1− Pr[A(EncK(m1)) = 0]) >

1

2
.

2.11 Assume we require only that an encryption scheme (Gen,Enc,Dec) with
message space M satisfy the following: For all m ∈ M, we have
Pr[DecK(EncK(m)) = m] ≥ 2−t. (This probability is taken over choice
of the key as well as any randomness used during encryption.) Show
that perfect secrecy can be achieved with |K| < |M| when t ≥ 1. Prove
a lower bound on the size of K in terms of t.

Solution: Let K = {0, 1}ℓ andM = {0, 1}ℓ+t. The key-generation al-
gorithm chooses a uniform string from K. To encrypt a message m ∈M
using key k, let m′ denote the first ℓ bits of m and output c := m′ ⊕ k
(both m′ and k have length ℓ). To decrypt a ciphertext c using key k,
choose a random string r ← {0, 1}t and output m := (c ⊕ k)∥r. Note
that Pr[Deck(Enck(m)) = m] = 2−t because decryption is correct if and
only if the random string r chosen during decryption happens to equal
the last t bits of m (and this occurs with probability 2−t). Perfect se-
crecy of this scheme follows from the proof of the one-time pad (indeed,
this is exactly a one-time pad on the first ℓ bits of the message).

We now prove the following lower bound:

THEOREM Let (Gen,Enc,Dec) be a perfectly secret encryption scheme
over message space M with Pr[Deck(Enck(m)) = m] ≥ 2−t. Then
|K| ≥ |M| · 2−t.
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PROOF Let Pr∗ denote the maximum probability with which an
unbounded algorithm can cause the stated event to occur. Consider an
experiment in which a messagem is chosen uniformly fromM and we are
interested in the maximum probability of correctly guessing m. Clearly,
Pr∗[guess m] = |M|−1. Now consider an extension of this experiment
where a key k is generated using Gen and a ciphertext c ← Enck(m) is
computed. Perfect secrecy implies that

|M|−1 = Pr∗[guess m] = Pr∗[guess m given c].

Continuing, we have

Pr∗[guess m given c] ≥ Pr∗[guess m and k given c]

= Pr∗[guess k given c] · Pr∗[guess m given k and c]

≥ |K|−1 · Pr∗[guess m given k and c]

≥ |K|−1 · 2−t,

by the correctness guarantee, and using the fact that m and k are inde-
pendent. We conclude that |K| ≥ |M| · 2−t.

2.12 Let ε ≥ 0 be a constant. Say an encryption scheme is ε-perfectly secret
if for every adversary A it holds that

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε .

(Compare to Definition 2.5.) Show that ε-perfect secrecy can be achieved
with |K| < |M| when ε > 0. Prove a lower bound on the size of K in
terms of ε.

Solution: (See http://eprint.iacr.org/2012/053 for further de-
tails.) We first show that ε-perfect secrecy can be achieved in this case.
Let the message space be M = {0, 1}ℓ for some ℓ, and let K ⊂ {0, 1}ℓ
be an arbitrary set of size (1 − ε) · 2ℓ. One can check that for any A
we have Pr

[
PrivKeav

A,Π = 1
]
≤ 1

2 + ε. One can show that this scheme is
optimal, in the sense that any scheme that is ε-perfectly secret must
have |K| ≥ (1− ε) · |M|.

2.13 In this problem we consider definitions of perfect secrecy for the en-
cryption of two messages (using the same key). Here we consider dis-
tributions over pairs of messages from the message space M; we let
M1,M2 be random variables denoting the first and second message, re-
spectively. (We stress that these random variables are not assumed to
be independent.) We generate a (single) key k, sample a pair of mes-
sages (m1,m2) according to the given distribution, and then compute
ciphertexts c1 ← Enck(m1) and c2 ← Enck(m2); this induces a distri-
bution over pairs of ciphertexts and we let C1, C2 be the corresponding
random variables.
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(a) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
messages if for all distributions over M×M, all m1,m2 ∈ M,
and all ciphertexts c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr [M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Prove that no encryption scheme can satisfy this definition.

(b) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
distinct messages if for all distributions over M×M where the
first and second messages are guaranteed to be different (i.e., dis-
tributions over pairs of distinct messages), all m1,m2 ∈ M, and
all c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Show an encryption scheme that provably satisfies this definition.

Solution:

(a) The definition requires the equation to hold for all pairs of plain-
texts m,m′ and ciphertexts c, c′, even when c = c′ but m ̸= m′. We
show that this is impossible. Take the uniform distribution over
M and any c such that Pr[C = c∧C ′ = c] > 0. Let m,m′ ∈M be
distinct. For any scheme with no decryption error, and any key k,
we must have

Pr[C = c ∧ C ′ = c |M = m ∧M ′ = m′ ∧K = k] = 0.

(If not, then decryption of the ciphertext c using the key k gives
an error some of the time.) The above implies

Pr[C = c ∧ C ′ = c |M = m ∧M ′ = m′] = 0.

So Pr[M = m ∧M ′ = m′ | C = c ∧ C ′ = c] = 0 but on the other
hand Pr[M = m ∧M ′ = m′] > 0. This holds for any encryption
scheme, and so no scheme can satisfy the given definition.

(b) Let K be the set of all permutations on M, and let Gen choose
a random permutation from K. (Note that Gen is not necessarily
efficient; nevertheless, this is allowed in this exercise.) Encryption
is carried out by applying the permutation specified by the key to
the plaintext, and decryption is carried out by applying the inverse
of the permutation to the ciphertext. This scheme satisfies the
definition; details omitted.

Note: An efficient scheme meeting this definition can be con-
structed using pairwise-independent permutations (a topic not cov-
ered in the book).





Chapter 3

Private-Key Encryption – Solutions

3.1 Prove Proposition 3.6.

Solution: Let negl1 and negl2 be negligible functions. We prove that:

(a) The function negl3 defined by negl3(n) = negl1(n) + negl2(n) is
negligible.

(b) For any (positive) polynomial p, the function negl4 defined by
negl4(n) = p(n) · negl1(n) is negligible.

We begin with item (1). We show that for every polynomial q(·) there ex-
ists an integer N such that for every n > N it holds that negl3(n) <

1
q(n) .

Fix q(·). Since negl1 and negl2 are negligible, we know that there exist
integers N1 and N2 respectively such that for every n > N1, negl1(n) <

1
2q(n) and for every n > N2, negl2(n) <

1
2q(n) (note that 2q(n) is also a

polynomial so the above holds). Take N = max{N1, N2}. It follows that
for every n > N , negl3(n) = negl1(n) + negl2(n) <

1
2q(n) +

1
2q(n) = 1

q(n) .

We conclude that for every polynomial q(·) there exists a integer N such
that for every n > N , negl3(n) <

1
q(n) .

We now prove item (2); the proof is very similar so we are brief. Fix
q(·); let N be an integer such that for all n > N it holds that negl1(n) <

1
p(n)·q(n) . This implies that for every n > N it holds that negl4(n) =

p(n) · negl1(n) <
p(n)

p(n)·q(n) =
1

q(n) , as required.

3.2 Prove that Definition 3.8 cannot be satisfied if Π can encrypt arbitrary-
length messages and the adversary is not restricted to output equal-
length messages in experiment PrivKeav

A,Π.

Solution: The encryption algorithm Enc runs in polynomial time. Let
p(·) be the polynomial (in the security parameter n) that bounds the
running time of Enc when encrypting a single bit. (Thus, Enc runs for
at most p(n) steps to encrypt a single bit when the security parameter
is 1n.) In particular, the length of the ciphertext generated by Enc when
encrypting a single bit is at most p(n) because an algorithm cannot
output a string that is longer than its running time. Next, note that the
ciphertext generated by encrypting a random string of length p(n) + n
has length greater than p(n) with all but negligible probability. (Here
we assume, as usual, that decryption is always correct.)

17
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Given the above, we can take A to be an adversary that, on input 1n,
outputs a pair of plaintexts m0,m1 in experiment PrivKeav

A,Π(n) where
m0 is a single bit and m1 is a random string of length p(n) + n. If
b = 0 then |c| ≤ p(n), while if b = 1 then |c| > p(n) with all but
negligible probability, where c is the challenge ciphertext. Thus, A
succeeds with all but negligible probability by outputting b′ = 0 if and
only if |c| ≤ p(n). The above holds for any encryption scheme and thus
such a definition can never be satisfied.

3.3 Say Π = (Gen,Enc,Dec) is such that for k ∈ {0, 1}n, algorithm Enck is
only defined for messages of length at most ℓ(n) (for some polynomial ℓ).
Construct a scheme satisfying Definition 3.8 even when the adversary is
not restricted to output equal-length messages in experiment PrivKeav

A,Π.

Solution: To be clear, we are considering a modification of experiment
PrivKeav

A,Π where the adversary A is not required to output m0 and m1

of the same length, but instead it is only required that m0 and m1 each
have length at most ℓ(n).

Let Π = (Gen,Enc,Dec) be a scheme that is secure with respect to
the original Definition 3.8 (for messages of equal length). Construct a
scheme Π′ = (Gen′,Enc′,Dec′) as follows:

(a) Gen′ is identical to Gen.

(b) Upon input a plaintext message m of length at most ℓ = ℓ(n)
(where n is the length of the key), Enc′ first sets m′ := 0ℓ−|m|1∥m
and then encrypts m′ using Enc. Note that m′ is always exactly
ℓ(n) + 1 bits long.

(c) Dec′ applies Dec to the ciphertext, and parses the result as 0t1∥m
for t ≥ 0. It outputs m.

It is clear that if Π satisfies Definition 3.8 then Π′ satisfies the modified
definition. A complete answer to this exercise requires a proof showing
that the existence of an adversary breaking Π′ with respect to the mod-
ified definition implies the existence of an adversary breaking Π with
respect to Definition 3.8. We describe the reduction informally. Given
an adversary A′ who breaks Π′, we construct an adversary A who takes
the pair of plaintexts m0,m1 output by A′ and pads them in the same
way as Enc′ would. Then, it outputs the padded messages to be en-
crypted. Observe that A outputs equal-length messages, as required.
Furthermore, if A′ can correctly guess b with probability non-negligibly
greater than 1/2, then A guesses correctly with the same probability.

3.4 Prove the equivalence of Definition 3.8 and Definition 3.9.
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Solution: Let Π be an encryption scheme. We have:

Pr[PrivKeav
A,Π(n) = 1] = Pr

b←{0,1}
[output(PrivKeav

A,Π(n, b)) = b]

=
1

2
· Pr[output(PrivKeav

A,Π(n, 0)) = 0]

+
1

2
· Pr[output(PrivKeav

A,Π(n, 1)) = 1]

=
1

2
·
(
1− Pr[output(PrivKeav

A,Π(n, 0)) = 1]
)

+
1

2
· Pr[output(PrivKeav

A,Π(n, 1)) = 1]

=
1

2
+

1

2
·
(
Pr[output(PrivKeav

A,Π(n, 1)) = 1] (3.1)

− Pr[output(PrivKeav
A,Π(n, 0)) = 1]

)
.

If Π satisfies Definition 3.9, then there exists a negligible function negl
for which

Pr[PrivKeav
A,Π(n) = 1] =

1

2
+

1

2
·
(
Pr[output(PrivKeav

A,Π(n, 1)) = 1]

− Pr[output(PrivKeav
A,Π(n, 0)) = 1]

)
≤ 1

2
+

1

2
·
∣∣Pr[output(PrivKeav

A,Π(n, 1)) = 1]

− Pr[output(PrivKeav
A,Π(n, 0)) = 1]

∣∣
≤ 1

2
+ negl(n);

thus, Π satisfies Definition 3.8 also.

For the other direction, assume Π satisfies Definition 3.8. By Equa-
tion (3.1) we see that there exists a negligible function negl such that

negl(n) ≥ Pr[PrivKeav
A,Π(n) = 1]− 1

2

=
1

2
·
(
Pr[output(PrivKeav

A,Π(n, 1)) = 1]

− Pr[output(PrivKeav
A,Π(n, 0)) = 1]

)
. (3.2)

Let Â denote an adversary that runs identically to A except that it
outputs the complement of whatever A outputs. Then

Pr[PrivKeav
Â,Π

(n) = 1] = 1− Pr[PrivKeav
A,Π(n) = 1]

=
1

2
+

1

2
·
(
Pr[output(PrivKeav

A,Π(n, 0)) = 1]

− Pr[output(PrivKeav
A,Π(n, 1)) = 1]

)
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and, arguing as above, there exists a negligible function negl′ such that

negl′(n) ≥ Pr[PrivKeav
Â,Π

(n) = 1]− 1

2

=
1

2
·
(
Pr[output(PrivKeav

A,Π(n, 0)) = 1]

− Pr[output(PrivKeav
A,Π(n, 1)) = 1]

)
. (3.3)

Combining Equations (3.2) and (3.3), we see that Π satisfies Defini-
tion 3.9 as well.

3.5 Let |G(s)| = ℓ(|s|) for some ℓ. Consider the following experiment:

The PRG indistinguishability experiment PRGA,G(n):

(a) A uniform bit b ∈ {0, 1} is chosen. If b = 0 then choose
a uniform r ∈ {0, 1}ℓ(n); if b = 1 then choose a uniform
s ∈ {0, 1}n and set r := G(s).

(b) The adversary A is given r, and outputs a bit b′.

(c) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.

Provide a definition of a pseudorandom generator based on this exper-
iment, and prove that your definition is equivalent to Definition 3.14.
(That is, show that G satisfies your definition if and only if it satisfies
Definition 3.14.)

Solution: The required definition is that G is a pseudorandom gener-
ator if for any ppt algorithm A we have

Pr[PRGA,G(n) = 1] ≤ 1/2 + negl(n).

To see that these definitions are equivalent, note that

Pr[PRGA,G(n) = 1]

=
1

2
· Prr←{0,1}ℓ(n) [A(r) = 0] +

1

2
· Prs←{0,1}n [A(G(s)) = 1]

=
1

2
+

1

2
·
(
Prs←{0,1}n [A(G(s)) = 1]− Prr←{0,1}ℓ(n) [A(r) = 1]

)
.

Thus, if there is an efficient A for which the new definition fails to hold,
then Definition 3.14 fails to hold for this A as well. And if there is an
efficient attacker A for which Definition 3.14 does not hold, we obtain
an efficient attacker for which the new definition does not hold either
(possibly by flipping the output of A).

3.6 Let G be a pseudorandom generator with expansion factor ℓ(n) > 2n. In
each of the following cases, say whetherG′ is necessarily a pseudorandom
generator. If yes, give a proof; if not, show a counterexample.
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(a) Define G′(s)
def
= G(s1 · · · s⌈n/2⌉), where s = s1 · · · sn.

(b) Define G′(s)
def
= G

(
0|s|∥s

)
.

(c) Define G′(s)
def
= G(s) ∥G(s+ 1).

Solution:

(a) Yes! First, since ℓ(n) > 2n we have that |G′(s)| > 1
2 · 2n = n as

required for any pseudorandom generator. Let ℓ′ be the expansion
factor of G′; i.e., ℓ′ is such that |G′(s)| = ℓ′(|s|). Fix a probabilistic
polynomial-time algorithm D and set

ε(n)
def
=
∣∣∣Prr←{0,1}ℓ′(n) [D(r) = 1]− Prs←{0,1}n [D(G′(s)) = 1]

∣∣∣ .
By definition of G′, we have that

Prs←{0,1}n [D(G′(s)) = 1] = Prs←{0,1}n/2 [D(G(s)) = 1],

and thus∣∣∣Prr←{0,1}ℓ′(n) [D(r) = 1]− Prs←{0,1}n/2 [D(G(s)) = 1]
∣∣∣ = ε(n)

= ε′(n/2),

where ε′(n)
def
= ε(2n) (note the change in the length of s). Since ε′

must be negligible, we conclude that ε is negligible as well.

(b) G′ is not necessarily a pseudorandom generator. To see this, let
H : {0, 1}n → {0, 1}4n be a pseudorandom generator, and define
G(s) = H(s1 · · · sn/2). As in the previous part, G is a pseudoran-
dom generator. But then

G′(s) = G(0|s|∥s) = H(0|s|),

and clearly G′ is not a pseudorandom generator.

Fundamentally, the problem here is that G′ runs G on an input
that is not uniformly distributed.

(c) G′ is not necessarily a pseudorandom generator. To see this, let H :
{0, 1}n → {0, 1}2n be a pseudorandom generator and define G(s) =
H(s1 · · · sn−1). As in the previous parts, G is a pseudorandom
generator. But then if the last bit of s is 0 we have

G′(s) = G(s)∥G(s+ 1) = H(s1 · · · sn−1)∥H(s1 · · · sn−1)

(because then s and s+1 differ only in their final bit), and so with
probability 1/2 the two halves of the output of G′ are the same.
This is clearly not a pseudorandom generator.

Fundamentally, the problem here is that G′ runs G on two corre-
lated (rather than independent) inputs.
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3.7 Prove the converse of Theorem 3.18. Namely, show that if G is not a
pseudorandom generator then Construction 3.17 does not have indistin-
guishable encryptions in the presence of an eavesdropper.

Solution: Let D be an efficient algorithm such that

ε(n)
def
= Prr←{0,1}ℓ(n) [D(r) = 1]− Prs←{0,1}n [D(G(s)) = 1]

is not negligible. Construct the attacker A that, on input 1n, outputs
(m0,m1) where m0 = 0ℓ(n) and m1 is uniform. Upon receiving cipher-
text c, attacker A runs D(c) and outputs the result. Note that when m0

is encrypted, the ciphertext is equal to G(s) for a uniform s, while when
m1 is encrypted, the ciphertext is a uniform ℓ-bit string (since m1) is
uniform. Thus,

Pr[PrivKeav
A,Π(n) = 1]

=
1

2
·
(
Prs←{0,1}n [D(G(s)) = 0] + Prr←{0,1}ℓ(n) [D(r) = 1]

)
=

1

2
+

1

2
·
(
Prr←{0,1}ℓ(n) [D(r) = 1]− Prs←{0,1}n [D(G(s)) = 1]

)
,

which (by assumption) is not negligibly greater than 1/2.

3.8 (a) Define a notion of indistinguishability for the encryption of multiple
distinct messages, in which a scheme need not hide whether the
same message is encrypted twice.

(b) Show that Construction 3.17 does not satisfy your definition.

(c) Give a construction of a deterministic (stateless) encryption scheme
that satisfies your definition.

Solution:

(a) The definition is a straightforward modification of Definition 3.19,
where experiment PrivKmult

A,Π(n) is modified so that all the messages

in M⃗0 are distinct, and similarly for M⃗1 (but a message may appear

in both M⃗0 and M⃗1).

(b) It is easy to see that Construction 3.17 does not satisfy the def-
inition since, for example, when two messages that are identical
except for their last bit are encrypted, the result is two ciphertexts
that are identical except for their last bit.

(c) Let F be a block cipher. Then setting Enck(m) = Fk(m) satisfies
the definition even though it is deterministic.

3.9 Prove unconditionally the existence of a pseudorandom function F :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ with ℓkey(n) = n and ℓin(n) = O(log n).

Solution: Define keyed function F : {0, 1}n × {0, 1}logn → {0, 1} as
follows: Fk(i) outputs the ith bit of k, where the input i is interpreted
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as an integer in the range {0, . . . , n− 1} and the bits of k are numbered
starting at 0. Note that F is exactly implementing a lookup table based
on the key k, and so Fk for uniform k is exactly a random function
mapping log n-bit inputs to 1-bit outputs. I.e., F is a random function,
which is stronger than being pseudorandom.

3.10 Let F be a length-preserving pseudorandom function. For the following
constructions of a keyed function F ′ : {0, 1}n × {0, 1}n−1 → {0, 1}2n,
state whether F ′ is a pseudorandom function. If yes, prove it; if not,
show an attack.

(a) F ′k(x)
def
= Fk(0∥x) ∥Fk(1∥x).

(b) F ′k(x)
def
= Fk(0∥x) ∥Fk(x∥1).

Solution:

(a) F ′ is a pseudorandom function. A formal proof is omitted, but
relies on the observation that distinct queries to F ′k result in distinct
queries to Fk.

(b) F ′ is not a pseudorandom function. To see this, consider querying
on the two inputs 0n−1 and 0n−21. We have

F ′k(0
n−1) = Fk(0

n)∥Fk(0
n−11)

and

F ′k(0
n−21) = Fk(0

n−11)∥Fk(0
n−212);

note that the second half of F ′k(0
n−1) is equal to the first half of

F ′k(0
n−21).

Formally, define the following attacker A given 1n and access to
some function g:
Ag(1n):

• Query y0 = g(0n−1) and y1 = g(0n−21).

• Output 1 if and only if the second half of y0 is equal to the
first half of y1.

As shown above, we have Prk←{0,1}n [A
F ′

k(·)(1n) = 1] = 1. But
when g is a random function then y0 and y1 are independent, uni-
form strings of length 2n, and so the probability that the second
half of y0 is equal to the first half of y1 is exactly 2−n. Thus,
Prf←Func[A

f(·)(1n) = 1] = 2−n, and the difference∣∣∣Prk←{0,1}n [AF ′
k(·)(1n) = 1]− Prf←Func[A

f(·)(1n) = 1]
∣∣∣

is not negligible.
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3.11 Assuming the existence of a pseudorandom function, prove that there
exists an encryption scheme that has indistinguishable multiple encryp-
tions in the presence of an eavesdropper (i.e., is secure with respect to
Definition 3.19), but is not CPA-secure (i.e., is not secure with respect
to Definition 3.22).

Solution: Let F be a pseudorandom function, and define scheme Π =
(Gen,Enc,Dec) as follows:

(a) Gen: On input 1n, choose k, s← {0, 1}n.
(b) Enc: On input a key ⟨k, s⟩ and a message m ∈ {0, 1}n, do:

i. If m = s output the ciphertext ⟨0, k, s, s⟩.
ii. If m ̸= s then choose random r ← {0, 1}n and output the

ciphertext ⟨1, s, r, Fk(r)⊕m⟩.
(c) Dec: On input a key ⟨k, s⟩ and ciphertext c = ⟨b, c1, c2, c3⟩ do:

i. If b = 0 output s.

ii. If b = 1 output m := Fk(c2)⊕ c3.

One can check that decryption always succeeds.

It is clear that Π is not secure under a chosen-plaintext attack. This
is because an adversary A can query its encryption oracle with in-
put 0n and receive (except with negligible probability) the ciphertext
c = ⟨1, s, r, Fk(r)⟩, where s is the second component of the secret key.
Then, A can query its encryption oracle again with s and receive back
a ciphertext containing k. Given k, of course, A can distinguish en-
cryptions easily. Despite the above, we argue that Π is still secure with
respect to Definition 3.18. Intuitively, this is due to the fact that unless
one of the plaintexts output by the adversary is equal to s—which oc-
curs with only negligible probability since s is uniform—the scheme is
essentially equivalent to Construction 3.30. We omit the formal proof,
which is tedious but straightforward.

3.12 Let F be a keyed function and consider the following experiment:

The PRF indistinguishability experiment PRFA,F (n):

(a) A uniform bit b ∈ {0, 1} is chosen. If b = 1 then choose
uniform k ∈ {0, 1}n.

(b) A is given 1n for input. If b = 0 then A is given access to
a uniform function f ∈ Funcn. If b = 1 then A is instead
given access to Fk(·).

(c) A outputs a bit b′.

(d) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.
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Define pseudorandom functions using this experiment, and prove that
your definition is equivalent to Definition 3.25.

Solution: The solution is similar to that of Exercise 3.5, and is omitted.

3.13 Consider the following keyed function F : For security parameter n, the
key is an n×n boolean matrix A and an n-bit boolean vector b. Define

FA,b : {0, 1}n → {0, 1}n by FA,b(x)
def
= Ax+ b, where all operations are

done modulo 2. Show that F is not a pseudorandom function.

Solution: Querying FA,b(0
n) yields b. Let ei denote the n-bit string

with a 1 in position i (and 0s elsewhere). Querying FA,b(ei) yields ai+b,
where ai is the ith column of A. This can be easily extended to a full-
fledged attack.

3.14 Prove that if F is a length-preserving pseudorandom function, then

G(s)
def
= Fs(1)∥Fs(2)∥ · · · ∥Fs(ℓ) is a pseudorandom generator with ex-

pansion factor ℓ · n.
Solution: Fix an efficient distinguisher D, and let

ε(n)
def
=
∣∣Prr←{0,1}ℓn [D(r) = 1]− Prs←{0,1}n [D(G(s)) = 1]

∣∣ .
Construct A(1n) as follows: given access to a function g, let yi = g(i)
for i = 1, . . . , ℓ. Output D(y1∥ · · · ∥yℓ). Clearly∣∣∣Pr[Af(·)(1n) = 1]− Pr[AFk(·)(1n) = 1]

∣∣∣ = ε(n),

and so ε(n) must be negligible.

3.15 Define a notion of perfect secrecy under a chosen-plaintext attack by
adapting Definition 3.22. Show that the definition cannot be achieved.

Solution: Here we would simply require that for all A (i.e., even un-
bounded), it holds that Pr[PrivKcpa

A,Π(n) = 1] = 1/2. This definition
cannot be achieved. To see this, fix an arbitrary scheme Π and let A be
the following attacker: request an encryption of 0n, obtaining in return
ciphertext c0. Then output the messages (m0 = 0n,m1 = 1n), and re-
ceive in return a ciphertext c. If c = c0 output 0; otherwise, output 1.
Note that when m0 is encrypted, there is a nonzero probability that
c = c0, whereas when m1 is encrypted we must have c ̸= c0. Thus,

Pr[PrivKcpa
A,Π(n) = 1] =

1

2
· (Pr[Enck(m0) = c0] + Pr[Enck(m1) ̸= c0])

> 1/2.

3.16 Prove Proposition 3.27.

Solution: Intuitively, as long as a distinguisher does not find a collision
(namely, a pair x and y for which f(x) = f(y)) the distribution over the
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values of a random function and a random permutation are identical.
Furthermore, by the analysis of the “birthday problem” (Appendix A.4)
we know that a collision is found with only negligible probability as
long as only a polynomial number of inputs are queried to f . Thus, a
random function and random permutation are computationally indis-
tinguishable. By reduction, the same is true also for a pseudorandom
function and pseudorandom permutation.

Formally, let f be a uniform length-preserving function and let g denote
a uniform length-preserving permutation. Let D be any algorithm that
queries its oracle only polynomially many times (any polynomial-time
algorithm can only query its oracle only polynomially many times). We
claim that there is a negligible function negl such that∣∣∣Pr[Df(·)(1n) = 1]− Pr[Dg(·)(1n) = 1]

∣∣∣ < negl(n) (3.4)

In order to see this, let q(n) be the polynomial bounding the number of
queries that D makes to its oracle and assume without loss of generality
that D always makes exactly q (distinct) queries. Let coll denote the
event that D queries its oracle with two distinct values x and y for which
its oracle returns the same reply. Clearly, if D is given access to oracle g
then coll occurs with probability zero (because g is a permutation).
Furthermore, by Lemma A.15, when D is given access to oracle f , the
probability that coll occurs is at most q2/2n. (Each query to f on
a “fresh” input yields an independent uniform output.) Finally, we
observe that conditioned on coll not occurring, the view of D when given
oracle f is identical to its view when given oracle g. This is because all
oracle responses are independently and uniformly distributed subject
only to the constraint that all responses are distinct. Therefore:∣∣∣Pr[Df(·)(1n) = 1]− Pr[Dg(·)(1n) = 1]

∣∣∣
=
∣∣∣Pr[Df(·)(1n) = 1 | coll] · Pr[coll]

+ Pr[Df(·)(1n) = 1 | coll] · Pr[coll]− Pr[Dg(·)(1n) = 1]
∣∣∣

=
∣∣∣Pr[Df(·)(1n) = 1 | coll] · Pr[coll]

+ Pr[Dg(·)(1n) = 1] · Pr[coll]− Pr[Dg(·)(1n) = 1]
∣∣∣

=
∣∣∣Pr[Df(·)(1n) = 1 | coll] · Pr[coll]

+ Pr[Dg(·)(1n) = 1] · (1− Pr[coll])− Pr[Dg(·)(1n) = 1]
∣∣∣

=
∣∣∣Pr[Df(·)(1n) = 1 | coll] · Pr[coll]− Pr[Dg(·)(1n) = 1] · Pr[coll]

∣∣∣
≤ Pr[coll] ≤ q2

2n
,
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implying Equation (3.4). Now, let F be a pseudorandom permutation.
By the definition, we have that for every probabilistic polynomial-time
D there exists a negligible function such that∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Dg(·)(1n) = 1]

∣∣∣ < negl(n).

Combining this with the above, we have that∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
∣∣∣ < negl(n) +

q2

2n
.

Since q2/2n is negligible, we conclude that any pseudorandom permu-
tation F is also a pseudorandom function.

3.17 Assume pseudorandom permutations exist. Show that there exists a
function F ′ that is a pseudorandom permutation but is not a strong
pseudorandom permutation.

Solution: Let F be a length-preserving pseudorandom permutation.
Define F ′ as follows:

F ′k(x) =


0n x = k
Fk(k) x = F−1k (0n)
Fk(x) otherwise

.

F ′k is a permutation for all k, and can be efficiently inverted. We do not
prove that F ′ is still a pseudorandom permutation, but intuitively this
holds since the only difference between F ′k and Fk (when an adversary
can query in the “forward” direction only) occurs if the adversary queries
F ′k either on the key k or on the point F−1k (0n). But the fact that F is
pseudorandom means that it is infeasible for an adversary to find either
of those two inputs when interacting with F ′k(·).

On the other hand, F ′ is not strongly pseudorandom: since F ′
−1
k (0n) =

k, an adversary can learn the key by querying 0n in the reverse direction.
Formally, consider the attacker A given access to an oracle g and its
inverse g−1 that acts as follows: query g−1(0n) and obtain a value k.
Then choose any x ̸∈ {k, Fk(k)} and query g(x) to obtain y. Output 1
iff y = Fk(x). It is immediate that

Pr[AF ′
k(·),F ′−1

k (·)(1n) = 1] = 1.

On the other hand, it is easy to see that

Pr[Af(·),f−1(·)(1n) = 1] = 2−n.

Thus, F ′ is not strongly pseudorandom.
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3.18 Let F be a pseudorandom permutation, and define a fixed-length en-
cryption scheme (Gen,Enc,Dec) as follows: On input m ∈ {0, 1}n/2 and
key k ∈ {0, 1}n, algorithm Enc chooses a random string r ← {0, 1}n/2
of length n/2 and computes c := Fk(r∥m).

Show how to decrypt, and prove that this scheme is CPA-secure for mes-
sages of length n/2. (If you are looking for a real challenge, prove that
this scheme is CCA-secure if F is a strong pseudorandom permutation.)

Solution: Decryption is computed by first computing F−1k (c) and then
outputting the n/2 least significant bits of the result. We now show
that this scheme is CPA-secure. In order to show this, we first con-
sider an encryption scheme Π̃ that is identical to the above encryption
scheme, except that a truly random permutation is used instead of a
pseudorandom one. Let A be an adversary and let q(·) be a polynomial
upper-bounding the running-time of A. We claim that:

Pr[PrivKcpa

A,Π̃
(n) = 1] ≤ 1

2
+

q(n)

2n/2

Let rc denote the random string used to generate the challenge cipher-
text c = Fk(r∥m). There are two cases:

(a) The value rc is used by the encryption oracle to answer at least
one of A’s queries: In this case, A can know which message was
encrypted, but the probability of this event occurring is upper-
bound by q(n)/2n/2 (this is obtained by applying the union bound).

(b) The value rc is not used by the encryption oracle to answer any
of A’s queries: In this case, A learns nothing about the plaintext
because the challenge ciphertext is a uniform string (subject to
being distinct from all other ciphertexts).

Using a similar argument as in the proof of Theorem 3.31 the above
equation follows. The rest of the proof follows as in the proof of The-
orem 3.31 by showing that the difference when using a pseudorandom
permutation instead is at most negligible.

We omit a proof of CCA-security.

3.19 Let F be a pseudorandom function, and G a pseudorandom generator
with expansion factor ℓ(n) = n+1. For each of the following encryption
schemes, state whether the scheme has indistinguishable encryptions in
the presence of an eavesdropper and whether it is CPA-secure. In each
case, the shared key is a random k ∈ {0, 1}n.

(a) To encrypt m ∈ {0, 1}n+1, choose uniform r ∈ {0, 1}n and output
the ciphertext ⟨r,G(r)⊕m⟩.

(b) To encrypt m ∈ {0, 1}n, output the ciphertext m⊕ Fk(0
n).
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(c) To encryptm ∈ {0, 1}2n, parsem asm1∥m2 with |m1| = |m2|, then
choose uniform r ∈ {0, 1}n and send ⟨r, m1⊕Fk(r), m2⊕Fk(r+1)⟩.

Solution:

(a) This scheme does not even have indistinguishable encryptions in
the presence of an eavesdropper because the ciphertext doesn’t
depend on the key. An eavesdropper can easily compute m from
c = ⟨r, s⟩ by computing m := G(r)⊕ s.

(b) This scheme has indistinguishable encryptions in the presence of
an eavesdropper. To see this, note that Fk(0

n) is pseudorandom
and so a proof of this fact follows from the proof of Theorem 3.18.
The scheme is not CPA-secure because encryption is deterministic.

(c) This scheme is CPA-secure. A proof of this is very similar to the
proof of Theorem 3.31 except that Repeat denotes the event that
r − 1, r or r + 1 is chosen in another ciphertext.

A full would include proofs for the above claims.

3.20 Consider a stateful variant of CBC-mode encryption where the sender
simply increments the IV by 1 each time a message is encrypted (rather
than choosing IV at random each time). Show that the resulting scheme
is not CPA-secure.

Solution: Define A as follows:

(a) Query the encryption oracle with the message m = 0n−1∥1. Re-
ceive in return a ciphertext ⟨IV, c⟩.

(b) If IV is odd (i.e., has low-order bit 1), then output a random bit.

(c) If IV is even, then output a pair of messages m0,m1 where m0 =
0n and m1 is any other message. Receive in return a challenge
ciphertext ⟨IV + 1, c′⟩.

(d) If c′ = c output 0; else output 1.

We analyze the success probability of A. If IV is odd, then A succeeds
exactly half the time. For any even IV , though, it holds that IV + 1 =
IV ⊕ (0n−1∥1). Thus, for any even IV we have

c = Fk(IV ⊕m) = Fk(IV ⊕ 0n−11⊕m⊕ 0n−11) = Fk((IV + 1)⊕m0).

So if m0 is encrypted then c′ = c and A outputs 0, while if m1 is
encrypted then c′ ̸= c and A outputs 1. The overall success probability
of A is therefore 3/4, and this modified CBC mode is not CPA-secure.

3.21 What is the effect of a single-bit error in the ciphertext when using the
CBC, OFB, and CTR modes of operation?
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Solution: Say a message m1,m2, . . . is encrypted to give a ciphertext
c0, c1, c2, . . ., and then a single bit is flipped somewhere in the ciphertext.
We look at the effect of decrypting the resulting (modified) ciphertext
using each of the stated modes to obtain a message m′1,m

′
2, . . ..

CBC mode. Say a bit is flipped in ci to give modified block c′i. When
decrypting, mi is computed as m′i = F−1k (c′i) ⊕ c0 and F−1k (c′i) will,
in general, be completely unrelated to F−1k (ci). Thus, m′i will have no
relation to mi. The next message block, m′i+1, is computed as m′i+1 =

F−1k (ci+1)⊕ c′i and so m′i+1 will be equal to mi+1 but with a single bit
flipped. The rest of the message blocks will be unchanged.

OFB mode and CTR mode. In these modes, a bit flip in ci for i > 0
only causes a bit flip in message block mi. However, a bit flip in c0 will
(in general) result in all the plaintext blocks being recovered incorrectly.

3.22 What is the effect of a dropped ciphertext block (e.g., if the transmitted
ciphertext c1, c2, c3, . . . is received as c1, c3, . . .) when using the CBC,
OFB, and CTR modes of operation?

Solution: Say a message m1,m2, . . . is encrypted to give a ciphertext
c0, c1, c2, . . ., and then a single block is dropped. We look at the effect of
decrypting the resulting (modified) ciphertext using each of the stated
modes to obtain a message m′1,m

′
2, . . ..

CBC mode. Say block ci is dropped. The result of decrypting the mod-
ified ciphertext is m1, . . . ,mi−1,m

′
i+1,mi+2, . . .. I.e., message blocks be-

fore position i are recovered correctly, message block i is lost entirely,
message block i + 1 is garbled, and message blocks after position i + 1
are recovered correctly (though shifted over by one block).

OFB and CTR mode. If ci is dropped then all plaintext blocks
before position i are recovered correctly, but from position i and on the
remaining plaintext blocks will be incorrect.

3.23 Say CBC-mode encryption is used with a block cipher having a 256-bit
key and 128-bit block length to encrypt a 1024-bit message. What is
the length of the resulting ciphertext?

Solution: The message is 8 = 1024/128 blocks long, so the ciphertext
(which includes an IV) is 9 blocks long. Thus, the ciphertext is 1152
bits long.

3.24 Give the details of the proof by reduction for Equation (3.12).

Solution: This is exactly analogous to the relevant step in the proof of
Theorem 3.31, so is omitted.

3.25 Let F be a pseudorandom function such that for k ∈ {0, 1}n the function
Fk maps ℓin(n)-bit inputs to ℓout(n)-bit outputs.
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(a) Consider implementing CTR-mode encryption using F . For which
functions ℓin, ℓout is the resulting encryption scheme CPA-secure?

(b) Consider implementing CTR-mode encryption using F , but only
for fixed-length messages of length ℓ(n) (which is an integer mul-
tiple of ℓout(n)). For which ℓin, ℓout, ℓ does the scheme have indis-
tinguishable encryptions in the presence of an eavesdropper?

Solution:

(a) In order for counter mode to be secure, it is essential that the
counter not repeat even though an arbitrary polynomial number
of blocks are encrypted. In order to ensure this, the counter must
have superlogarithmic length and so we require ℓin(n) = ω(log n).
In contrast, there is no lower or upper bound on the length of ℓout.

(b) Consider encryption of a single message of length ℓ. Here, for
security to hold we only need to make sure that the counter value
does not “wrap” when encrypting. When encrypting a message of
length ℓ, we will apply F to ℓ/ℓout counter values. Wrapping occurs
if 2ℓin < ℓ/ℓout. So the scheme has indistinguishable encryptions
in the presence of an eavesdropper as long as 2ℓin ≥ ℓ/ℓout.

3.26 For any function g : {0, 1}n → {0, 1}n, define g$(·) to be a probabilis-
tic oracle that, on input 1n, chooses uniform r ∈ {0, 1}n and returns
⟨r, g(r)⟩. A keyed function F is a weak pseudorandom function if for all
ppt algorithms D, there exists a negligible function negl such that:∣∣∣Pr[DF $

k (·)(1n) = 1]− Pr[Df$(·)(1n) = 1]
∣∣∣ ≤ negl(n),

where k ∈ {0, 1}n and f ∈ Funcn are chosen uniformly.

(a) Prove that if F is pseudorandom then it is weakly pseudorandom.

(b) Let F ′ be a pseudorandom function, and define

Fk(x)
def
=

{
F ′k(x) if x is even

F ′k(x+ 1) if x is odd.

Prove that F is weakly pseudorandom, but not pseudorandom.

(c) Is CTR-mode encryption using a weak pseudorandom function nec-
essarily CPA-secure? Does it necessarily have indistinguishable en-
cryptions in the presence of an eavesdropper? Prove your answers.

(d) Prove that Construction 3.30 is CPA-secure if F is a weak pseudo-
random function.
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Solution:

(a) Intuitively, if F cannot be distinguished from a random function
even when a distinguisher is allowed to choose the evaluation points,
then F cannot be distinguished from a random function when F is
evaluated on random points. A formal reduction is straightforward.

(b) It is clear that F ′ is not pseudorandom. Specifically, a distinguisher
D can query its oracle with an odd x and then with x + 1. If
its oracle is F ′ then D will receive back the same value twice.
Otherwise, if its oracle is random, it will receive back different
values (except with probability 2−n).

On the other hand, F ′ is weakly pseudorandom. Intuitively, this is
because the only way to distinguish F ′ from a random function is to
query it on two consecutive points (as above), but if F ′ is evaluated
on random inputs then the probability that any two such points
happen to be consecutive is negligible. (We omit the formal proof.)

(c) Counter mode instantiated with a weak pseudorandom function
does not necessarily have indistinguishable encryptions in the pres-
ence of an eavesdropper. To see this, take F ′ from part (b). When
encrypting a message that is at least 3 blocks long, there will be
two consecutive plaintext blocks that are XORed with the same
value F ′k(ctr) = F ′k(ctr + 1).

(d) Since a random r is always used in Construction 3.30 as input to
F , the proof that this construction is CPA-secure (even when F is
only weakly pseudorandom) is identical.

3.27 Let F be a pseudorandom permutation. Consider the mode of operation
in which a uniform value ctr ∈ {0, 1}n is chosen, and the ith ciphertext
block ci is computed as ci := Fk(ctr + i +mi). Show that this scheme
does not have indistinguishable encryptions in the presence of an eaves-
dropper.

Solution: An encryption of the 2-block message ⟨1⟩, ⟨0⟩ (where ⟨i⟩ is
an encoding of the integer i using exactly n bits) has the form ctr, c, c
(i.e., the final two ciphertext blocks are equal) whereas an encryption of
⟨0⟩, ⟨1⟩ does not. This can easily be turned into a formal attack.

3.28 Show that the CBC, OFB, and CTR modes of operation do not yield
CCA-secure encryption schemes (regardless of F ).

Solution: CBC mode. Let A be an adversary who outputs a pair
of messages m0 = 0n and m1 = 1n, and receives a challenge ciphertext
⟨IV, c⟩. For CBC encryption, we have that c = Fk(IV ⊕mb). Adversary
A then asks for a decryption of ciphertext ⟨0n, c⟩. (Note that IV ̸= 0n

except with negligible probability.) The result that A receives back is
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m′ = F−1k (c)⊕ 0n. Given this, A computes m′ ⊕ IV which must equal
either m0 or m1. Thus, A knows which plaintext was encrypted.

OFB mode. Let A be an adversary who outputs a pair of messages
m0 = 0n and m1 = 1n, and receives a challenge ciphertext ⟨IV, c⟩.
For OFB encryption we have that c = Fk(IV ) ⊕ mb. Adversary A
then asks for a decryption of ciphertext ⟨IV, 0n⟩. (Note that c ̸= 0n

except with negligible probability.) The result that A receives back is
m′ = Fk(IV ) ⊕ 0n. Given this, A computes c ⊕m′ which must equal
either m0 or m1. Thus, A knows which plaintext was encrypted.

CTR mode. The solution is similar to the solution for OFB mode.

3.29 Let Π1 = (Enc1,Dec1) and Π2 = (Enc2,Dec2) be two encryption schemes
for which it is known that at least one is CPA-secure (but you don’t
know which one). Show how to construct an encryption scheme Π that
is guaranteed to be CPA-secure as long as at least one of Π1 or Π2 is
CPA-secure. Provide a full proof of your solution.

Solution: Define Π = (Gen,Enc,Dec) as follows:

(a) Gen(1n) computes k1 ← Gen1(1
n) and k2 ← Gen2(1

n) and outputs
(k1, k2).

(b) Upon input k = (k1, k2) and m, algorithm Enc chooses a random
r ← {0, 1}|m| and outputs c = ⟨Enc1k1

(m⊕ r),Enc2k2
(r)⟩.

(c) Upon input k = (k1, k2) and c = ⟨c1, c2⟩ output Dec1k1
(c1) ⊕

Dec2k2
(c2).

We prove that the above scheme is CPA-secure as long as at least one
of Π1 and Π2 is CPA-secure. Assume that Π1 is CPA-secure (the proof
for the case that Π2 is CPA-secure is almost the same). Let A be a
CPA-adversary attacking Π and let ε be such that

Pr[PrivKcpa
A,Π(n) = 1] =

1

2
+ ε(n).

We construct an adversary A1 attacking Π1 as follows. A1 chooses
k2 ← Gen2(1

n) and invokes A. For every query m that A makes to its
encryption oracle, A1 chooses a random r, asks for an encryption ofm⊕r
from its oracle (let c1 be the response), computes c2 = Enc2k2

(r), and
returns c = ⟨c1, c2⟩ to A. When A outputs a pair m0,m1, A1 chooses a
random r ← {0, 1}|m0| and outputs the pair m0⊕ r,m1⊕ r. Then, upon
receiving back a challenge ciphertext c1, A1 computes c2 = Enc2k2

(r)
and hands A the challenge ciphertext c = ⟨c1, c2⟩. When A outputs
some b′, adversary A1 outputs b′ as well and halts.

First, we observe that the view of A in this game by A1 is identical to
its view in an execution of experiment PrivKcpa. The experiment in its
entirety is not identical because there is a dependence between the two



34 Introduction to Modern Cryptography – 2nd Edition Solutions Manual

messages encrypted. However, since A only sees one of the messages
encrypted, its view is the same. In particular, we have that

Pr[PrivKcpa
A1,Π1

(n) = 1 | b = 0] = Pr[PrivKcpa
A,Π(n) = 1 | b = 0]

and likewise for b = 1. Therefore,

Pr[PrivKcpa
A1,Π1

(n) = 1] =
1

2
+ ε(n)

and so by the CPA-security of Π1 we have that ε is negligible, as re-
quired.

3.30 Write pseudocode for obtaining the entire plaintext via a padding-oracle
attack on CBC-mode encryption using PKCS #5 padding, as described
in the text.

No solution given.

3.31 Describe a padding-oracle attack on CTR-mode encryption (assuming
PKCS #5 padding is used to pad messages to a multiple of the block
length before encrypting).

Solution: The high-level idea is the same; the only difference is that
now the attacker must modify the bytes of ci (rather than ci−1) in order
to causes a predictable difference in the ith message block.



Chapter 4

Message Authentication Codes –
Solutions

4.1 Say Π = (Gen,Mac,Vrfy) is a secure MAC, and for k ∈ {0, 1}n the tag-
generation algorithm Mack always outputs tags of length t(n). Prove
that t must be super-logarithmic or, equivalently, that if t(n) = O(log n)
then Π cannot be a secure MAC.

Solution: Assume that t(n) = c log n for some constant c. Then, con-
sider an adversary A who upon input 1n just outputs an arbitrarym and
a uniform t ∈ {0, 1}t(n). Adversary A succeeds with probability at least
2−t(n) since there must be some valid tag for m (note also that m /∈ Q
always for this A). Since t(n) = c log n we have that 2−t(n) = n−c which
is not negligible.

4.2 Consider an extension of the definition of secure message authentication
where the adversary is provided with both a Mac and a Vrfy oracle.

(a) Provide a formal definition of security for this case.

(b) Assume Π is a deterministic MAC using canonical verification that
satisfies Definition 4.2. Prove that Π also satisfies your definition
from part (a).

Solution:

(a) Consider the following modified experiment:

The message authentication experiment Mac-forge′A,Π(n):

i. Compute k ← Gen(1n).

ii. The adversary A is given input 1n and oracle access to
Mack(·) and Vrfyk(·, ·). The adversary eventually out-
puts a pair (m, t). Let Q denote the set of all queries
that A asked to its Mack(·) oracle.

iii. The output of the experiment is defined to be 1 if and
only if (1) Vrfyk(m, t) = 1 and (2) m ̸∈ Q.

The definition of security is the same as Definition 4.2, except that
it relates to Mac-forge′ instead of Mac-forge.

35
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(b) When Π is deterministic and has canonical verification, each mes-
sage has only a single valid tag. Thus, if the scheme is secure
according to Definition 4.2, then access to a Vrfy oracle does not
help (and so Π is secure in the sense of the definition given in
part (a)). To see this, note that for any query (m, t) to the Vrfy
oracle there are 3 possibilities:

i. m was previously queried to theMac oracle, and response t was
received. Here the adversary already knows that Vrfyk(m, t) = 1.

ii. m was previously queried to the Mac oracle, and response t′ ̸=
t was received. Since Π is deterministic, here the adversary
already knows that Vrfyk(m, t) = 0.

iii. m was not previously queried to the Mac oracle. By security
of Π, we can argue that Vrfyk(m, t) = 0 with all but negligible
probability.

This can be turned into a formal proof.

4.3 Assume secure MACs exist. Give a construction of a MAC that is secure
with respect to Definition 4.2 but that is not secure when the adversary
is additionally given access to a Vrfy oracle (cf. the previous exercise).

Solution: Let Π = (Gen,Mac,Vrfy) be any secure MAC. Define the
scheme Π′ = (Gen,Mac′,Vrfy′) as follows:

(a) Mac′k(m) computes t = Mack(m) and outputs ⟨0, t, 0, 0⟩.
(b) Vrfy′k(m, ⟨c, t, i, b⟩) works as follows: if c = 0 then it outputs 1 if

and only if Vrfyk(m, t) = 1; if c = 1 then it outputs 1 if and only if
Vrfyk(m, t) = 1 and the ith bit of the key k is equal to b.

First observe that Π′ is secure in the sense of Definition 4.2 because
the tags returned in scheme Π′ can be generated from the tags returned
from scheme Π. Furthermore, a forgery in Π′ requires, in particular, a
forgery in Π. This can be turned into a formal proof.

On the other hand, Π′ is insecure when an adversary A is given access
to both a Mac and a Vrfy oracle. The attack is to query an arbitrary
message m to the Mac oracle to obtain the tag ⟨0, t, 0, 0⟩. Then query
the Vrfy oracle with (m, ⟨1, t, i, 0⟩) for i = 1, . . . , n. By doing so, A
learns the entire key k and can then forge a valid tag for any message
of its choice.

4.4 Prove Proposition 4.4.

Solution: In experiment Mac-sforge the attacker succeeds if it outputs
(m, t) with Vrfyk(m, t) = 1 and either (1)m was never queried to theMac
oracle or (2) m was queries to the Mac oracle, but the response was not
equal to t. If Π uses canonical verification, then condition (2) cannot
occur. Condition (1) is ruled out (except with negligible probability)
because Π is a secure MAC.
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4.5 Assume secure MACs exist. Prove that there exists a MAC that is
secure (by Definition 4.2) but is not strongly secure (by Definition 4.3).

Solution: Let Π = (Gen,Mac,Vrfy) be a secure MAC. Construct Π′ =
(Gen,Mac′,Vrfy′). such thatMac′k(m) outputsMack(m)∥0 and such that
Vrfy′k(m, t∥b) = Vrfyk(m, t). (I.e., Mac′ appends a 0-bit to the original
tag, and Vrfy′ ignores this extra bit.) It is immediate that the scheme is
not strongly secure (since the attacker can simply flip the final bit of a
tag on some message), but one can show that the scheme is still secure
in the sense of Definition 4.2.

4.6 Consider the following MAC for messages of length ℓ(n) = 2n − 2 us-
ing a pseudorandom function F : On input a message m0∥m1 (with
|m0| = |m1| = n − 1) and key k ∈ {0, 1}n, algorithm Mac outputs
t = Fk(0∥m0) ∥Fk(1∥m1). Algorithm Vrfy is defined in the natural way.
Is (Gen,Mac,Vrfy) secure? Prove your answer.

Solution: This scheme is not secure. LetA be an adversary that queries
its oracle with two messages m = m0∥m1 and m′ = m′0∥m′1, where
m0 ̸= m′0 and m1 ̸= m′1. Let t = t0∥t1 and t′ = t′0∥t′1 be the respective
responses from its oracle. A then outputs the message m̃ = m0∥m′1 and
tag t̃ = t0∥t′1. By the definition of Mac, it follows that t̃ is a correct tag
for m̃ and thus Vrfyk(m̃, t̃) = 1 always. Furthermore, since m0 ̸= m′0
and m1 ̸= m′1 we have that m̃ /∈ Q. Thus A succeeds with probability 1
and the scheme is not secure.

4.7 Let F be a pseudorandom function. Show that each of the following
MACs is insecure, even if used to authenticate fixed-length messages.
(In each case Gen outputs a uniform k ∈ {0, 1}n. Let ⟨i⟩ denote an
n/2-bit encoding of the integer i.)

(a) To authenticate a message m = m1, . . . ,mℓ, where mi ∈ {0, 1}n,
compute t := Fk(m1)⊕ · · · ⊕ Fk(mℓ).

(b) To authenticate a message m = m1, . . . ,mℓ, where mi ∈ {0, 1}n/2,
compute t := Fk(⟨1⟩∥m1)⊕ · · · ⊕ Fk(⟨ℓ⟩∥mℓ).

(c) To authenticate a message m = m1, . . . ,mℓ, where mi ∈ {0, 1}n/2,
choose uniform r ← {0, 1}n, compute

t := Fk(r)⊕ Fk(⟨1⟩∥m1)⊕ · · · ⊕ Fk(⟨ℓ⟩∥mℓ),

and let the tag be ⟨r, t⟩.

Solution:

(a) Let m1,m2 ∈ {0, 1}n be distinct. Then, the tag on the message
m1,m2 is identical to the tag on m2,m1. Thus, an adversary A can
ask for a tag on m1,m2 and output the message m2,m1 together
with the tag it received.
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(b) Let m1,m
′
1,m2,m

′
2 ∈ {0, 1}n/2 with m1 ̸= m′1 and m2 ̸= m′2.

The attacker obtains tag t1 on the message m1,m2; tag t2 on the
message m1,m

′
2; and tag t3 on the message m′1,m2. One can then

verify that t1 ⊕ t2 ⊕ t3 is a valid tag on m′1,m
′
2.

(c) Let m1 ∈ {0, 1}n/2 be arbitrary. The attacker can set r := ⟨1⟩∥m1

and output the forgery ⟨r, 0n⟩ on the message m1.

4.8 Let F be a pseudorandom function. Show that the following MAC for
messages of length 2n is insecure: Gen outputs a uniform k ∈ {0, 1}n.
To authenticate a message m1∥m2 with |m1| = |m2| = n, compute the
tag Fk(m1) ∥Fk(Fk(m2)).

Solution: One possible solution can be obtained by modifying the so-
lution for Exercise 4.6. Other attacks are also possible.

4.9 Given any deterministic MAC (Mac,Vrfy), we may view Mac as a keyed
function. In both Constructions 4.5 and 4.11, Mac is a pseudorandom
function. Give a construction of a secure, deterministic MAC in which
Mac is not a pseudorandom function.

Solution: There are many possible answers; we give one. Let F be a
pseudorandom function and define Mack(m) = ⟨Fk(m), Fk(m)⟩ (verifi-
cation is done in the obvious way). This is not pseudorandom, but is
still a secure MAC.

4.10 Is Construction 4.5 necessarily secure when instantiated using a weak
pseudorandom function (cf. Exercise 3.26)? Explain.

Solution: No, it is not necessarily secure in this case. For concrete-
ness, consider the weak pseudorandom function F ′ from Exercise 3.26,
part (b). In this case for an odd x it holds that F ′k(x) = F ′k(x+1). Thus,
an adversary can query its oracle to obtain a tag on an odd message m
and output a valid forgery for the even message m+ 1.

4.11 Prove that Construction 4.7 is secure even when the adversary is addi-
tionally given access to a Vrfy oracle (cf. Exercise 4.2).

Solution: (Note that the stated result assumes Π′ is a secure MAC that
uses canonical verification.) As in the proof of Theorem 4.8, a forgery
in Π yields a forgery in Π′. Moreover, a verification oracle for Π′ can be
simulated using a verification oracle for Π. Since Π is secure even when
given access to a verification oracle, it follows that Π′ is secure in that
case as well.

4.12 Prove that Construction 4.7 is secure if it is changed as follows: Set
ti := Fk(r∥b∥i∥mi) where b is a single bit such that b = 0 in all blocks
but the last one, and b = 1 in the last block. (Assume for simplicity
that the length of all messages being authenticated is always an integer
multiple of n/2− 1.) What is the advantage of this modification?
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Solution: Intuitively, the scheme is still secure because the length of
the message is only included to prevent a “truncation” attack where
some number of blocks at the end of the message are dropped.

Formally, the proof is largely the same as the proof of Theorem 4.8, and
we use the same notation as there. Recall that the adversary outputs
(m, t) with m = m1, . . . ,md and t = ⟨r, t1, . . . , td⟩; now it is required
that mi ∈ {0, 1}n/2−1 and no padding is applied. Pr[Repeat] is still
negligible. When Repeat does not occur, if r ̸∈ {r1, . . . , rq} then clearly
NewBlock occurs. Otherwise r = rj for some unique j, and then:

(a) If ℓ ̸= ℓj then the block r∥1∥d∥md was never authenticated before
by the MAC oracle, and so NewBlock occurs in this case.

(b) If ℓ = ℓj then m′ = m′1, . . . ,m
′
d but there must be an i such

that m′i ̸= mi. Then the block r∥b∥i∥mi was never previously
authenticated by the MAC oracle (where b is 1 or 0 depending on
whether i = d or not).

The advantage is that computation is reduced and the tag is shorter,
since more bits of the message are processed with each invocation of F .

4.13 We explore what happens when the basic CBC-MAC construction is
used with messages of different lengths.

(a) Say the sender and receiver do not agree on the message length

in advance (and so Vrfyk(m, t) = 1 iff t
?
= Mack(m), regardless of

the length of m), but the sender is careful to only authenticate
messages of length 2n. Show that an adversary can forge a valid
tag on a message of length 4n.

(b) Say the receiver only accepts 3-block messages (so Vrfyk(m, t) = 1

only if m has length 3n and t
?
= Mack(m)), but the sender au-

thenticates messages of any length a multiple of n. Show that an
adversary can forge a valid tag on a new message.

Solution: There are multiple solutions; we provide one in each case.

(a) Let m1,m2 ∈ {0, 1}n be arbitrary. The attacker requests a tag on
the message m1,m2, and obtains in return a tag t. One can check
that t is also a valid tag on the message m1,m2,m1 ⊕ t,m2.

(b) Let m1,m2,m3 ∈ {0, 1}n be arbitrary. Obtain tag t1 on the mes-
sage m1, tag t2 on the message t1⊕m2, and tag t3 on the message
t2⊕m3. Then t3 is a valid tag for the 3-block message m1,m2,m3.

4.14 Prove that the following modifications of basic CBC-MAC do not yield
a secure MAC (even for fixed-length messages):
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(a) Mac outputs all blocks t1, . . . , tℓ, rather than just tℓ. (Verification
only checks whether tℓ is correct.)

(b) A random initial block is used each time a message is authenticated.
That is, choose uniform t0 ∈ {0, 1}n, run basic CBC-MAC over the
“message” t0,m1, . . . ,mℓ, and output the tag ⟨t0, tℓ⟩. Verification
is done in the natural way.

Solution:

(a) Consider the following attack: Adversary A queries its oracle with
arbitrary m1,m2. It receives back the tag t1, t2, where t1 = Fk(m1)
and t2 = Fk(t1⊕m2). Next, A outputs the message t1⊕m2∥t2⊕m1

and the tag t2, t1. This is a valid forgery (unless t1⊕m2 = m1 and
t2⊕m1 = m2, which occurs with only negligible probability), since
t2 = Fk(t1 ⊕m2) and

t1 = Fk(t2 ⊕ t2 ⊕m1) = Fk(m1).

(b) Consider the following attack: obtain tag (t0, t) on the one-block
message m. Then output (m, t) as a valid tag for the message t0.

4.15 Show that appending the message length to the end of the message
before applying basic CBC-MAC does not result in a secure MAC for
arbitrary-length messages.

Solution: (We provide the solution, but it will help to draw a diagram
to confirm that the solution is correct.) One attack is as follows: obtain
tag t on the 1-block messagem, the tag s on the 3-block messagem, ⟨n⟩, t
(where ⟨n⟩ denotes the integer n encoded as an n-bit string), and the
tag t′ on the 1-block message m′ (with m′ ̸= m). Then one can verify
that s is a valid tag on the 3-block message m′, ⟨n⟩, t′.

4.16 Show that the encoding for arbitrary-length messages described in Sec-
tion 4.4.2 is prefix-free.

Solution: Let X and X ′ be two different encoded strings. Note that X
can be parsed as X = ⟨i⟩∥0t∥m where i is the length of m, the notation
⟨i⟩ denote the n-bit encoding of i, and t ∈ {0, . . . , n − 1} is such that
n+t+i is a multiple of n. We can similarly parse X ′ as X ′ = ⟨j⟩∥0t′∥m′.
If i ̸= j then neither X nor X ′ is a prefix of the other. If i = j then
t = t′ and m and m′ have the same length. But since m ̸= m′ neither
X nor X ′ is a prefix of the other.

4.17 Consider the following encoding that handles messages whose length is
less than n · 2n: We encode a string m ∈ {0, 1}∗ by first appending
as many 0s as needed to make the length of the resulting string m̂ a
nonzero multiple of n. Then we prepend the number of blocks in m̂
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(equivalently, prepend the integer |m̂|/n), encoded as an n-bit string.
Show that this encoding is not prefix-free.

Solution: The encoding of m = 1 is the string ⟨1⟩∥1∥0n−1. The encod-
ing of m = 10 is ⟨1⟩∥10∥0n−2. These are identical!

4.18 Prove that the following modification of basic CBC-MAC gives a secure
MAC for arbitrary-length messages (for simplicity, assume all messages
have length a multiple of the block length). Mack(m) first computes
kℓ = Fk(ℓ), where ℓ is the length of m. The tag is then computed using
basic CBC-MAC with key kℓ. Verification is done in the natural way.

Solution: Assume F is a pseudorandom function. Roughly speaking,
this construction reduces to fixed-length CBC-MAC where an indepen-
dent key kℓ is used for messages of length ℓ. Since fixed-length CBC-
MAC is secure, the overall construction is secure. A full solution would
require a formal proof.

4.19 Let F be a keyed function that is a secure (deterministic) MAC for
messages of length n. (Note that F need not be a pseudorandom per-
mutation.) Show that basic CBC-MAC is not necessarily a secure MAC
(even for fixed-length messages) when instantiated with F .

Solution: Several solutions are possible; we present one. Let F ′ be
a pseudorandom function with n-bit input length and n/2-bit output
length. Define Fk(m) = F ′k(m)∥⟨i⟩, where ⟨i⟩ is an n/2-bit encoding of
the number of initial 0s in m. This F is still a secure MAC. But now
consider extending it as in CBC-MAC, for simplicity for messages of
length 2n. By requesting tags on messages of the form m1,m2 with m1

fixed and m2 varying bit-by-bit starting from the left, the value t1 of
the intermediate result F ′k(m1) can be learned. It is then easy to forge
a tag on the message m1,m1 ⊕ t.

4.20 Show that Construction 4.7 is strongly secure.

Solution: (Note that the stated result assumes Π′ is strongly secure.)
Note that we only need to consider the case where the attacker out-
puts (m, t) for which m was previously authenticated (possibly multiple
times), but never using tag t (since the case where m is a message that
was never previously authenticated is already handled by Theorem 4.8).
We show how to modify the proof of Theorem 4.8 for this case, and bor-
row notation from there. Repeat is defined identically, and Pr[Repeat]
is still negligible. We now let NewBlock the event that either one of
the blocks r∥ℓ∥i∥mi was never previously authenticated, or it was pre-
viously authenticated but not using tag ti. As before, Pr[NewBlock] is
negligible, now based on strong security of Π′. Using a case analysis, one
can show that if neither Repeat nor NewBlock occur, then the attacker
cannot succeed.



42 Introduction to Modern Cryptography – 2nd Edition Solutions Manual

4.21 Show that Construction 4.18 might not be CCA-secure if it is instanti-
ated with a secure MAC that is not strongly secure.

Solution: Consider the MAC from the solution to Exercise 4.5, which
is secure but not strongly secure. It is easy to give a chosen-ciphertext
attack on Construction 4.18 when constructed using that MAC, by hav-
ing the attacker just flip the final bit of the challenge ciphertext and
request decryption of the resulting, modified ciphertext.

4.22 Prove that Construction 4.18 is unforgeable when instantiated with any
encryption scheme (even if not CPA-secure) and any secure MAC (even
if the MAC is not strongly secure).

Solution We describe the intuition; a full solution would require a for-
mal proof. Say the attacker makes encryption-oracle queries for mes-
sages m1, . . . ,mℓ, obtaining in return ciphertexts ⟨c1, t1⟩, . . . , ⟨cℓ, tℓ⟩.
Let ⟨c, t⟩ be the ciphertext output by the attacker. If c ̸∈ {c1, . . . , cℓ},
then security of the MAC implies that decryption fails. But if c ∈
{c1, . . . , cℓ} then either decryption fails or else the resulting message m
is equal to one of m1, . . . ,mℓ and so this does not violate unforgeability.

4.23 Consider a strengthened version of unforgeability (Definition 4.16) where
A is additionally given access to a decryption oracle.

(a) Write a formal definition for this version of unforgeability.

(b) Prove that Construction 4.18 satisfies this stronger definition if ΠM

is a strongly secure MAC.

(c) Show by counterexample that Construction 4.18 need not satisfy
this stronger definition if ΠM is a secure MAC that is not strongly
secure. (Compare to the previous exercise.)

Solution:

(a) The definition is similar to Definition 4.16, except that the experi-
ment Enc-ForgeA,Π(n) is modified to give A access to a decryption
oracle.

(b) A proof follows from the proof of Theorem 4.19, which shows that
(except with negligible probability) any “new” ciphertexts the at-
tacker submits to the decryption oracle will be invalid.

(c) Consider the MAC from the solution to Exercise 4.3. Since the
decryption oracle effectively acts (also) as a verification oracle, the
same attack described in the solution to Exercise 4.3 allows an
attacker to learn kM . At that point, the attacker can forge new,
valid ciphertexts if, say, ΠE is CBC-MAC.

4.24 Prove that the authenticate-then-encrypt approach, instantiated with
any CPA-secure encryption scheme and any secure MAC, yields a CPA-
secure encryption scheme that is unforgeable.
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Solution: We provide the intuition; a full solution would require formal
proofs. For unforgeability, note that if the attacker were given the en-
cryption key kE , the encryption oracle effectively provides the attacker
with a MAC oracle; any ciphertext c produced by the attacker can be
decrypted to some message/tag pair. Thus, security of the MAC implies
unforgeability. CPA-security of the construction is immediately implied
by CPA-security of ΠE .

4.25 Let F be a strong pseudorandom permutation, and define the following
fixed-length encryption scheme: On input a message m ∈ {0, 1}n/2 and
key k ∈ {0, 1}n, algorithm Enc chooses a uniform r ∈ {0, 1}n/2 and
computes c := Fk(m∥r). (See Exercise 3.18.) Prove that this scheme is
CCA-secure, but is not an authenticated encryption scheme.

Solution: The scheme trivially does not satisfy unforgeability, since any
n-bit string is a valid ciphertext. But the scheme is CCA-secure—once
again, we provide the intuition but would expect formal proofs for a full
solution. To see this, imagine replacing F with a random permutation π.
Let E denote the set of random strings used to answer the attacker’s
encryption-oracle queries, and let D denote the set of n/2-bit suffixes in
the answers to the attacker’s decryption-oracle queries. The elements
of E are uniform and independent; the elements in D are “close” to
uniform and independent. As long as the random string used when
generating the challenge ciphertext is not equal to any of the elements
in E ∪D, the attacker learns nothing about which of its two messages
was encrypted.

4.26 Show a CPA-secure private-key encryption scheme that is unforgeable
but is not CCA-secure.

Solution: One solution is given by Construction 4.18 instantiated with
any CPA-secure encryption scheme and the MAC from the solution to
Exercise 4.5. (See also the solution to Exercise 4.21.)

4.27 Fix ℓ > 0 and a prime p. Let K = Zℓ+1
p ,M = Zℓ

p, and T = Zp. Define
h : K ×M→ T as

hk0,k1,...,kℓ
(m1, . . . ,mℓ) =

[
k0 +

∑
i kimi mod p

]
.

Prove that h is strongly universal.

Solution: Fix distinct m = (m1, . . . ,mℓ) and m′ = (m′1, . . . ,m
′
ℓ) and

arbitrary t, t′ ∈ Zp. Then hk0,k1,...,kℓ
(m) = t and hk0,k1,...,kℓ

(m′) = t′ if
and only if

t = k0 +
∑

i kimi and t′ = k0 +
∑

i kim
′
i, (4.1)

where everything is modulo p. We count the number of keys satisfying
the above. Let i∗ be maximal such that mi∗ ̸= m′i∗ . Let k1, . . . , ki∗−1
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and ki∗+1, . . . , kℓ be arbitrary. We then obtain the equations

t−
∑

i ̸=i∗ kimi − k0 = ki∗mi∗ and t′ −
∑

i ̸=i∗ kim
′
i − k0 = ki∗m

′
i∗ .

Subtracting, we obtain

t− t′ −
∑

i ̸=i∗ kimi +
∑

i ̸=i∗ kim
′
i = ki∗(mi∗ −m′i∗),

which uniquely determines ki∗ since mi∗ − m′i∗ ̸= 0 and p is prime.
The original equations then uniquely determine k0. We conclude that
exactly pℓ−1 keys satisfy (4.1), and so the probability that a uniform
key satisfies those equations is pℓ−1/pℓ+1 = 1/|T |2, as required.

4.28 Fix ℓ, n > 0. Let K = {0, 1}ℓ×n × {0, 1}ℓ (interpreted as a boolean
ℓ × n matrix and an ℓ-dimensional vector), let M = {0, 1}n, and let
T = {0, 1}ℓ. Define h : K ×M→ T as hK,v(m) = K ·m⊕ v, where all
operations are performed modulo 2. Prove that h is strongly universal.

Solution: Fix distinct m,m′ and arbitrary t, t′. Then hK,v(m) = t and
hK,v(m

′) = t′ if and only if

Km⊕ v = t and Km′ ⊕ v = t′. (4.2)

Subtracting, we see the above hold only if K · (m−m′) = t− t′. Let i be
the largest index for which the ith coordinate ofm−m′ is nonzero. Then
we may set all columns of K other than the ith column arbitrarily to any
of sℓ·(n−1) possibilities; there is then a unique value of the ith column
for which K · (m−m′) = t− t′. Having fixed K, there is a unique v such
that (4.2) hold. We conclude that the number of keys satisfying (4.2)
is 2ℓ·(n−1), and so the probability that a uniform key satisfies those
equations is 2ℓ·(n−1)/2ℓ·(n+1) = 1/22ℓ = 1/|T |2, as required.

4.29 A Toeplitz matrix K is a matrix in which Ki,j = Ki−1,j−1 when i, j > 1;
i.e., the values along any diagonal are equal. So an ℓ×n Toeplitz matrix
(for ℓ > n) has the form

K1,1 K1,2 K1,3 · · · K1,n

K2,1 K1,1 K1,2 · · · K1,n−1
...

...
...

. . .
...

Kℓ,1 Kℓ−1,1 Kℓ−2,1 · · · Kℓ−n+1,1

 .

Let K = T ℓ×n × {0, 1}ℓ (where T ℓ×n denotes the set of ℓ × n Toeplitz
matrices), letM = {0, 1}n, and let T = {0, 1}ℓ. Define h : K×M→ T
as hK,v(m) = K ·m⊕ v, where all operations are performed modulo 2.
Prove that h is strongly universal. What is the advantage here as com-
pared to the construction in the previous exercise?

Solution: We first count the number of Toeplitz matrices. In the first
row there are n values that may be chosen. In each of the successive
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(ℓ − 1) rows, the final n − 1 elements are determined by the previous
row so there is only one new value to choose. Thus, the total number
of Toeplitz matrices is 2n+ℓ−1, and the size of the key space is 2n+2ℓ−1.

As in the previous exercise, we now count the number of keys for which
hK,v(m) = t and hK,v(m

′) = t′. These equations hold only if K(m −
m′) = t−t′. Let i again be the largest index for which the ith coordinate
of m−m′ is nonzero. We fill in the entries of K starting from the last
row. The first i−1 entries of that row can be set arbitrarily; there is then
a unique value for the ith entry such that the equationK(m−m′) = t−t′
can possibly be satisfied. Proceeding to the second-to-last row (we do
not yet set the final n−i entries of the last row), we see that the first i−1
entries are already fixed and there is a unique value for the ith entry
such that the equation K(m − m′) = t − t′ can possibly be satisfied;
note that this determines also the (i + 1)st entry of the bottom row.
Continuing in this manner to the top row, we see that all entries of the
matrix are uniquely determined except for the final n − i elements of
the top row (which in turn determine the final n− i− 1 elements of the
second-to-top row, etc.). These can be set arbitrarily. Having fixed K,
the original pair of equations then uniquely determine v. We conclude
that the number of keys for which hK,v(m) = t and hK,v(m

′) = t′ is
2(i−1)+(n−i) = 2n−1, and so the probability that a uniform key satisfies
those equations is 2n−1/2n+2ℓ−1 = 1/22ℓ = 1/|T |2, as required.
The advantage of this construction is that it has shorter keys.

4.30 Define an appropriate notion of a two-time ε-secure MAC, and give a
construction that meets your definition.

Solution: A definition is obtained by a straightforward modification
of Definition 4.22, where the experiment now allows the attacker to
(adaptively) request tags on any two messages of its choice.

The natural primitive for constructing a two-time ε-secure MAC is a
three-wise independent function, i.e., a keyed function h : K ×M→ T
such that for all distinct m,m′,m′′ ∈M and all t, t′, t′′ ∈ T we have

hk(m) = t ∧ hk(m
′) = t′ ∧ hk(m

′′) = t′′] = 1/|T |3

(where the probability is over choice of k). An example of such a function
is given by quadratic polynomials over a field. I.e., letM, T = Zp and
K = Z3

p, and define hk1,k2,k3(m) = k1m
2 + k2m + k3. One can check

that this satisfies the requirement.

4.31 Let {hn : Kn × {0, 1}10·n → {0, 1}n}n∈N be such that hn is strongly
universal for all n, and let F be a pseudorandom function. (When
K ∈ Kn we write hK(·) instead of hn,K(·).) Consider the following
MAC: Gen(1n) chooses uniform K ∈ Kn and k ∈ {0, 1}n, and out-
puts (K, k). To authenticate a message m ∈ {0, 1}10·n, choose uniform
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r ∈ {0, 1}n and output ⟨r, hK(m)⊕ Fk(r)⟩. Verification is done in the
natural way. Prove that this gives a (computationally) secure MAC for
messages of length 10n.

Solution: We provide a proof sketch; a full solution would require
formal proof. First note that we may, in the standard way, replace
Fk by a truly random function f . Let Repeat be the event that, in
answering the attacker’s Mac queries, an r-value is repeated. This event
occurs with negligible probability; we show that as long as it does not
occur, the attacker’s success probability is 2−n.

Assume Repeat does not occur. In this case, note that in each tag ⟨ri, ti⟩
obtained by the attacker on a message mi, the value ti is uniform and
independent of other values, and in particular independent of hK(mi).
That is, intuitively, the attacker gets no information about K. Now let
m, ⟨r, t⟩ be the candidate forgery output by the attacker. If r was never
used to answer any Mac query by the attacker, then f(r) is uniform
and independent of anything else and it is immediate that the attacker
succeeds only with probability 2−n. Otherwise, since Repeat did not
occur, there is a unique Mac query—say, for message mi—for which the
tag ⟨r, ti⟩ was returned. The message/tag pair output by the attacker
is valid if and only if

hK(m)⊕ hK(mi) = (t⊕ f(r))⊕ (ti ⊕ f(r)) = t⊕ ti.

But the fact that h is strongly universal implies that the above occurs
only with probability 2−n.



Chapter 5

Hash Functions and Applications –
Solutions

5.1 Provide formal definitions for second preimage resistance and preimage
resistance. Prove that any hash function that is collision resistant is sec-
ond preimage resistant, and any hash function that is second preimage
resistant is preimage resistant.

Solution: We define two experiments for a hash function Π = (Gen, H),
adversary A, and security parameter n. We assume for simplicity that
H maps inputs of length 2n to outputs of length n, but this is inessential.

DEFINITION Π is preimage resistant if for all ppt adversaries A
there is a negligible function negl such that the success probability of A
in the following experiment is negligible:

(a) A key s is generated by running Gen(1n), and a random
x ∈ {0, 1}2n is chosen.

(b) The adversary A is given s and Hs(x), and outputs x′.

(c) We say that A succeeds if Hs(x′) = Hs(x).

DEFINITION Π is second preimage resistant if for all ppt adver-
saries A there is a negligible function negl such that the success proba-
bility of A in the following experiment is negligible:

(a) A key s is generated by running Gen(1n), and a random
x ∈ {0, 1}2n is chosen.

(b) The adversary A is given s and x, and outputs x′ ̸= x.

(c) We say that A succeeds if Hs(x′) = Hs(x).

We first prove that any collision-resistant hash function is also second
preimage resistant. Let Π be a collision-resistant hash function. Let A
be an adversary and ε a function such that

Pr [A(s, x) = x′ ∧ x ̸= x′ ∧ Hs(x) = Hs(x′)] = ε(n).

We construct an adversary A′ that finds a collision in Π as follows. Upon
input s, adversary A′ chooses uniform x ∈ {0, 1}2n and runs A(s, x).

47
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If A outputs x′ ̸= x such that Hs(x) = Hs(x′) then A′ outputs the
collision (x, x′). It is immediate that A′ outputs a collision—or, stated
differently, succeeds in experiment Hash-coll—with probability exactly ε.
Thus, ε must be negligible, and so Π is second preimage resistant.

We now prove that any second preimage resistant hash function is also
preimage resistant. Let Π be a second preimage resistant hash function.
Let A be an adversary and set

ε(n)
def
= Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x)] .

We construct an adversary A′ that finds a second preimage in Π as
follows. Upon input s and x← {0, 1}2n, A′ invokes A upon (s,Hs(x)).
If A outputs a value x′ ̸= x such that Hs(x′) = Hs(x) then A′ outputs
x′ and halts. The interesting part of the proof is to show that with high
probability A outputs a different preimage x′ ̸= x. Intuitively, this is
the case because inputs of length 2n are mapped to outputs of length n.
Thus, on average there are many inputs mapped to the same Hs(x),
and so the probability that x′ = x is small.

Formally, we first show that with probability almost one over choice of a
random x, there exists at least one other x′ such that Hs(x′) = Hs(x).
We prove this using a simple counting argument. Fix s, and define

T
def
= {x ∈ {0, 1}2n : Hs(x) has only one preimage under Hs}.

Clearly, |T | ≤ 2n (since the range of Hs has size 2n). It follows that
x ̸∈ T with probability at least 1− 2n/22n = 1− 2−n.

If x ̸∈ T and A outputs a value x′ such that Hs(x′) = Hs(x), the
probability that x′ = x is at most 1/2. (This conclusion follows from
the above because the view of A is identical whether x or x′ is chosen.)
We conclude that:

Pr
x
[A′(s, x) = x′ ∧ x ̸= x′ ∧ Hs(x) = Hs(x′)] (5.1)

≥ Pr
x
[A′(s, x) = x′ ∧ x ̸= x′ ∧ Hs(x) = Hs(x′) | x ̸∈ T ] · Pr

x
[x ̸∈ T ]

= Pr
x
[x′ ̸= x | A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) ∧ x ̸∈ T ]

· Pr
x
[A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ̸∈ T ] · Pr

x
[x ̸∈ T ]

≥ 1

2
· Pr

x
[A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ̸∈ T ] · Pr

x
[x ̸∈ T ].
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To complete the proof, note that:

Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x)]

= Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ̸∈ T ] · Pr[x ̸∈ T ]

+Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ∈ T ] · Pr[x ∈ T ]

≤ Pr [A(s,Hs(x)) = x′ ∧Hs(x′) = Hs(x) | x ̸∈ T ] · Pr[x ̸∈ T ] + Pr[x ∈ T ]

≤ Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ̸∈ T ] · Pr[x ̸∈ T ] + 2−n.

Thus,

Pr [A(s,Hs(x)) = x′ ∧ Hs(x′) = Hs(x) | x ̸∈ T ] · Pr[x ̸∈ T ] ≥ ε(n)−

Combining this with Equation (5.1), we have

Pr
x
[A′(s, x) = x′ ∧ x ̸= x′ ∧ Hs(x) = Hs(x′)] ≥ ε(n)

2
− 2−n−1.

Since H is second preimage resistant, ε must be negligible. Because A
was arbitrary, this proves that H is preimage resistant.

5.2 Let (Gen1,H1) and (Gen2,H2) be two hash functions. Define (Gen,H)
so that Gen runs Gen1 and Gen2 to obtain keys s1 and s2, respectively.
Then define Hs1,s2(x) = Hs1

1 (x)∥Hs2
2 (x).

(a) Prove that if at least one of (Gen1,H1) and (Gen2,H2) is collision
resistant, then (Gen,H) is collision resistant.

(b) Determine whether an analogous claim holds for second preimage
resistance and preimage resistance, respectively. Prove your answer
in each case.

Solution:

(a) Let A be an adversary that with probability ε(n) outputs a pair
x, x′ such thatHs1,s2(x) = Hs1,s2(x′). In such a case, by the defini-
tion of H, we have that Hs1

1 (x) = Hs1
1 (x′) and Hs2

2 (x) = Hs2
2 (x′).

Thus, A finds a collision in both H1 and H2 with probability ε.
A full reduction here is straightforward (to attack H1 with key s1,
run Gen2 to get s2, invoke A with key (s1, s2), and then output the
pair that A outputs).

(b) An analogous claim does hold for second preimage resistance. In-
formally, this is again because a collision in H yields a collision in
both H1 and H2. A formal proof is straightforward.

The same does not hold for preimage resistance, i.e., it is possible
that (say) H1 is preimage resistant yet H is not. We sketch a
counter-example demonstrating this. Let Ĥ be a preimage resistant
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hash function mapping n-bit inputs to n/2-bit outputs, and let
trunc output the first n/2 bits of its input. Define

Hs
1(x1∥x2) = trunc(x1) ∥ Ĥs(x2),

where x1, x2 ∈ {0, 1}n. Note that H1 is preimage resistant. Let H2

be a keyed function that (for every key s) outputs the last n bits
of its input. Then

Hs1,s2(x1∥x2) = Hs1
1 (x1∥x2) ∥ Hs2

2 (x1∥x2)

= trunc(x1) ∥ Ĥs1(x2) ∥ x2,

and it is trivial to find a preimage in H.

5.3 Let (Gen,H) be a collision-resistant hash function. Is (Gen, Ĥ) defined

by Ĥs(x)
def
= Hs(Hs(x)) necessarily collision resistant?

Solution: Yes. Let x, x′ be a collision for Ĥ; that is, Hs(Hs(x)) =
Hs(Hs(x′)). There are two cases:

(a) Hs(x) = Hs(x′): in this case, x, x′ is a collision for the original H.
Therefore, such a pair can only be found with negligible probability.

(b) Hs(x) ̸= Hs(x′): set y = Hs(x) and y′ = Hs(x′). By the assump-
tion in this case, y ̸= y′ and yet Hs(y) = Hs(y′). Thus, y, y′ is a
collision in H. Once again, this implies that such a pair x, x′ can
be found with only negligible probability (otherwise, by computing
Hs once on each one obtains a collision y, y′ in Hs).

5.4 Provide a formal proof of Theorem 5.4 (i.e., describe the reduction).

Solution: Let A be a probabilistic polynomial-time adversary and ε a
function such that A succeeds in the Hash-coll experiment with (Gen,H)
with probability ε. We construct an adversary A′ that succeeds in the
Hash-coll experiment with (Gen, h) with probability ε. Upon receiving s,
A′ invokes A upon s and receives back a pair x, x′. If Hs(x) ̸= Hs(x′)
then A′ just halts. Otherwise, A′ uses the strategy described in the
portion of the proof of Theorem 5.4 to find a collision in h. Specifically,
if L ̸= L′ then A′ outputs zB∥L and z′B′∥L′ and halts. Otherwise, if
L = L′, then A′ works backwards from the last block to the first to
find the maximal i∗. Then, A′ outputs zi∗−1∥xi∗ and z′i∗−1∥x′i∗ and
halts. Note that A′ can compute all the z-values by computing H and
storing all the intermediate values. By what is shown in the proof in
the book, whenever A finds a collision, A′ also finds a collision. Thus,
A′ succeeds in Hash-coll for (Gen, h) with probability ε, implying that
ε(n) is negligible. Thus, (Gen,H) is collision-resistant as required.

5.5 Generalize the Merkle-Damg̊ard transform (Construction 5.3) for the
case when the fixed-length hash function h has input length n+κ (with



Hash Functions and Applications 51

κ > 0) and output length n, and the length of the input to H should be
encoded as an ℓ-bit value (as discussed in Section 5.3.2). Prove collision
resistance of (Gen,H), assuming collision resistance of (Gen, h).

Solution: See Construction 5.1-S below. This construction is inter-
esting as long as κ is large enough so that 2κ captures the maximum
length of message needed. A proof that this is collision-resistant is sim-
ilar, though not identical, to the proof of Theorem 5.4.

CONSTRUCTION 5.1-S

Let (Gen, h) be a fixed-length collision-resistant hash function for in-
puts of length n+κ and with output length n, where κ > 0. Construct
a variable-length hash function (Gen, H) as follows:

• Gen: remains unchanged.

• H: on input a key s and a string x ∈ {0, 1}∗ of length L < 2κ,
do the following:

(a) Pad x with zeroes so its length is a multiple of κ. Ap-
pend L, encoded in binary using exactly κ bits. Parse the
resulting string as a sequence of κ-bit blocks X1, . . . , XB .

(b) Set z0 := 0n.

(c) For i = 1, . . . , B, compute zi := hs(zi−1∥Xi).

(d) Output zB .

Generalized Merkle-Damg̊ard transform.

When κ is small (e.g., κ = 1), a solution is obtained by allocating
n additional blocks, always encoding the length using exactly n bits,
and appending it to the input before applying the Merkle-Damg̊ard
transform. This ensures that if the lengths of two messages are different,
then they differ in their last n bits. The proof that this is collision
resistant is similar again to the proof of Theorem 5.4.

5.6 For each of the following modifications to the Merkle-Damg̊ard trans-
form (Construction 5.3), determine whether the result is collision resis-
tant. If yes, provide a proof; if not, demonstrate an attack.

(a) Modify the construction so that the input length is not included
at all (i.e., output zB and not zB+1 = hs(zB∥L)). (Assume the
resulting hash function is only defined for inputs whose length is
an integer multiple of the block length.)

(b) Modify the construction so that instead of outputting z = hs(zB∥L),
the algorithm outputs zB∥L.
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(c) Instead of using an IV , just start the computation from x1. That
is, define z1 := x1 and then compute zi := hs(zi−1∥xi) for i =
2, . . . , B + 1 and output zB+1 as before.

(d) Instead of using a fixed IV , set z0 := L and then compute zi :=
hs(zi−1∥xi) for i = 1, . . . , B and output zB .

Solution:

(a) This is not collision resistant. In particular, take any x of length
that is not an exact multiple of ℓ and then set x′ := x∥0. (Coun-
terexamples are also possible in which there are collisions between
two inputs whose lengths are multiples of ℓ, though they rely on a
contrived compression function h.)

(b) This is collision resistant. The only difference in the proof of The-
orem 5.4 is with respect to Case 1. However, here it is even easier
because when L ̸= L′ the result cannot be a collision (note that
zB∥L cannot equal z′B′∥L′ when L ̸= L′).

(c) Likewise, this is collision resistant and the proof is the same.

(d) This is not necessarily secure. Assume there is a collision-resistant
compression function such that it is possible to efficiently find some
L, x ∈ {0, 1}n such that hs(L, x) = L− n for all s). (A full answer
would show that it is possible to construct a hash function with
this property, assuming collision-resistant hash functions exist.) In
this case, the hash of any message y of length L− 1 is equal to the
hash of the message (x, y) of length L.

5.7 Assume collision-resistant hash functions exist. Show a construction of
a fixed-length hash function (Gen, h) that is not collision resistant, but
such that the hash function (Gen,H) obtained from the Merkle-Damg̊ard
transform to (Gen, h) as in Construction 5.3 is collision resistant.

Solution: Let ĥ : {0, 1}2n−1 → {0, 1}n−1 be a collision-resistant com-
pression function, and define h : {0, 1}2n → {0, 1}n such that

hs(0∥x) = 0∥ĥs(x) and hs(1∥x) = 1n

(where x ∈ {0, 1}2n−1). Clearly (Gen, h) is not collision resistant. But
one can show that the hash function (Gen,H) obtained from applying
the Merkle-Damg̊ard transform to (Gen, h) is collision-resistant.

5.8 Prove or disprove: if (Gen, h) is preimage resistant, then so is the hash
function (Gen,H) obtained by applying the Merkle-Damg̊ard transform
to (Gen, h) as in Construction 5.3.

Solution: (Note: for preimage-resistance to be defined we must specify
some input length. We consider inputs of length L, where L is arbi-
trary.) This is, in general, false. To see this, let (Gen, h) be preimage
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resistant but such that hs(x∥L) = 0n for all s and all x ∈ {0, 1}n. (A full
answer would prove that such a hash function exists assuming preimage-
resistant hash functions exist at all.) Then the Merkle-Damg̊ard trans-
form applied to (Gen, h) yields a hash function (Gen,H) for which every
L-bit input hashes to 0n (and so is clearly not preimage-resistant).

5.9 Prove or disprove: if (Gen, h) is second preimage resistant, then so is
the hash function (Gen,H) obtained by applying the Merkle-Damg̊ard
transform to (Gen, h) as in Construction 5.3.

Solution: This is, in general, false. To see this, let (Gen, h) be second
preimage resistant but with the property that, for any x ∈ {0, 1}n,

hs([s]n∥x) = hs(x∥[s]n) = 0n and hs(02n) = [s]n,

where [s]n denotes the first n bits of s. (A full answer would prove that
such a hash function exists assuming second preimage-resistant hash
functions exist at all.) Then the Merkle-Damg̊ard transform applied to
(Gen, h) yields a hash function (Gen,H) for which there is the following
attacker finding a second preimage:

(a) Output 0n.

(b) Obtain key s.

(c) Output [s]n.

This attacker succeeds with probability 1 since

Hs(0n) = hs(hs(0n, 0n), ⟨n⟩) = hs([s]n, ⟨n⟩) = 0n

and
Hs([s]n) = hs(hs(0n, [s]n), ⟨n⟩) = hs([s]n, ⟨n⟩) = 0n,

where ⟨n⟩ denotes an n-bit encoding of the integer n.

5.10 Before HMAC, it was common to define a MAC for arbitrary-length
messages by Macs,k(m) = Hs(k∥m) where H is a collision-resistant
hash function.

(a) Show that this is never a secure MAC when H is constructed via
the Merkle-Damg̊ard transform. (Assume the hash key s is known
to the attacker, and only k is kept secret.)

(b) Prove that this is a secure MAC ifH is modeled as a random oracle.

Solution:

(a) (For simplicity we omit s.) Let ⟨i⟩ denote an n-bit encoding of
the integer i. We demonstrate an attack: first request a tag for an
arbitrary message m ∈ {0, 1}n and receive in return a tag t. Then
compute t′ = h(t, ⟨3n⟩), and output the forged tag t′ on the 3-
block messagem, t, ⟨2n⟩. This succeeds with probability 1 since t =
h(h(h(0n, k),m), ⟨2n⟩) so then t′ = h(h(h(h(0n, k),m), ⟨2n⟩), ⟨3n⟩).
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(b) While security (when H is modeled as a random oracle) can be
proven directly, a proof also follows along the lines of the proof of
Theorem 4.6 using the result of the following exercise. We therefore
omit further details.

5.11 Prove that the construction of a pseudorandom function given in Sec-
tion 5.5.1 is secure in the random-oracle model.

Solution: Let us be clear about the probability spaces of the exper-
iments we will be considering. Let the security parameter be n. In
the first experiment, a random function H : {0, 1}2n → {0, 1}n and a
random key k ∈ {0, 1}n are chosen, and A is given access to H as well

as the function Fk(·)
def
= H(k∥·). In the second experiment, a random

function H : {0, 1}2n → {0, 1}n and an independent random function
f : {0, 1}n → {0, 1}n are chosen, and A is given access to H and f . We
want to show that the following is negligible:∣∣∣Pr[AH(·),H(k∥·)(1n) = 1]− Pr[AH(·),f(·)(1n) = 1]

∣∣∣ .
Observe that the views of A in the two experiments are identical (i.e., A
gets uniform and independent responses from each of its oracles) until
A make a query of the form k∥⋆ to its H-oracle in the first experiment.
Since A has no information about k, the probability that it ever makes
such a query is q/2n, where q is a bound on the total number of queries
made by A. Since q must be polynomial, this occurs with negligible
probability.

5.12 Prove Theorem 5.11.

Solution: The proof is similar to the proof of Theorem 5.4; namely, we
show that a collision inMT t implies a collision in H. (For simplicity, we
leave the key s implicit.) Consider two inputs (x1, . . . , xt) ̸= (x′1, . . . , x

′
t)

for which MT t(x1, . . . , xt) = h = MT t(x
′
1, . . . , x

′
t). Following Fig-

ure 5.5, we can imagine a pair of binary trees with 1+log t levels where h
is at the 0th level of both trees and the inputs (x1, . . . , xt in one case
and x′1, . . . , x

′
t in the other case) are at the tth level of the trees. Let i

denote the least integer for which the values at level i are equal in the
two trees but the values at level i+ 1 are not. Then there is a collision
in H at that level.

5.13 Show how to find a collision in the Merkle tree construction if t is not
fixed. Specifically, show how to find two sets of inputs x1, . . . , xt and
x′1, . . . , x

′
2t such thatMT t(x1, . . . , xt) =MT 2t(x

′
1, . . . , x

′
2t).

Solution: We give a solution for t = 2 for concreteness. Let x′1, x
′
2, x
′
3, x
′
4

be arbitrary. Set x1 = H(x′1, x
′
2) and x2 = H(x′3, x

′
4). Then notice that

MT 2(x1, x2) =MT 4(x
′
1, . . . , x

′
4).



Hash Functions and Applications 55

5.14 Consider the scenario introduced in Section 5.6.2 in which a client stores
files on a server and wants to verify that files are returned unmodified.

(a) Provide a formal definition of security for this setting.

(b) Formalize the construction based on Merkle trees as discussed in
Section 5.6.2.

(c) Prove that your construction is secure relative to your definition
under the assumption that (GenH ,H) is collision resistant.

Solution:

(a) We first define the semantics of a scheme (we note that our formu-
lation is not the only one possible). Let Π = (Upload, Return, Vrfy)
be a triple of algorithms that work as follows:

• Upload takes as input files x1, . . . , xt and returns state s.

• Return takes as input an index i and files x1, . . . , xt, and returns
a proof πi.

• Vrfy takes as input state s, an index i, a file x, and a proof π
and outputs a bit indicating acceptance or rejection.

In intended operation of the scheme, the client begins by com-
puting s ← Upload(x1, . . . , xt), sending x1, . . . , xt to the server,
and storing s locally. When the client wants file i, it sends i to the
server who then computes π ← Return(i, x1, . . . , xt) and sends back
xi and π. The client then computes Vrfy(s, i, xi, π). Correctness
requires that, when run as described, Vrfy returns 1.

We now define security. (Again, other definitions are possible.)

DEFINITION Π is secure if for all ppt adversaries A there is
a negligible function negl such that the success probability of A in
the following experiment is negligible:

i. A outputs x1, . . . , xt, i, x, and π.

ii. Compute s← Upload(x1, . . . , xt).

iii. A succeeds if Vrfy(s, i, x, π) = 1 and x ̸= xi.

(b) • Upload(x1, . . . , xt) computes h := MT t(x1, . . . , xt) and lets
s := (h, t).

• Return(i, x1, . . . , xt) computes MT t(x1, . . . , xt) and lets π be
the values of the nodes in the Merkle tree adjacent to the path
from xi to the root (as described in Section 5.6.2).

• Vrfy(s, i, x, π), where s = (h, t), uses t, π, x, and i to re-compute
a candidate value h′ for the root of the Merkle tree (as de-
scribed in Section 5.6.2). It outputs 1 iff h′ = h.
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(c) A proof of security follows by showing that if A succeeds in the
experiment above, a collision in H is found. We omit the details.

5.15 Prove that the commitment scheme discussed in Section 5.6.5 is secure
in the random-oracle model.

Solution: Binding follows immediately from the fact thatH is collision-
resistant (as discussed in Section 5.5.1). For hiding, we provide only a
sketch of the proof. Consider an attackerA in experiment HidingA,Com(n)
that makes q queries to H. Let r denote the random value used by the
sender, and note that (1) the view of A is independent of b (i.e., inde-
pendent of which message is chosen) unless A makes a query of the form
H(⋆∥r) (since then both the commitment as well as all answers from the
random oracle are uniform and independent); (2) the probability that
A makes such a query is at most q/2n.



Chapter 6

Practical Constructions of
Symmetric-Key Primitives –
Solutions

6.1 Assume a degree-6 LFSR with c0 = c5 = 1 and c1 = c2 = c3 = c4 = 0.

(a) What are the first 10 bits output by this LFSR if it starts in initial
state (1, 1, 1, 1, 1, 1)?

(b) Is this LFSR maximal length?

Solution:

(a) 1, 1, 1, 1, 1, 1, 0, 1, 0, 1

(b) Yes, one can check that this LFSR has maximal length.

6.2 In this question we consider a nonlinear combination generator, where
we have a degree-n LFSR but the output at each time step is not s0
but instead g(s0, . . . , sn−1) for some nonlinear function g. Assume the
feedback coefficients of the LFSR are known, but its initial state is
not. Show that each of the following choices of g does not yield a good
pseudorandom generator:

(a) g(s0, . . . , sn−1) = s0 ∧ s1.

(b) g(s0, . . . , sn−1) = (s0 ∧ s1)⊕ s2.

Solution:

(a) The first bit of the output is 0 with probability 3/4. This easily
leads to a distinguisher.

(b) Let s
(0)
0 , . . . , s

(0)
n−1 be the initial state, and denote by y1, . . . , yn the

first n bits of output. If s
(0)
1 = 0 (which occurs with probabil-

ity 1/2) then y1 = (s
(0)
0 ∧ s

(0)
1 ) ⊕ s

(0)
2 = s

(0)
2 . Furthermore, in the

next step, we have s
(1)
0 = s

(0)
1 = 0 and so y2 = s

(1)
2 = s

(0)
3 . At this

point, the attacker knows s
(0)
2 and s

(0)
3 which equal s

(2)
0 and s

(2)
1 ,

respectively. But y3 = (s
(2)
0 ∧ s

(2)
1 ) ⊕ s

(2)
2 , and so from y3 the at-

tacker can compute s
(2)
2 = s

(0)
4 . Continuing in the same way, the

attacker can compute s
(0)
2 , . . . , s

(0)
n−1 from y1, . . . , yn.

57
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Using the above observation, the attacker works as follows. It

assumes that s
(0)
1 = 0 and computes values s

(0)
2 , . . . , s

(0)
n−1 based

on this assumption. Then, for each of the two possible values of

s
(0)
0 ∈ {0, 1} and under the assumption that s

(0)
1 = 0, it computes

two possibilities for the next n output bits of the generator. If
either of these is correct, the attacker outputs 1; otherwise, it out-
puts 0. An easy calculation shows that the attacker outputs 1 with
probability at least 1/4 when receiving the output of the generator,
but outputs 1 with probability at most 2/2n when receiving a uni-
form string. This is a distinguishing attack. In reality the attack
is much more severe since with probability 1/2, the attacker learns
the entire initial seed.

6.3 Let F be a block cipher with n-bit key length and block length. Say
there is a key-recovery attack on F that succeeds with probability 1 using
n chosen plaintexts and minimal computational effort. Prove formally
that F cannot be a pseudorandom permutation.

Solution: A distinguisher D runs the strategy for learning k based on
its oracle queries. Then, D asks a new query x (that it did not query

previously) and receives back the oracle response y. If y
?
= y′, where

y′
def
= Fk(x), then D outputs 1; otherwise it outputs 0.

By the assumption of the question

Pr[DFk(·)(1n) = 1] = 1.

In contrast, we claim that when D has access to a random permutation:

Pr[Df(·)(1n) = 1] ≤ 1

2n − n
.

This holds because given k and x, the value y′ = Fk(x) is fixed. There
are then two cases: either y′ ∈ {f(x1), . . . , f(xn)}, where x1, . . . , xn are
the n queries made by D to its oracle in the first phase of its execution,
or not. In the first case, f(x) cannot possibly be equal to y′ (since f
is a permutation). In the second case, the probability that f(x) = y′ is
exactly 1/(2n − n). We conclude that∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≥ 1− 1

2n − n
,

and F is therefore not a pseudorandom permutation.

6.4 In our attack on a one-round SPN, we considered a block length of 64 bits
and 8 S-boxes that each take a 8-bit input. Repeat the analysis for the
case of 16 S-boxes, each taking a 4-bit input. What is the complexity of
the attack now? Repeat the analysis again with a 128-bit block length
and 16 S-boxes that each take an 8-bit input.
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Solution: For the case of 16 S-boxes each taking a 4-bit input, we have
that for each guess of 4 bits of k2 there is exactly one possibility for k1.
The attacker therefore prepares 16 lists, each of length 24. The overall
cost is thus 16 · 24 = 28 (less than for the case studied in the text, as is
to be expected).

Next for the case of a 128-bit block length and 16 S-boxes taking 8-bit
inputs, the analysis is exactly the same as in the text except that now
there are 16 lists instead of 8 lists. Thus, the complexity is 16 · 28 = 212

(instead of 211 for the case in the text).

Observe that the size of the S-box is much more important than the
size of the block.

6.5 Consider a modified SPN where instead of carrying out the key-mixing,
substitution, and permutation steps in alternating order for r (full)
rounds, the cipher instead first applies r rounds of key mixing, then
carries out r rounds of substitution, and finally applies r mixing permu-
tations. Analyze the security of this construction.

Solution: This is equivalent to a single-round of a substitution-permu-
tation network. To see this, note that r rounds of key-mixing are equiv-
alent to one round of key-mixing (since XORing the r keys k1, . . . , kr is
equivalent to XORing the single key k1⊕· · ·⊕kr). Similarly, r rounds of
substitution are equivalent to one round of substitution, and applying
r mixing permutations sequentially is equivalent to applying a single
mixing permutation.

6.6 In this question we assume a two-round SPN with 64-bit block length.

(a) Assume independent 64-bit sub-keys are used in each round, so the
master key is 192 bits long. Show a key-recovery attack using much
less than 2192 time.

(b) Assume the first and third sub-keys are equal, and the second sub-
key is independent, so the master key is 128 bits long. Show a
key-recovery attack using much less than 2128 time.

Solution: Since this question does not mention the size of the S-boxes,
we describe attacks that work independently of the S-box size.

(a) If an attacker guesses the first two sub-keys k1, k2, then it can
compute the first two rounds of the SPN and is left only with
the sub-key mixing of k3. Now, given a plaintext/ciphertext pair
(x, y), it can carry out this computation forward from x using its
guess of k1, k2. Then, k3 will equal the XOR of the result of the
first two rounds with y. Thus, the attacker can prepare a list of
2128 candidates for k1, k2, k3. Since the size of the block is 64 bits,
an incorrect key will map a plaintext x to its correct ciphertext y
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with probability approximately 2−64. Thus, an incorrect key will
correctly map 3 given plaintexts to their given ciphertexts with
probability only (2−64)3 = 2−192. Since there are 2128 candidates,
only 1 will remain after 3 more plaintext/ciphertext pairs, except
with probability 2−64. The complexity of the attack is therefore
4 · 2128 = 2130 time and 2128 memory.

(b) Denote the first and third sub-keys by k1, and the second sub-
key by k2. Let (x, y) be a plaintext/ciphertext pair. For every
possible guess of k1, the attacker can compute the SPN forward
from x to before the mixing of sub-key k2 (this involves mixing k1
which is “known” by the guess, S-box mixing and permutation).
Likewise, the attacker can invert the SPN from y up to just after
the mixing of sub-key k2. Since the third sub-key is also k1, this is
also “known”. Then, given the values before and after the mixing
of k2, we have that k2 is just the XOR of these values. Thus, the
attacker can prepare a list of 264 candidates of (k1, k2) in time 264.
These can then be checked on another two ciphertexts and with
high probability only one will remain (as in the previous solution).

6.7 What is the output of an r-round Feistel network when the input is
(L0, R0) in each of the following two cases:

(a) Each round function outputs all 0s, regardless of the input.

(b) Each round function is the identity function.

Solution:

(a) Using the formula in Equation (6.3) we have that L1 = R0 and
R1 = L0 ⊕ f1(R0) = L0 ⊕ 0n = L0. Similarly, L2 = R1 = L0 and
R2 = L1 = R0. Thus, if r is even then the output is (L0, R0), and
if r is odd then the output is (R0, L0).

(b) Again, using the formula in Equation (6.3), we have that L1 = R0

and R1 = L0 ⊕ f1(R0) = L0 ⊕R0. Then, L2 = R1 = L0 ⊕R0 and
R2 = L1⊕R1 = R0⊕L0⊕R0 = L0. Continuing for one more round,
we have L3 = R2 = L0 and R3 = L2 ⊕ R2 = L0 ⊕ R0 ⊕ L0 = R0,
bringing us back to the beginning.

We conclude that if r is a multiple of 3, then the output equals
(L0, R0). If r = 1 mod 3 then the output equals (R0, L0⊕R0), and
if r = 2 mod 3 then the output equals (L0 ⊕R0, L0).

6.8 Let Feistelf1,f2(·) denote a two-round Feistel network using functions f1
and f2 (in that order). Show that if Feistelf1,f2(L0, R0) = (L2, R2), then
Feistelf2,f1(R2, L2) = (R0, L0).
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Solution: The formula for computing Feistelf1,f2(L0, R0) is:

L1 = R0

R1 = L0 ⊕ f1(R0)

L2 = R1 = L0 ⊕ f1(R0) (6.1)

R2 = L1 ⊕ f2(R1) = R0 ⊕ f2(L2). (6.2)

Now, taking this pair (L2, R2), we compute Feistelf2,f1(R2, L2). We
denote L′0 = R2 and R′0 = L2 and the intermediate values computed by
L′1, R

′
1 and L′2, R

′
2. Using the same formula as above, we have:

L′1 = R′0

R′1 = L′0 ⊕ f2(R
′
0)

L′2 = L′0 ⊕ f2(R
′
0)

R′2 = L′1 ⊕ f1(R
′
1) = R′0 ⊕ f1(L

′
2)

(note that f2 and f1 have been reversed). Plugging in L′0 = R2 and
R′0 = L2 we have that

L′2 = R2 ⊕ f2(L2) and R′2 = L2 ⊕ f1(L
′
2).

Using Equation (6.2), we have that R2⊕f2(L2) = R0 and thus L′2 = R0.
Thus, R′2 = L2 ⊕ f1(L

′
2) = L2 ⊕ f1(R0). However, by Equation (6.1),

we have that L2 ⊕ f1(R0) = L0 and so R′2 = L0. We conclude that
Feistelf2,f1(R2, L2) = (R0, L0), as required.

6.9 For this exercise, rely on the description of DES given in this chapter,
but use the fact that in the actual construction of DES the two halves of
the output of the final round of the Feistel network are swapped. That
is, if the output of the final round of the Feistel network is (L16, R16),
then the output of DES is (R16, L16).

(a) Show that the only difference between computation of DESk and
DES−1k is the order in which sub-keys are used. (Rely on the
previous exercise.)

(b) Show that for k = 056 it holds that DESk(DESk(x)) = x.

(c) Find three other DES keys with the same property. These keys are
known as weak keys for DES. (Note: the keys you find will differ
from the actual weak keys of DES because of differences in our
presentation.)

(d) Do these 4 weak keys represent a serious vulnerability in the use
of triple-DES as a pseudorandom permutation? Explain.

Solution:
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(a) Denote by Feistel′f1,f2 a modified two-round Feistel network using
round functions f1 and f2 in that order, where the modification is
that the two halves of the output of the final round are swapped.
In the previous exercise we showed that if y = Feistel′f1,f2(x), then

x = Feistel′f2,f1(y). (This is not true for the “regular” Feistel net-
work, where the two halves of the output of the final round are not
swapped.)

Now consider the computation Feistel′f2,f1 on input (L′0, R
′
0) =

(R2, L2). We call the results of the first round L′1 and R′1, and
the results of the second round L′2 and R′2. Then L′1 = R′0 = R2 =
L0 ⊕ f1(R0) and R′1 = L′0 ⊕ f2(R

′
0) = R0. Next, L′2 = R′1 = L1 =

R0, and

R′2 = L′1⊕f1(R′1) = L0⊕f1(R0)⊕f1(L1) = L0⊕f1(R0)⊕f1(R0) = L0.

Swapping the result, we obtain output (L0, R0) which is the original
input we started with. The extension to the 16 rounds of DES
follows by applying the above argument 8 times.

(b) When k = 056, all sub-keys in all rounds are exactly the same (every
sub-key is an all-0 string). By the previous exercise, this means that
decryption and encryption are identical (because all sub-keys are
the same). Thus, DES056(DES056(x)) = DES−1056(DES056(x)) =
x. The use of such a key is a vulnerability because it means that
an adversary can decrypt a challenge ciphertext using a chosen-
plaintext attack.

(c) Three other keys with this property are 156, 028∥128 and 128∥028.
The two latter keys are also weak keys because, as described in
the book, the sub-keys are derived by taking subsets of the left
and right halves of the key in each round. Thus, in all rounds we
have the sub-key 024∥124 (or 124∥024) and so once again encryption
and decryption are the same. (We remark that the actual weak
keys in DES are different because the description in the book is a
simplification of DES. Specifically, the two halves of the master key
that are used for deriving the sub-keys are not the left and right
halves of the master key.)

(d) The existence of these keys does not constitute any significant prob-
lem for DES. The reason for this is that the probability that one
of these keys is chosen is 4/256 = 2−54.

6.10 Show that DES has the property that DESk(x) = DESk̄(x̄) for ev-
ery key k and input x (where z̄ denotes the bitwise complement of z).
(This is called the complementarity property of DES.) Does this repre-
sent a serious vulnerability in the use of triple-DES as a pseudorandom
permutation? Explain.
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Solution: Let f̂ be the DES mangler function. We first claim that for
every key k and every input x, it holds that f̂(k, x) = f̂(k̄, x̄). To see
this, notice that for input x and key k, the input to the S-boxes equals
E(x)⊕ k where E is the expansion function. Since E simply duplicates
half of the bits of its input, we have that E(x̄) equals E(x). Therefore
E(x̄) ⊕ k̄ = E(x) ⊕ k̄ = E(x) ⊕ k. Since the input to the S-boxes is
the same, the output from the S-boxes is also the same. Applying the
mixing permutation does not change the fact that the outputs are equal.
We conclude that f̂(k, x) = f̂(k̄, x̄).

Next look at the entire Feistel structure. For input L0, R0 and key k,
the values after the first round are L1 = R0 and R1 = L0 ⊕ f̂(k1, R0).
By the above, for input L0, R0 and key k̄ the values after the first round
are L′1 = R0 = L1 and

R′1 = L0 ⊕ f̂(k̄1, R0) = L0 ⊕ f̂(k1, R0) = L0 ⊕ f̂(k1, R0) = R1.

Since the above continues to hold after each round of the Feistel network
is applied, we see that DESk(x) = DESk̄(x̄).

6.11 Describe attacks on the following modifications to DES:

(a) Each sub-key is 32 bits long, and the round function simply XORs

the sub-key with the input to the round (i.e., f̂(k,R) = ki ⊕ R).
For this question, the key schedule is unimportant and you can
treat the sub-keys ki as independent keys.

(b) Instead of using different sub-keys in every round, the same 48-bit
sub-key is used in every round. Show how to distinguish the cipher
from a random permutation in ≪ 248 time.

Solution:

(a) Let us follow a few rounds of the computation, where ki denotes
the round-i sub-key. Starting with (L0, R0) we get L1 = R0 and

R1 = L0 ⊕ f̂(k1, R0) = L0 ⊕R0 ⊕ k1.

Then L2 = L0 ⊕R0 ⊕ k1 and

R2 = R0 ⊕ L0 ⊕R0 ⊕ k1 ⊕ k2 = L0 ⊕ k1 ⊕ k2.

Continuing, we see that the final output is a simple linear function
of L0, R0, and the sub-keys. It can thus be distinguished easily
from a random permutation.

(b) By the result of Exercise 6.9, we know that when all sub-keys are
the same encryption and decryption are identical. It is therefore
trivial to distinguish this cipher from a random permutation.
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6.12 (This exercise relies on Exercise 6.9.) Our goal is to show that for any
weak key k of DES, it is easy to find an input x such that DESk(x) = x.

(a) Assume we evaluate DESk on input (L0, R0), and the output after
8 rounds of the Feistel network is (L8, R8) with L8 = R8. Show that
the output of DESk(L0, R0) is (L0, R0). (Recall from Exercise 6.9
that DES swaps the two halves of the 16th round of the Feistel
network before outputting the result.)

(b) Show how to find an input (L0, R0) with the property in part (a).

Solution:

(a) By Exercise 6.9(a), the only difference between DESk and DES−1k

is the order in which sub-keys are used. When k is a DES weak key,
it follows that all round functions are the same. For this reason,
DESk(DESk(x)) = x as shown in Exercise 6.9(b). However, the
argument used to show these facts in Exercise 6.9 is the same for

just 8 rounds. Thus, denoting D̃ES to beDES reduced to 8 rounds
(including swapping the two halves before outputting the result),

it follows that for every x: D̃ESk(D̃ESk(x)) = x. Equivalently,

it follows that for every x: D̃ESk(x) = D̃ES
−1
k (x). Now, the

only difference between D̃ESk(D̃ESk(x)) and DESk(x) is that

in D̃ESk(D̃ESk(x)) the halves are swapped after 8 rounds. If an
input x is such that (L8, R8) fulfills that L8 = R8, then this implies

that for such an x we have that D̃ESk(D̃ESk(x)) = DESk(x).

However, we have already seen that D̃ESk(D̃ESk(x)) = x. Thus,
we concludes that DESk(x) = x (for k a weak key and for x with
the property that L8 = R8).

(b) In order to find such an x, take any arbitrary 32-bit value z and
set L8 = R8 = z. Then, for a weak key k, compute x = (L0, R0) =

D̃ESk(L8, R8). As we have already shown, it also holds that

x = D̃ES
−1
k (L8, R8). Thus, D̃ESk(D̃ESk(x)) = DESk(x) =

DESk(x) = x.

6.13 This question illustrates an attack on two-key triple encryption. Let
F be a block cipher with n-bit block length and key length, and set

F ′k1,k2
(x)

def
= Fk1(F

−1
k2

(Fk1(x))).

(a) Assume that given a pair (m1,m2) it is possible to find in constant
time all keys k2 such that m2 = F−1k2

(m1). Show how to recover
the entire key for F ′ (with high probability) in time roughly 2n

using three known input/output pairs.

(b) In general, it will not be possible to find k2 as above in constant
time. However, show that by using a preprocessing step taking 2n
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time it is possible, given m2, to find in (essentially) constant time
all keys k2 such that m2 = F−1k2

(0n).

(c) Assume k1 is known and that the pre-processing step above has
already been run. Show how to use the value y = F ′k1,k2

(x) for a
single chosen plaintext x to determine k2 in constant time.

(d) Put the above components together to devise an attack that re-
covers the entire key of F ′ by running in roughly 2n time and
requesting the encryption of roughly 2n chosen inputs.

Solution:

(a) Let (x1, y1), (x2, y2), (x3, y3) be three plaintext/ciphertext pairs that
were computed using F ′k1,k2

(for unknown keys k1, k2). Initialize a

set K = ∅. Then for every key k̂1 ∈ {0, 1}n do:

i. Compute m1 = Fk̂1
(x1) and m2 = F−1

k̂1
(y1).

ii. Find all keys k̂2 such that m2 = F−1
k̂2

(m1). Call this set S. For

each k̂2 ∈ S do:

If y2
?
= F ′

k̂1,k̂2
(x2) and y3

?
= F ′

k̂1,k̂2
(x3), then add (k̂1, k̂2)

to K.

Let us first analyze the running time of the attack. For a given
k̂1, the running time of the loop above is linear in |S| (under the

assumption that we can find all keys k̂2 such that m2 = F−1
k̂2

(m1)

in constant time). Furthermore, for a given (m1,m2) we expect

S to contain only a single key k̂2. Since the algorithm tries all
possible values for k̂1, the total running time is roughly 2n.

It is easy to see that the correct key (k1, k2) will be in K. We
argue that with high probability this is the only key in K. Let Si

be the set S in the ith iteration of the algorithm. As we have said
above, we expect that each set Si contains only a single key k̂2.
Summing over all iterations of the algorithm, we expect a total of

2n keys in S∗ def
= ∪iSi. But the probability that an incorrect key

in S∗ gets put into K is roughly 2−2n (because this is roughly the

probability that an incorrect key (k̂1, k̂2) satisfies y2 = F ′
k̂1,k̂2

(x2)

and y3 = F ′
k̂1,k̂2

(x3)). Taking a union bound over all incorrect

keys in S∗, we expect an incorrect key to get put into K only with
probability 2−n.

(b) Using 2n preprocessing time, we can compute all pairs (m2, k2)
such that m2 = F−1k2

(0n) and put these in a list, sorted by m2.
Then given any m2, we can find in essentially constant time all
keys k2 such that (m2, k2) is in the list. (Note that, in expectation
[and treating F as a random function], for any given m2 there is
only one k2 such that m2 = F−1k2

(0n).)
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(c) If k1 is already known, then we can compute x = F−1k1
(0n) and ask

for an encryption of x; let the result be y. Then, given y we can
compute m2 = F−1k1

(y). By the definition of F ′ we have that m2 =

F−1k2
(0n). This is because y = F ′k1,k2

(x) = Fk1(F
−1
k2

(Fk1(x))) =

Fk1(F
−1
k2

(0n)) and so m2 = F−1k1
(y) = F−1k2

(0n). We can therefore
use the method of the previous step to find k2 in constant time.

(d) The full attack works as follows. First run the preprocessing step
as described in part (b). Then for every k1 ∈ {0, 1}n, run the at-
tack described in part (c). This will result in a set of 2n possible
values for the key (one for each value of k1). Using the plain-
text/ciphertext pairs we already have, we can narrow this down to
the correct key.

For each k1 ∈ {0, 1}n we request the encryption of only one chosen
plaintext, for a total of 2n chosen plaintexts. Each step of the
attack takes time 2n. We remark that 2n memory is also required.

6.14 Say the key schedule of DES is modified as follows: the left half of the
master key is used to derive all the sub-keys in rounds 1–8, while the
right half of the master key is used to derive all the sub-keys in rounds
9–16. Show an attack on this modified scheme that recovers the entire
key in time roughly 228.

Solution: The solution to this exercise is to run a meet-in-the-middle
attack on DES as follows. Use an encryption oracle to obtain plain-
text/ciphertext pairs (x1, y1), (x2, y2), (x3, y3). Then, prepare a list of
values (z1, k1) where k1 ∈ {0, 1}28 and z1 is the result of 8 rounds of
DES encryption of x1 using k1. Likewise, prepare another list of values
(z2, k2) where k2 ∈ {0, 1}28 and z2 is the result of 8 rounds of DES de-
cryption of y1 using k2. As in the meet-in-the-middle attack on 2DES,
it is possible to find pairs k1, k2 that constitute candidate keys and then
verify them using (x2, y2) and (x3, y3).

6.15 Let f : {0, 1}m × {0, 1}ℓ → {0, 1}ℓ and g : {0, 1}n × {0, 1}ℓ → {0, 1}ℓ be
block ciphers with m > n, and define Fk1,k2(x) = fk1(gk2(x)). Show a
key-recovery attack on F using time O(n · 2m) and space O(ℓ · 2n).

Solution: This is a generalization of the meet-in-the-middle attack.
Assume ℓ = O(n). Briefly, given a plaintext/ciphertext pair (x, y),
construct a list of size (ℓ + n) · 2n = O(ℓ · 2n) of all the pairs (k2, z)
where k2 ∈ {0, 1}n and z = gk2

(x), and sort this list by the second
element. Next, for every k1 ∈ {0, 1}m, search for f−1k1

(y) in this list.
If it exists, and k2 is the first element in the pair, then (k1, k2) is a
potential candidate for the key. By using a few plaintext/ciphertext
pairs (with the exact number depending on ℓ), a single candidate key
remains. The time to carry out the attack is dominated by the O(2m)
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time to enumerate over all k1 (technically, if binary search is used, this
requires time O(n · 2m)).

6.16 Define DESYk,k′(x) = DESk(x⊕ k′). The key length of DESY is 120
bits. Show a key-recovery attack onDESY taking time and space ≈ 264.

Solution: The observation is that an optimized meet-in-the-middle at-
tack can be used here. Let {(xi, yi)} be a set of plaintext/ciphertext
pairs. For every k ∈ {0, 1}56 compute z1 = DES−1k (y1). Since y1 =
DESk(x1⊕ k′) we have that if k is the correct first half of the key, then
k′ = x1⊕ z1. That is, for every guess of k, we obtain a single possibility
for k′. The other plaintext/ciphertext pairs can then be used to check
whether this candidate key (k, k′) is correct.

This attack requires time 256 and constant space.

6.17 Choose random S-boxes and mixing permutations for SPNs of different
sizes, and develop differential attacks against them. We recommend
trying five-round SPNs with 16-bit and 24-bit block lengths, using S-
boxes with 4-bit input/output. Write code to compute the differential
tables, and to carry out the attack.

No solution given.

6.18 Implement the time/space tradeoff for 40-bit DES (i.e., fix the first 16
bits of the key of DES to 0). Calculate the time and memory needed, and
empirically estimate the probability of success. Experimentally verify
the increase in success probability as the number of tables is increased.
(Warning: this is a big project!)

No solution given.

6.19 For each of the following constructions of a compression function h from
a block cipher F , either show an attack or prove collision resistance in
the ideal-cipher model:

(a) h(k, x) = Fk(x).

(b) h(k, x) = Fk(x)⊕ k ⊕ x.

(c) h(k, x) = Fk(x)⊕ k.

Solution: In each case we try the proof approach used to prove Theo-
rem 6.5.

(a) There are two ways the attacker can learn the value of h on some
input. If it queries Fk(x) and gets response y, then it learns that
h(k, x) = y. In this case y is (essentially) uniform. The attacker can
also query F−1k (y) to get response x; then it learns that h(k, x) = y.
Observe that here the attacker has complete control over y, and so
the proof approach does not work. In fact, this suggests an attack:
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pick arbitrary y and distinct k, k′. Compute x := F−1k (y) and
x′ := F−1k′ (y). Note that h(k, x) = h(k′, x′) = y and so (k, x) and
(k′, x′) are a collision.

(b) There are two ways the attacker can learn the value of h on some
input. If it queries Fk(x) and gets response y, then it learns that
h(k, x) = y ⊕ k ⊕ x. Note that y is (essentially) uniform and
independent of k, x, and so h(k, x) is (essentially) uniform as well.
The attacker can also query F−1k (y) to get response x, in which case
it learns that h(k, x) = y ⊕ k ⊕ x. Here, again, x is (essentially)
uniform, and so h(K,x) is (essentially) uniform as well. Thus,
every h-output learned by the attacker is uniform, and the proof
approach used to prove Theorem 6.5 works here as well to show
that h is collision-resistant.

(c) There are two ways the attacker can learn the value of h on some
input. If it queries Fk(x) and gets response y, then it learns that
h(k, x) = y ⊕ k. In this case that y is (essentially) uniform, and so
h(k, x) is (essentially) uniform as well. The attacker can also query
F−1k (y) to get response x, in which case it learns that h(k, x) =
y⊕ k. Here the attacker has complete control over k and y, and so
the proof approach does not work. In fact, this suggests an attack:
pick (distinct) k, k′, y, y′ such that k ⊕ y = k′ ⊕ y′, then compute
x := F−1k (y) and x′ := F−1k′ (y′). Then h(k, x) = h(k′, x′) and so
(k, x) and (k′, x′) are a collision.

6.20 Consider using DES to construct a compression function in the following

way: Define h : {0, 1}112 → {0, 1}64 as h(x1, x2)
def
= DESx1(DESx2(0

64))
where |x1| = |x2| = 56.

(a) Write down an explicit collision in h.

(b) Show how to find a preimage of an arbitrary value y (that is, x1, x2

such that h(x1∥x2) = y) in roughly 256 time.

(c) Show a more clever preimage attack that runs in roughly 232 time
and succeeds with high probability.

Solution:

(a) The pair x = 1112 and x′ = 0112 constitutes a collision. This is
because in both cases encryption equals decryption and so

h(x) = DES156(DES156(0
64)) = DES−1156(DES156(0

64)) = 064,

and similarly h(0112) = 064.

(b) Use the same meet-in-the-middle attack as for double encryption,
viewing (064, y) as a plaintext/ciphertext pair encrypted using some
unknown “key” x = x1, x2. (Any key that is found will be a pre-
image for the given value y.)
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(c) The key observation here is that we can run a modified version of
the meet-in-the-middle attack from part (b), using the fact that
there is no “right” answer. (That is, we are not searching for some
fixed key x1, x2 such that DESx1(DESx2(0

64)) = y; rather, we are
searching for any key satisfying this constraint.) We modify the
attack as follows: choose 228 random values of x2, and for each such
value compute z := DESx2(0

64) and store (z, x2) in a list L. Then
choose 228 random values of x1, and for each such value compute
z := DES−1x1

(y) and store (z, x1) in a list L′. Roughly speaking, we
can view all the computed z-values as being “random”; since each
z-value is 64-bits long, we therefore expect a “match” (i.e., entries
(z2, x2) ∈ L and (z1, x1) ∈ L′ such that z2 = z1) to occur with
constant probability. Any match immediately yields a pre-image
for the given value y.

6.21 Let F be a block cipher for which it is easy to find fixed points for some
key: namely, there is a key k for which it is easy to find inputs x for
which Fk(x) = x. Find a collision in the Davies–Meyer construction
when applied to F . (Consider this in light of Exercise 6.12.)

Solution: Davies-Meyer is defined by h(k, x) = Fk(x) ⊕ x. Now, for
any k, x such that Fk(x) = x, it holds that h(k, x) = x ⊕ x = 0. Thus,
if for some key k it is easy to find two distinct inputs x, x′ such that
Fk(x) = x and Fk(x

′) = x′ then it follows that h(k, x) = 0 = h(k, x′),
which is a collision. (Likewise, if it is easy to find k′ ̸= k.)

As we have seen in Exercise 6.12, in DES it is easy to find many such
values x for any of the four DES weak keys. Thus, this implies that
Davies-Meyer is not collision resistant when used with DES. Observe
that this does not contradict Theorem 6.5 since that assumes the F is
an ideal cipher. This should serve as a strong warning regarding the
ideal-cipher model.





Chapter 7

Theoretical Constructions of
Symmetric-Key Primitives –
Solutions

7.1 Prove that if there exists a one-way function, then there exists a one-way
function f such that f(0n) = 0n for every n. Note that for infinitely
many values y, it is easy to compute f−1(y). Why does this not contra-
dict one-wayness?

Solution: We provide a painfully detailed proof. Let f be one-way
function (that exists by the assumption) and define g(x) = f(x) for
every x ̸= 0|x| and g(0n) = 0n for every n. Clearly, g fulfills the re-
quirements. It remains to prove that it is one-way. First, g is efficiently
computable. Second, assume by contradiction that there exists a prob-
abilistic polynomial-time algorithm A and set

ε(n)
def
= Pr[InvertA,g(n) = 1].

We begin by analyzing the probability that A succeeds in inverting g
on non-zero inputs (the value x referred to below is the x chosen in the
Invert experiment):

Pr[InvertA,g(n) = 1] = Pr[InvertA,g(n) = 1 | x ̸= 0n] · Pr [x ̸= 0n]

+Pr[InvertA,g(n) = 1 | x = 0n] · Pr [x = 0n]

≤ Pr[InvertA,g(n) = 1 | x ̸= 0n] + Pr [x = 0n]

= Pr[InvertA,g(n) = 1 | x ̸= 0n] +
1

2n
.

Therefore, Pr[InvertA,g(n) = 1 | x ̸= 0n] ≥ ε(n)− 1
2n . We now construct

B that inverts f as follows. Upon receiving an input y, algorithm B

71
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invokes A and returns whatever A outputs. We analyze B’s success:

Pr[InvertB,f (n) = 1] = Pr[InvertB,f (n) = 1 | x ̸= 0n] · Pr [x ̸= 0n]

+Pr[InvertB,f (n) = 1 | x = 0n] · Pr [x = 0n]

≥ Pr[InvertB,f (n) = 1 | x ̸= 0n] · Pr [x ̸= 0n]

= Pr[InvertB,f (n) = 1 | x ̸= 0n] ·
(
1− 1

2n

)
= Pr[InvertB,g(n) = 1 | x ̸= 0n] ·

(
1− 1

2n

)
≥
(
ε(n)− 1

2n

)
·
(
1− 1

2n

)
= ε(n)− negl(n)

for some negligible function negl. Since f is one-way, we must have that
ε is negligible. Since this holds for arbitrary ppt A, we conclude that g
is one-way as well.

This does not contradict one-wayness since although there are infinitely
many values that can be easily inverted, the probability of receiving
such a value is negligible (specifically, 2−n).

7.2 Prove that if f is a one-way function, then the function g defined by

g(x1, x2)
def
= (f(x1), x2), where |x1| = |x2|, is also a one-way function.

Observe that g reveals half of its input, but is nevertheless one-way.

Solution: Let A be a probabilistic polynomial-time adversary and let

ε(n)
def
= Pr[InvertA,g(n) = 1].

We construct an adversary A′ who inverts f as follows: A′ receives for
input 1n and some y, chooses x2 ← {0, 1}n and invokes A upon 12n

and y∥x2. Then, A′ outputs the first half of whatever A outputs. Now,
if A successfully inverts y∥x2 under g then it returns x∥x2 such that
f(x) = y. Thus, A′ successfully inverts y under f . This implies that

Pr[InvertA′,f (n) = 1] = ε(n),

and so ε must be negligible. We conclude that g is a one-way function.

7.3 Prove that if there exists a one-way function, then there exists a length-
preserving one-way function.

Solution: We provide only a proof sketch here. We first show how
to construct a length-regular one-way function. (A function is length
regular if |x| = |y| ⇒ |f(x)| = |f(y)|.) Let f be a one-way function.
Since f is one-way, it is efficiently computable. Thus, there exists a
polynomial p(·) such that for every x, |f(x)| ≤ p(|x|). Assume p(n) ≥ n
(if not, just set p(n) = n). Define f ′(x) = f(x)10p(|x|)−|f(x)|. Clearly,
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f ′ is length-regular. This is due to the fact that the output-length of
f ′(x) for every x of length n is exactly p(n) + 1. We now prove that f ′

is one-way.

Assume by contradiction that there exists a probabilistic polynomial-
time adversary A′ and a non-negligible function ε(·) such that

Pr[InvertA′,f ′(n) = 1] = ε(n).

We construct an adversary A who inverts f as follows: A receives 1n and
y for input, invokes A′ on 1n and y10p(|x|)−|f(x)| and returns whatever
A′ returns (we can assume that A knows the polynomial p(·)). The
important point to note here is that due to the fact that “padding”
includes a single one followed by zeroes, the output of f ′(x) uniquely
defines the length of the portion that is f(x). Therefore, the set of pre-
images of f ′(x) equals the set of pre-images of f(x). This implies that
if A′ inverts f ′, then A will have inverted f . By our assumption, A′
inverts with success probability of ε(n); therefore the same is true of A.
This contradicts the assumed one-wayness of f .

We next construct a length-preserving one-way function g. Define q(n) =
|f ′(0n)| where f ′ is as above; since f ′ is length-regular, this means that
the output length of f ′ on any n-bit input is exactly q(n). Note also
that by construction of f ′, we have q(n) ≥ n for all n. Now compute
g(x) as follows:

(a) Set n := |x|.
(b) Find the largest n′ such that q(n′) < n. (Note that n′ ̸= n.) Let

x′ denote the n′-bit prefix of x.

(c) Output f ′(x′)10n−q(n
′)−1.

We omit the (tedious, but straightforward) proof that g is one-way.

7.4 Let (Gen,H) be a collision-resistant hash function, whereH maps strings
of length 2n to strings of length n. Prove that the function family
(Gen, Samp,H) is one-way (cf. Definition 7.3), where Samp is the trivial
algorithm that samples a uniform string of length 2n.

Solution: Let Π = (Gen, Samp,H) and fix an adversary A. Consider
the following algorithm C attempting to find a collision in Π.

Algorithm C:
The algorithm is given s and tries to find a collision in Hs.

• Choose x← {0, 1}2n (recall that 1n is implicit is s).

• Compute y := Hs(x) and run A(s, y) to obtain x′.

• Output (x, x′).
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Before we analyze C, we argue about the behavior of A. For any fixed
key s output by Gen(1n), let

lights
def
= {x | Hs(x) has at most 2n/2 pre-images under Hs}.

Since the output of Hs is an n-bit string, the maximum possible size of
lights is 2n ·2n/2 = 23n/4. So the probability that a random x ∈ {0, 1}2n
is in lights is at most 23n/4/22n = 2−n/4.

We have

Pr[InvertA,Π(n) = 1] = Pr[Hs(x′) = y]

≤ Pr[Hs(x′) = y ∧ x ̸∈ lights] + Pr[x ∈ lights]

≤ Pr[Hs(x′) = y ∧ x ̸∈ lights] + 2−n/4 , (7.1)

where in all cases the probability is over the experiment in which s is
output by Gen(1n); x is then chosen at random from {0, 1}2n and y is
computed as y := Hs(x); and then A(s, y) is run to obtain x′. (This is
exactly the inverting experiment considered in Definition 7.70.)

Returning to an analysis of C, we have

Pr [Hash-collC,Π(n) = 1] ≥ Pr[Hs(x′) = y ∧ x′ ̸= x ∧ x ̸∈ lights],

where the probability is over the exact same experiment as above (this
follows from the construction of C). So

Pr [Hash-collC,Π(n) = 1]

≥ Pr[Hs(x′) = y ∧ x′ ̸= x ∧ x ̸∈ lights]

= Pr[Hs(x′) = y ∧ x ̸∈ lights] · (1− Pr[x′ = x | Hs(x′) = y ∧ x ̸∈ lights])

≥ Pr[Hs(x′) = y ∧ x ̸∈ lights] ·
(
1− 2−n/2

)
,

using the fact that for y = Hs(x) with x ̸∈ lights, there are at least 2
n/2

pre-images of y under Hs, all of which are equally likely to have been
chosen (from the point of view of A). Combined with Equation (7.1)
and the assumption that (Gen, H) is collision resistant (along with the
fact that 2−n/2 and 2−n/4 are negligible), this shows that there exists a
negligible function negl such that Pr[InvertA,Π(n) = 1] ≤ negl(n).

7.5 Let F be a (length-preserving) pseudorandom permutation.

(a) Show that the function f(x, y) = Fx(y) is not one-way.

(b) Show that the function f(y) = F0n(y) (where n = |y|) is not one-
way.

(c) Prove that the function f(x) = Fx(0
n) (where n = |x|) is one-way.
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7.6 Let f be a length-preserving one-way function, and let hc be a hard-
core predicate of f . Define G as G(x) = f(x)∥hc(x). Is G necessarily a
pseudorandom generator? Prove your answer.

Solution: No, G is not necessarily a pseudorandom generator. For
example, let g be a one-way function and define f(x1, x2) = (g(x1), 0

|x2|)
where |x1| = |x2|. The fact that f is a one-way function can be proved
in an almost identical way as in the solution to the previous exercise.
Using this f in the construction of the exercise, we obtain a G which is
clearly not pseudorandom (since on input a seed of length n, the output
of G contains a sequence of n/2 consecutive 0s).

7.7 Prove that there exist one-way functions if and only if there exist families
of one-way functions. Discuss why your proof does not carry over to the
case of one-way permutations.

Solution: It is trivial to see that the existence of any one-way function
f implies the existence of a family of one-way functions: just take Gen
to be the trivial algorithm that outputs I = 1n on input 1n, and let
Samp be the trivial algorithm that returns a random n-bit string on
input I = 1n; the family (Gen, Samp, f) is then one-way. We therefore
focus on the more interesting direction.

Let Π = (Gen, Samp, f) be a family of one-way functions. Let pG(·)
denote the (polynomial) running time of Gen and let pS(·) denote the
(polynomial) running time of Samp. Note that pG(n) and pS(n) consti-
tute an upper bound on the number of random coins used by Gen and
Samp, respectively, on security parameter 1n. Furthermore, pS(n) also
constitutes an upper bound on the length of values in the range of DI

for I output by Gen(1n).

We define a single one-way function g as follows. Upon input x of length
n, let k be maximal such that pG(k) + pS(k) ≤ n; then divide x into
three parts x1, x2, x3 such that |x1| = pG(k) and |x2| = pS(k). The
function g is defined as (we ignore x3):

g(x) = g(x1, x2) =
(
Gen(1k;x1), f

(
Gen(1k;x1), Samp(Gen(1k;x1);x2)

))
,

where Gen(1k;x1) denotes the output of algorithm Gen upon input 1k

and random tape x1, and Samp(Gen(1k;x1);x2) denotes the output of
Samp upon input Gen(1k;x1) and random tape x2. Note that Gen(1k;x1)
is included in the output to force any inverting algorithm to find a pre-
image of f

(
Gen(1k;x1), Samp(Gen(1k;x1);x2)

)
under Gen(1k;x1) and

not under some other function in the family.

It remains to prove that g is a one-way function. First, it is clearly an
efficiently computable function. Second, assume by contradiction that
it can be inverted with probability ε(n) for some non-negligible function
ε(·). By the construction, this implies that the family (Gen, Samp, f)
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can be inverted with probability ε(n). This holds because for every n
there exists a k that results from the above derivation via pG and pS ,
and g can be inverted for these k’s with probability ε(n). Now, let c
be a constant such that n = kc (such a constant exists because the
lengths of k and n are polynomially related). Thus, we have that the
family (Gen, Samp, f) can be inverted with probability ε(kc). If ε is non-
negligible in kc then it is also non-negligible in k. This contradicts the
one-wayness of (Gen, Samp, f).

For the case of permutations, any one-way permutation implies a family
of one-way permutations using the same trivial construction given ear-
lier. On the other hand, the transformation of a one-way function family
to a one-way function given above does not work for permutations since
the g that results is not necessarily a permutation even if f is.

7.8 Let f be a one-way function. Is g(x)
def
= f(f(x)) necessarily a one-

way function? What about g′(x)
def
= (f(x), f(f(x)))? Assume that g′ is

encoded so that its output can be uniquely parsed into f(x) and f(f(x)).
Prove your answers.

Solution: We give a counterexample showing that taking g(x) = f(f(x))
for an arbitrary one-way function f does not necessarily make g a one-
way function. Let h be any length-preserving one-way function and
define f as follows: If xn/2+1 · · ·xn = 0n/2, then f(x) = 0|x|; else,

f(x) = h(x1 · · ·xn/2)0
n/2. We show that f is one-way, but that g (de-

fined as above) is not.

To show that f is one-way, let A be a probabilistic polynomial-time
adversary with

ε(n)
def
= Pr[InvertA,f (1

n) = 1].

We construct an adversary A′ that inverts h as follows. A′ receives 1n/2
and a value y ∈ {0, 1}n/2 and attempts to find a value x ∈ h−1(y).
The adversary A′ just invokes A upon 1n and y0n/2 and outputs the
first n/2 bits of A’s output. We now analyze the success probability
of A′. First, denote Sn = {x | xn/2+1 · · ·xn = 0n/2} and note that

Pr[x ∈ Sn] = 2−n/2. Next, note that

Pr[InvertA′,h(n) = 1] ≥ Pr[InvertA,f (n) = 1 | x /∈ Sn].

Now,

Pr[InvertA,f (n) = 1] = Pr[InvertA,f (n) = 1 | x ∈ Sn] · Pr[x ∈ Sn]

+ Pr[InvertA,f (n) = 1 | x /∈ Sn] · Pr[x /∈ Sn]

≤ Pr[x ∈ Sn] + Pr[InvertA,f (n) = 1 | x /∈ Sn]

= Pr[x ∈ Sn] + Pr[InvertA′,h(n) = 1]

=
1

2n/2
+ Pr[InvertA′,h(n) = 1].
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We therefore have that

Pr[InvertA′,h(n) = 1] ≥ Pr[InvertA,f (n) = 1]− 1

2n/2
= ε(n)− 1

2n/2
.

Since A′ is a probabilistic polynomial-time algorithm and h is one-way,
ε must be negligible. We therefore conclude that f is one-way.

Having established that f is one-way, it remains to show that g is not
one-way. In order to see this, observe that f(f(x)) = 0|x| for every
input x; thus, it is trivial to find a pre-image of 0|x| under g (just take
0|x|) and g(x) = f(f(x)) is not one-way.

Next, we claim that g(x) = (f(x)∥f(f(x))) is one-way. Assume by
contradiction that there exists a probabilistic polynomial-time adversary
A and a non-negligible function ε(·) such that

Pr[InvertA,g(n) = 1] = ε(n).

We construct a probabilistic polynomial-time A′ who inverts f with
probability ε(n). Namely, A′ receives input 1n and y, computes z =
f(y) and invokes A on input 1n and (y, z). Adversary A′ then outputs
whatever A outputs. Clearly,

Pr[InvertA′,f (n) = 1] = Pr[InvertA,g(n) = 1] = ε(n),

in contradiction to the one-wayness of f .

7.9 Let Π = (Gen, Samp, f) be a function family. A function hc : {0, 1}∗ →
{0, 1} is a hard-core predicate of Π if it is efficiently computable and if
for every ppt algorithm A there is a negligible function negl such that

Pr
I←Gen(1n), x←Samp(I)

[A(I, fI(x)) = hc(I, x)] ≤ 1

2
+ negl(n).

Prove a version of the Goldreich–Levin theorem for this setting, namely,
if a one-way function (resp., permutation) family Π exists, then there
exists a one-way function (resp., permutation) family Π′ and a hard-core
predicate hc of Π′.

Solution: The only difference between this and the original Goldreich-
Levin proof is that here the set Sn of Claim 7.18 depends on the function
in the family. The proof is otherwise the same as in the book.

7.10 Show a construction of a pseudorandom generator from any one-way
permutation family. You may use the result of the previous exercise.

Solution: This works in the same way as the proof of Theorem 7.19.
However, the seed must also be used to sample the permutation using
the sampling algorithm. Let p(n) be an upper bound on the amount
of randomness used to sample a function in the family. Then, given
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a seed of length p(n) + n, first use p(n) bits to sample a function fI .
Then, it is possible to use the constructions of Sections 7.4.1 and 7.4.2
to obtain p(n)+n+1 bits. Observe that increasing the expansion factor
here is essential since applying the basic generator of Section 7.4.1 only
once will yield an output of just n+1 bits which is less than the length
of the seed and thus not a generator. By applying p(n) times as in
Section 7.4.1, expansion is achieved.

7.11 This exercise is for students who have taken a course in complexity
theory or are otherwise familiar with NP completeness.

(a) Show that the existence of one-way functions implies P ̸= NP.
(b) Assume that P ̸= NP. Show that there exists a function f

that is: (1) computable in polynomial time, (2) hard to invert
in the worst case (i.e., for all probabilistic polynomial-time A,
Prx←{0,1}n [f(A(f(x))) = f(x)] ̸= 1), but (3) is not one-way.

Solution:

(a) Consider the language L = {(y, x′) | ∃x′′ : f(x′∥x′′) = y}; that is,
the language of all pairs (y, x′) where x′ is is the prefix of some pre-
image of y. It is clear that L ∈ NP (one can non-deterministically
guess x′′ and then compute f). Now, if P = NP then there ex-
ists a polynomial-time algorithm A that decides L. We use A to
invert f . Specifically, given 1n and y, we use A to determine the
bits of a pre-image of y one at a time as follows. Given the prefix
x′ of a pre-image of y (initially x′ is of length zero), we extend it
by one bit by using A to determine if (y, x′∥0) ∈ L. If yes, then we
set x′ := x′∥0 and proceed; otherwise, we set x′ := x′∥1 and pro-
ceed. After n iterations, we obtain x such that f(x) = y and have
thus successfully inverted f . The above holds for any function f .
Therefore, if there exists a one-way function, P cannot equal NP .

(b) Let G be a graph and let ϕ be a 3-coloring of G. Then, consider
the function f(G,ϕ) = (G, 1) if ϕ is a valid coloring of G and
f(G,ϕ) = (G, 0) if ϕ is not a valid coloring of G. (Note, that G can
be represented as a string of length

(
n
2

)
where each bit in the string

denotes the existence or nonexistence of the appropriate edge.)

f is easy to compute, because the validity of a coloring can be
checked in polynomial-time. Further, f is hard to invert in the
worst case. This is due to the assumption that P ̸= NP and so
given (G, 1) it is hard – in the worst case – to find a valid 3-coloring
for G. Finally, note that f is not a one-way function. This is due
to the fact that a random 3-coloring of a random graph will be
valid with very low probability. Thus, with high probability over
a random input the output of f will be some pair (G, 0) which is
easily invertible (just compute any invalid coloring).
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7.12 Let x ∈ {0, 1}n and denote x = x1 · · ·xn. Prove that if there exists a
one-way function, then there exists a one-way function f such that for
every i there exists an algorithm Ai such that

Pr
x←{0,1}n

[Ai(f(x)) = xi] ≥
1

2
+

1

2n
.

(This exercise demonstrates that it is not possible to claim that every
one-way function hides at least one specific bit of the input.)

Solution: Let f be a one-way function. We define a function g that
receives an input of length n + log n. For convenience, we denote the
input of g by a pair (x, j) where |x| = n and |j| = log n; thus j is a
number between 0 and n. Now, define g as follows:

g(x∥j) = f(x), j, xj

where xj denotes the jth bit of x.

Consider inputs x∥j of length n + log n and fix i ≤ n. We show an
algorithm Ai such that Ai(g(x∥j)) outputs xi with probability 1/2 +
1/2(n+ log n). (Note that outputting the ith bit of the input for i > n
is trivial since j is revealed in its entirety in the output of g.) Algorithm
Ai receives ⟨y, j, b⟩. If j = i, then Ai outputs b; otherwise, Ai outputs a
uniform bit. Now,

Pr [Ai(g(x∥j)) = xi] =
1

2
· Pr[j ̸= i] + 1 · Pr[j = i]

=
1

2

(
1− 1

n

)
+

1

n
=

1

2
+

1

2n

>
1

2
+

1

2(n+ log n)
.

It remains to prove that g is one-way. However, this is easy. Assume by
contradiction that it can be inverted with non-negligible probability by
some probabilistic polynomial-time algorithm A. Then we can invert f
with at least the same probability as follows. Upon receiving input y =
f(x), invoke A upon input (y, j, 0) and (y, j, 1) for all j = 1, . . . , n. Note
that at least one of these tuples (y, j, 0) or (y, j, 1) is in the range of g.
Therefore, A inverts this tuple, returning x, with the same probability
that it inverts g. We can check all of the results and return the one that
is correct, if one exists. (Note that we invoke A exactly 2n times so
the inversion procedure remains polynomial.) This inversion procedure
succeeds with probability at least as high as the probability that A
inverts g, in contradiction to the assumption that f is one-way.

7.13 Show that if a one-to-one function has a hard-core predicate, then it is
one-way.
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Solution: Let f be an efficiently-computable one-to-one function and
let hc be a hard-core predicate of f . We show that if f is not one-
way then hc cannot be a hard-core predicate. Assume by contradiction
that there exists a probabilistic polynomial-time adversary A and a non-
negligible function ε(·) such that

Pr[InvertA,f (n) = 1] = ε(n).

We now construct an adversary B that contradicts the assumption that
hc is a hard-core predicate of f . The adversary B receives for input some
y = f(x), with x ← {0, 1}n, and attempts to guess hc(x). In order to
do this, B first invokes A upon input 1n and y; let x′ be the output of
A. Next, B checks if f(x′) = y (notice that f is efficiently computable,
so B can do this). If yes, then B outputs σ = hc(x′) and halts (in this
case, B is correct with probability 1). Otherwise, B outputs a uniformly
chosen bit σ ← {0, 1}. It remains to analyze B’s success. We denote the
event of A successfully inverting f by SuccA. Then,

Pr[B(f(x)) = hc(x)]

= Pr[B(f(x)) = hc(x) | SuccA] · Pr[SuccA]
+Pr[B(f(x)) = hc(x) | ¬SuccA] · Pr[¬SuccA]

= Pr[B(f(x)) = hc(x) | SuccA] · Pr[InvertA,f (n) = 1]

+Pr[B(f(x)) = hc(x) | ¬SuccA] · Pr[InvertA,f (n) = 0]

= 1 · Pr[InvertA,f (n) = 1] +
1

2
· Pr[InvertA,f (n) = 0]

= 1 · Pr[InvertA,f (n) = 1] +
1

2
· (1− Pr[InvertA,f (n) = 1])

=
1

2
+

1

2
· Pr[InvertA,f (n) = 1] ≥ 1

2
+

ε(n)

2
.

Since hc is a hard-core predicate for f , we see that ε must be negligible.
We conclude that f must be one-way.

Note that the condition that f is one-to-one is necessary to ensure that
whenever A succeeds in inverting f(x), it follows that B succeeds in
guessing hc(x). For example, consider the function f(x) = 0|x| and
hc(x) = x1 where x = x1 · · ·xn. Then, clearly hc is a hard-core predicate
of f . However, f is not one-way.

7.14 Show that if Construction 7.21 is modified in the natural way so that
Fk(x) is defined for every nonempty string x of length at most n, then
the construction is no longer a pseudorandom function.

Solution: Let D be a distinguisher who first queries its oracle on any
x ∈ {0, 1}n−1; let y be the response. Next, D queries its oracle on x′ =
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x∥0 of length n; let y′ be the response. Finally, D checks if y′ = G0(y).
If yes, then D outputs 1; otherwise, it outputs 0. We have

Pr[DFk(·)(1n) = 1] = 1

whereas for a random function f

Pr[Df(·)(1n) = 1] =
1

2n
.

D therefore distinguishes Fk from random.

7.15 Prove that if there exists a pseudorandom function that, using a key of
length n, maps n-bit inputs to single-bit outputs, then there exists a
pseudorandom function that maps n-bit inputs to n-bit outputs.

Solution: Let F ′ take a key of length n2, and define its output as

F ′⟨k1,...,kn⟩(x) = Fk1(x), . . . , Fkn(x).

This has output length n, as requested.

To show that F ′ is pseudorandom, fix a ppt algorithm A distinguishing
F ′ from a random function. We assume without loss of generality that
A does not query its oracle on the same input more than once. Define
an algorithm D as follows:

Algorithm D:
The algorithm is given access to an oracle that is either equal
to Fk(·) for uniform k ∈ {0, 1}n, or is equal to f(·) for a
random function f .

• Choose uniform i ∈ {1, . . . , n}.
• For j = i+ 1 to n, choose uniform kj ∈ {0, 1}n.
• Run A(1n). When A queries its oracle on input x, do:

– For j = 1 to i− 1, choose uniform yj ∈ {0, 1}.
– For j = i, query x to the oracle and set yj equal to

the answer received.

– For j = i+ 1 to n, set yj := Fkj (x).

• Output whatever A outputs.

For a fixed value of n and i ∈ {0, . . . , n}, let Oi
n be a distribution

over functions mapping n-bit inputs to n-bit outputs and defined as
follows: choose (independent) random functions f1, . . . , fi mapping n-
bit inputs to 1-bit outputs, along with uniform ki+1, . . . , kn ∈ {0, 1}n.
The function then maps input x to the output

f1(x), . . . , fi(x), Fki+1(x), . . . , Fkn(x).
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By inspection of D we have

Pr[Df(·)(1n) = 1] =

n∑
i=1

1

n
· Pr[AO

i
n(·)(1n) = 1]

(where f denotes a random function mapping n-bit inputs to 1-bit out-
puts) and

Pr[DFk(·)(1n) = 1] =
n∑

i=1

1

n
· Pr[AO

i−1
n (·)(1n) = 1].

Therefore∣∣∣Pr[Df(·)(1n) = 1]− Pr[DFk(·)(1n) = 1]
∣∣∣

=

∣∣∣∣∣
n∑

i=1

1

n
· Pr[AO

i
n(·)(1n) = 1]−

n∑
i=1

1

n
· Pr[AO

i−1
n (·)(1n) = 1]

∣∣∣∣∣
=

∣∣∣∣ 1n · (Pr[AOn
n(·)(1n) = 1]− Pr[AO

0
n(·)(1n) = 1]

)∣∣∣∣
=

1

n
·
∣∣∣Pr[Af̂(·)(1n) = 1]− Pr[AF ′

⟨k1,...,kn⟩(·)(1n) = 1]
∣∣∣ ,

where f̂ denotes a random function mapping n-bit inputs to n-bit out-
puts. Since F is pseudorandom, we know that there exists a negligible
function negl such that∣∣∣Pr[Df(·)(1n) = 1]− Pr[DFk(·)(1n) = 1]

∣∣∣ ≤ negl(n);

therefore,∣∣∣Pr[Af̂(·)(1n) = 1]− Pr[AF ′
⟨k1,...,kn⟩(·)(1n) = 1]

∣∣∣ ≤ n · negl(n),

which is still negligible. Since A was arbitrary, this completes the proof.

7.16 Prove that a two-round Feistel network using pseudorandom round func-
tions (as in Equation (7.15)) is not pseudorandom.

Solution: We show an attack that works (with high probability) re-
gardless of what round functions are used. The attacker A, given access
to an oracle O : {0, 1}2n → {0, 1}2n works as follows: choose arbitrary
L0, L

′
0, R0 ∈ {0, 1}n with L0 ̸= L′0. Query O(L0, R0) and obtain output

(L2, R2). Then query O(L′0, R0) and obtain output (L′2, R
′
2). Output 1

iff L0 ⊕ L′0
?
= L2 ⊕ L′2.

Observe that if O is a permutation chosen at random, then (L2, R2) and
(L′2, R

′
2) are uniform subject to the constraint that they are unequal;
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thus, the probability that A outputs 1 is roughly 2−n. On the other
hand, if O is a 2-round Feistel network with round functions f1, f2 then

L2 = R1 = L0 ⊕ f1(R0)

and, similarly,

L′2 = L′0 ⊕ f1(R0).

So,

L2 ⊕ L′2 = L0 ⊕ f1(R0)⊕ L′0 ⊕ f1(R0) = L0 ⊕ L′0,

and so A outputs 1 with probability 1 in this case. A thus has a signif-
icant advantage in distinguishing between a two-round Feistel network
and a truly random permutation.

7.17 Prove that a three-round Feistel network using pseudorandom round
functions (as in Equation (7.16)) is not strongly pseudorandom.

Solution: We show an attack that works (with high probability) re-
gardless of what round functions are used. The attack exploits the fact
that we can introduce a known “shift” δ in the input to the second
round-function of the Feistel network in two ways: by XORing δ into
the left half of the input when querying the function in the forward
direction (and keeping the right half fixed), or by XORing δ into the
right half of the input when querying the function in the reverse direc-
tion (and keeping the left half fixed). It is easiest to see this by tracing
through the effects of these modifications in Figure 7.3. We now give
the details.

The attacker A, given access to an oracle O : {0, 1}2n → {0, 1}2n and
its inverse O−1 : {0, 1}2n → {0, 1}2n works as follows: choose arbitrary
L0, R0, δ ∈ {0, 1}n with δ ̸= 0n. Then:

(a) Query O(L0, R0) to obtain (L3, R3).

(b) Query O−1(L3, R3 ⊕ δ) to obtain (L′0, R
′
0).

(c) Query O(L0 ⊕ δ,R0) to obtain (L′′3 , R
′′
3 ).

Output 1 iff L3 ⊕R′0
?
= L′′3 ⊕R0.

When O is a random permutation, A outputs 1 with only negligible
probability. To see this, note that (L3, R3 ⊕ δ) ̸= (L3, R3) and so
(L′0, R

′
0) is uniform subject to being unequal to (L0, R0) (because O is a

permutation). The probability that (L′0, R
′
0) = (L0⊕δ,R0) is, therefore,

roughly 2−2n. Assuming (L′0, R
′
0) ̸= (L0 ⊕ δ,R0), the value (L′′3 , R

′′
3 ) is

uniform subject to being different from both (L3, R3) and (L3, R3 ⊕ δ),
and so L3 ⊕R′0 = L′′3 ⊕R0 only with probability roughly 2−n.
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On the other hand, ifO is a 3-round Feistel network with round functions
f1, f2, f3 then

L3 ⊕R′0 = L3 ⊕
(
L3 ⊕ f2(R3 ⊕ δ ⊕ f3(L3))

)
= f2(R3 ⊕ δ ⊕ f3(L3)) (7.2)

and

L′′3 ⊕R0 =
(
R0 ⊕ f2(L0 ⊕ δ ⊕ f1(R0))

)
⊕R0

= f2(L0 ⊕ δ ⊕ f1(R0)). (7.3)

Since R3⊕ f3(L3) = L0⊕ f1(R0), we see that Equations (7.2) and (7.3)
are equal, and so A outputs 1 with probability 1 in this case. A thus has
a significant advantage in distinguishing between a three-round Feistel
network and a truly random permutation.

7.18 Consider the keyed permutation F ∗ defined by

F ∗k (x)
def
= FeistelFk,Fk,Fk

(x).

(Note that the same key is used in each round.) Show that F ∗ is not
pseudorandom.

Solution: When the same key k is used in all rounds, computing F ∗ in
the forward direction is essentially the same as inverting it. In particular,
for every L0, R0 ∈ {0, 1}n/2 it holds that F ∗k (L0, R0) = F ∗−1k (R0, L0).
In order to see this, observe that the only difference between computing
F ∗ in the forward or reverse direction is that in the forward direction
the first input to Fk in the first round is R0, whereas in the reverse
direction the first input to Fk is R2 = L3 (see Figure 7.3 in the book).

This observation yields the following distinguisher D: set x = 0n and
query the oracle, receiving back y. Denote y = (L3, R3). Then, query
x′ = (R3, L3) to the oracle. If the response equals 0n then output 0;
otherwise, output 1. Based on what we have explained above

Pr
[
DF∗

k (·)(1n) = 1
]
= 1

whereas
Pr
[
Df(·)(1n) = 1

]
= 2−n

since for a pseudorandom permutation, the probability that f(f(0n)) =
0n is exactly 2−n. (In order to see this, choose f by first choosing the
output of 0n, and then continuing to choose the outputs one at a time.)

7.19 Let G be a pseudorandom generator with expansion factor ℓ(n) = n+1.
Prove that G is a one-way function.
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Solution: Assume by contradiction that there is a probabilistic polynomial-
time algorithm A and a non-negligible function ε(·) such that

Pr[InvertA,G(n) = 1] = ε(n).

We construct a distinguisher D for the pseudorandom generator as fol-
lows. Upon input r of length n+ 1, distinguisher D invokes A upon 1n

and r; let s be A’s output. If r = G(s) then D outputs 1; otherwise, D
outputs a random bit b← {0, 1}. We have:

Prs∈{0,1}n [D(G(s)) = 1]

= 1 · Pr[InvertA,G(n) = 1] +
1

2
· Pr[InvertA,G(n) = 0]

= ε(n) +
1

2
· (1− ε(n)) =

1

2
+

ε(n)

2
.

In contrast,

Prr∈{0,1}n+1 [D(r) = 1] ≤ 1

2
.

This holds because the range of G (on inputs of length n) is of size
at most 2n, and so at least half the strings in {0, 1}n+1 are not even
in the range of G (and so there doesn’t exist an s ∈ {0, 1}n such that
G(s) = r). We conclude that

Prs∈{0,1}n [D(G(s)) = 1]− Prr∈{0,1}n+1 [D(r) = 1] ≥ ε(n)

2

in contradiction to the assumption that G is a pseudorandom generator.

7.20 Let X ,Y,Z be probability ensembles. Prove that if X c≡ Y and Y c≡ Z,
then X c≡ Z.
Solution: Let D be a probabilistic polynomial-time algorithm. We
wish to show that there exists a negligible function negl(n) such that∣∣∣∣ Pr

x←Xn

[D(1n, x)) = 1]− Pr
z←Zn

[D(1n, z) = 1]

∣∣∣∣ ≤ negl(n). (7.4)

By the assumption, there exist negligible functions negl1(n) and negl2(n)
such that:∣∣∣∣ Pr

x←Xn

[D(1n, x)) = 1]− Pr
y←Yn

[D(1n, y) = 1]

∣∣∣∣ ≤ negl1(n)

and ∣∣∣∣ Pr
y←Yn

[D(1n, y)) = 1]− Pr
z←Zn

[D(1n, z) = 1]

∣∣∣∣ ≤ negl2(n).
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Thus,∣∣∣∣ Pr
x←Xn

[D(1n, x)) = 1]− Pr
z←Zn

[D(1n, z) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x←Xn

[D(1n, x)) = 1]− Pr
y←Yn

[D(1n, y) = 1]

+ Pr
y←Yn

[D(1n, y)) = 1]− Pr
z←Zn

[D(1n, z) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
x←Xn

[D(1n, x)) = 1]− Pr
y←Yn

[D(1n, y) = 1]

∣∣∣∣
+

∣∣∣∣ Pr
y←Yn

[D(1n, y)) = 1]− Pr
z←Zn

[D(1n, z) = 1]

∣∣∣∣
≤ negl1(n) + negl2(n),

where the first inequality is by the triangle inequality. Since the sum of
negligible functions is negligible, we conclude that Equation (7.4) holds.

7.21 Prove Theorem 7.32.

Solution: The proof is by reduction. We show that if there exists
a probabilistic polynomial-time distinguisher D that distinguishes X
from Y with non-negligible success, then there exists a probabilistic
polynomial-time distinguisher D′ that distinguishes a single sample of
Xn from a single sample of Yn with non-negligible success. Our proof
uses a hybrid argument.

Let D be a probabilistic polynomial-time distinguisher and let ε(n) be
a function such that∣∣∣Pr [D(X(1)

n , . . . , X(p(n))
n ) = 1

]
− Pr

[
D(Y (1)

n , . . . , Y (p(n))
n ) = 1

]∣∣∣ = ε(n).

(7.5)
For every i, we define a hybrid random variable Hi

n as a sequence con-
taining i independent copies of Xn followed by p(n) − i independent
copies of Yn. That is:

Hi
n =

(
X(1)

n , . . . , X(i)
n , Y (i+1)

n , . . . , Y (p(n))
n

)
Denote Xn = (X

(1)
n , . . . , X

(p(n))
n ) and likewise for Y n. Then, we have

that H0
n = Y n and H

p(n)
n = Xn. Thus,∣∣Pr[D(Xn) = 1]− Pr[D(Y n) = 1]

∣∣
=
∣∣∣Pr[D(Hp(n))

n = 1]− Pr[D(H0
n) = 1]

∣∣∣
=

∣∣∣∣∣∣
p(n)−1∑
i=0

Pr[D(Hi
n) = 1]−

p(n)−1∑
i=0

Pr[D(Hi+1
n ) = 1]

∣∣∣∣∣∣
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where the second equality follows from the fact that the only remaining

terms in this telescopic sum are Pr[D(H0
n) = 1] and Pr[D(H

p(n)
n ) = 1].

We now construct a probabilistic polynomial-time distinguisher D′ for
a single sample of Xn and Yn. Upon input some sample α of Xn or
Yn, D

′ chooses a random i ← {0, . . . , p(n) − 1}, generates the vector

Hn = (X
(1)
n , . . . , X

(i)
n , α, Y

(i+2)
n , . . . , Y

(p(n))
n ), invokes D on the vector

Hn, and outputs whatever D does. Now, if α is distributed accord-
ing to Xn, then Hn is distributed exactly like Hi+1

n . In contrast, if α
is distributed according to Yn, then Hn is distributed exactly like Hi

n.
(Note that we use the independence of the samples in making this argu-
ment.) Furthermore, each i is chosen with probability exactly 1/p(n).
Therefore,

Pr[D′(Xn) = 1] =
1

p(n)
·
p(n)−1∑
i=0

Pr[D(Hi+1
n ) = 1]

and

Pr[D′(Yn) = 1] =
1

p(n)
·
p(n)−1∑
i=0

Pr[D(Hi
n) = 1]

It therefore follows that:

|Pr[D′(Xn) = 1]− Pr[D′(Yn) = 1]|

=
1

p(n)
·

∣∣∣∣∣∣
p(n)−1∑
i=0

Pr[D(Hi+1
n ) = 1]−

p(n)−1∑
i=0

Pr[D(Hi
n) = 1]

∣∣∣∣∣∣
=

1

p(n)
·
∣∣∣Pr[D(Hp(n)

n ) = 1]− Pr[D(H0
n) = 1]

∣∣∣
=

1

p(n)
·
∣∣Pr[D(Xn) = 1]− Pr[D(Y n) = 1]

∣∣ =
ε(n)

p(n)
.

By the assumption that X and Y are indistinguishable, we conclude

that ε(n)
p(n) is negligible, implying that ε(n) itself is negligible. By Equa-

tion (7.5), this implies that X is indistinguishable from Y , completing
the proof of the theorem.

7.22 Let X = {Xn}n∈N and Y = {Yn}n∈N be computationally indistinguish-
able probability ensembles. Prove that for any probabilistic polynomial-
time algorithm A, the ensembles {A(Xn)}n∈N and {A(Yn)}n∈N are com-
putationally indistinguishable.

Solution: Assume there is a probabilistic polynomial-time A, a distin-
guisher D and a non-negligible function ε(·) such that

|Pr[D(1n,A(Xn)) = 1]− Pr[D(1n,A(Yn)) = 1]| = ε(n).
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We construct a distinguisher D′ that receives a sample z (from Xn or
Yn), runs A on the input (i.e. z, but not the 1n part) and then runs D
on 1n together with the result from A. Finally, D′ outputs whatever D
does. Clearly, for every z, D′(1n, z) = 1 if and only if D(1n,A(z)) = 1.
Therefore,

|Pr[D′(1n, Xn) = 1]− Pr[D′(1n, Yn) = 1]| = ε(n)

a contradiction.



Chapter 8

Number Theory and Cryptographic
Hardness Assumptions – Solutions

8.1 Let G be an abelian group. Prove that there is a unique identity in G,
and that every element g ∈ G has a unique inverse.

Solution: Let G be a group, and let e, e′ ∈ G with eg = ge = g and
e′g = ge′ = g for all g ∈ G. Then e′ = e · e′ = e and so e and e′ are the
same element.

Let 1 denote the identity in G. Fix g ∈ G and let h, h′ ∈ G be such that
gh = hg = 1 and gh′ = h′g = 1. Then

hgh′ = (hg)h′ = 1 · h′ = h′

and

hgh′ = h(gh′) = h · 1 = h,

and so h′ = h.

8.2 Show that Proposition 8.36 does not necessarily hold when G is infinite.

Solution: Take G = R+, i.e., the group of all positive real numbers
with respect to multiplication. Let H = {1}∪{2, 4, 6, 8, . . .} be a subset
of G. Note that H satisfies the conditions of Proposition 8.36, but is not
a subgroup since no elements in H (other than 1) have inverses in H.

8.3 Let G be a finite group, and g ∈ G. Show that ⟨g⟩ is a subgroup of G.
Is the set {g0, g1, . . .} necessarily a subgroup of G when G is infinite?

Solution: We verify that ⟨g⟩ satisfies the conditions of Proposition 8.36.
Since g0 = 1, clearly ⟨g⟩ is nonempty. Furthermore, for any a, b ∈ ⟨g⟩
we know that there exist positive x, y such that a = gx and b = gy. But
then ab = gx+y ∈ ⟨g⟩. So ⟨g⟩ is a subgroup when G is finite.

The set {g0, g1, . . .} need not be a subgroup of G when G is infinite. For
example, consider the group R+ of all positive real numbers with respect

to multiplication. The set S
def
= {20, 21, 22, . . .} is not a subgroup of R+

since, for example, the element 2 ∈ S has no inverse in S.

8.4 This question concerns the Euler phi function.

89
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(a) Let p be a prime and e ≥ 1 an integer. Show that

ϕ(pe) = pe−1(p− 1).

(b) Let p, q be relatively prime. Show that ϕ(pq) = ϕ(p) · ϕ(q). (You
may use the Chinese remainder theorem.)

(c) Prove Theorem 8.19.

Solution:

(a) The integers in {1, . . . , pe} that are not relatively prime to p are
exactly the multiples of p, and there are exactly pe/p = pe−1 such
integers. So ϕ(pe) = pe − pe−1 = pe−1(p− 1).

(b) We provide a solution that does not use the Chinese remainder
theorem. Let p and q be relatively prime. Consider the integers
{1, . . . , pq} arranged in an array as follows:

1 p+ 1 · · · (q − 1)p+ 1
2 p+ 2 · · · (q − 1)p+ 2
...

...
. . .

...
p 2p · · · qp

For any r having a factor in common with p, every element in the
row

r p+ r 2p+ r · · · (q − 1)p+ r

has a factor in common with p and hence also has a factor in
common with pq. Eliminate those rows from consideration, and
consider the remaining ϕ(p) rows. Let

s p+ s 2p+ s · · · (q − 1)p+ s

be such a row (i.e., gcd(s, p) = 1). We claim that

[s mod q] [p+ s mod q] [2p+ s mod q] · · · [(q − 1)p+ s mod q]

contains the elements of Zq in permuted order. This follows since
there are q such elements, and ip+ s = jp+ s mod q implies j = i
(using gcd(p, q) = 1). From this it follows that each remaining row
contains exactly ϕ(q) elements relatively prime to q. The leaves a

total of ϕ(pq)
def
= ϕ(p) · ϕ(q) elements relatively prime to pq.

(c) Let N =
∏

i p
ei
i . Parts (a) and (b) immediately give

ϕ(N) =
∏
i

ϕ(pe1i ) =
∏
i

pei−1i (pi − 1).
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8.5 Compute the final two (decimal) digits of 31000 (by hand).

Solution: Note that |Z∗100| = ϕ(100) = 40. So

31000 = 31000 mod 40 = 30 = 1 mod 100.

8.6 Compute [1014,800,000,002 mod 35] (by hand).

Solution: We use the Chinese remainder theorem. First,

1014,800,000,002 = 14,800,000,002 = 1 mod 5.

Next,

1014,800,000,002 = 34,800,000,002 mod 6 = 32 = 2 mod 7.

Finally, we can explicitly compute (by trial-and-error) that (1, 2)↔ 16.
So, the answer is 16.

8.7 Compute [4651 mod 55] (by hand) using the Chinese remainder theorem.

Solution: 55 = 11 · 5 and so we will work mod 11 and mod 5. First,
[46 mod 11] = 2. Furthermore ϕ(11) = 10 and thus [4651 mod 11] =
[251 mod 10 mod 11] = [21 mod 11]. Similarly, [46 mod 5] = 1. We con-
clude that [4651 mod 55] ↔ (2, 1). We thus need to find the value
x ∈ Z55 such that x mod 11 = 2 and x mod 5 = 1. But we have al-
ready seen that 46 is such a value. So 46 = 4651 mod 55.

8.8 Prove that if G,H are groups, then G×H is a group.

Solution: The conditions of Definition 7.9 are easy to verify. Closure
and associativity are obvious. If e, e′ are the identity elements of G
and H, respectively, then (e, e′) is the identity of G × H. Finally, any
(g, h) ∈ G × H has inverse (g−1, h−1), where g−1 (resp., h−1) is the
inverse of g (resp., h) in G (resp., H).

8.9 Let p,N be integers with p |N . Prove that for any integer X,

[[X mod N ] mod p ] = [X mod p ].

Show that, in contrast, [[X mod p ] mod N ] need not equal [X mod N ].

Solution: Let b = [X mod N ] so that X can be written as X = aN + b
with a ∈ Z. Let β = [b mod p] so that b can be written as b = αp + β
with α ∈ Z. Then X = aN +αp+ β and, since p |N , we therefore have
[X mod p] = β = [[X mod N ] mod p ], as desired.

On the other hand, let X = 15, N = 10, and p = 5. Then we have
[X mod N ] = 5 but [[X mod p ] mod N ] = 0.
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8.10 Corollary 8.21 shows that if N = pq and ed = 1 mod ϕ(N) then for

all x ∈ Z∗N we have (xe)
d
= x mod N . Show that this holds for all

x ∈ {0, . . . , N − 1}.
Solution: If ed = 1 mod ϕ(N) then, because ϕ(N) = (p − 1)(q − 1) =
ϕ(p) · ϕ(q), it also holds that ed = 1 mod ϕ(p). So for any x ∈ Z∗p
we know that (xe)

d
= x mod p. But for x = 0 it also holds, trivially,

that (xe)
d
= x mod p. We conclude that for any x ∈ Zp, it holds that

(xe)
d
= x mod p. The same holds with p replaced by q.

Now let x ∈ ZN . Then x↔ (xp, xq) with xp ∈ Zp and xq ∈ Zq. Now

(xe)
d ↔ ((xp, xq)

e)
d

=
([(

xe
p

)d
mod p

]
,
[(
xe
q

)d
mod q

])
= (xp, xq) ↔ x.

8.11 Complete the details of the proof of the Chinese remainder theorem,
showing that Z∗N is isomorphic to Z∗p × Z∗q .
Solution: Let f be as defined in Theorem 8.24, restricted to domain Z∗N .
It follows from the proof in the text that f is a bijection. It therefore only
remains to show that for any a, b ∈ Z∗N we have f(a ·N b) = f(a)� f(b),
where ·N denotes multiplication modulo N and � denotes the group
operation in Z∗p×Z∗q (namely, multiplication modulo p in the first com-
ponent and modulo q in the second component).

To see that this is true, note that

f(a ·N b) = ([(a ·N b) mod p ], [(a ·N b) mod q])

= ([(a · b) mod p ], [(a · b) mod q])

= ([a mod p ], [a mod q])� ([b mod p ], [b mod q])

= f(a)� f(b).

8.12 This exercise develops an efficient algorithm for testing whether an in-
teger is a perfect power.

(a) Show that if N = N̂e for some integers N̂ , e > 1 then e ≤ ∥N∥+1.

(b) Given N and e with 2 ≤ e ≤ ∥N∥ + 1, show how to determine in
poly(∥N∥) time whether there exists an integer N̂ with N̂e = N .

(c) Given N , show how to test in poly(∥N∥) time whether N is a
perfect power.

Solution:

(a) If N = N̂e then e = logN̂ N ≤ log2 N ≤ ∥N∥+ 1.
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ALGORITHM 8.1-S
Computing N1/e

Input: N, e > 1
Output: N1/e if this is an integer; false otherwise

low := 1,high := N
while low ≤ high: {

N̂ := ⌊(low + high)/2⌋
if N̂e = N then return N̂ and halt
if N̂e > N then high := N̂ − 1
if N̂e < N then low := N̂ + 1 }

return false

(b) Consider Algorithm 8.1-S. Clearly, the algorithm always outputs
false whenN1/e is not an integer. Otherwise, the algorithm outputs
N1/e in at most O(logN) = O(∥N∥) iterations.

(c) Run Algorithm 8.1-S for each of at most O(∥N∥) values of e.

8.13 Given N and a ∈ Z∗N , show how to test in polynomial time whether a
is a strong witness that N is composite.

Solution: See Algorithm 8.2-S.

ALGORITHM 8.2-S
Testing strong witnesses

Input: odd integer N , a ∈ Z∗
N

Output: Decide whether a is a strong witness

Compute r, u such that N − 1 = 2ru with u odd
x := [au mod N ]
if x = ±1 then return false
for i = 1 to r − 1: {

x := [x2 mod N ]
if x = N − 1 then return false }

return true

8.14 Fix N, e with gcd(e, ϕ(N)) = 1, and assume there is an adversary A
running in time t for which

Pr [A ([xe mod N ]) = x] = 0.01,

where the probability is taken over uniform choice of x ∈ Z∗N . Show
that it is possible to construct an adversary A′ for which

Pr [A′ ([xe mod N ]) = x] = 0.99

for all x. The running time t′ of A′ should be polynomial in t and ∥N∥.
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Solution: Let s be a parameter, fixed later. Construct A′ as follows:

Algorithm A′
On input N, y, e do:

(a) For i = 1 to s:

i. Choose ri ← Z∗N .

ii. Run A([(ri)e · y mod N ]) to obtain xi.

iii. If (xi)
e = (ri)

e · y mod N then output [xi/ri mod N ]
and terminate.

(b) If the algorithm has not yet terminated, output fail.

Let y be arbitrary. The key point to note is that, in every iteration, A
is run on a uniform element of Z∗N , irrespective of how y is distributed.
This is so since ri is uniform, hence [(ri)

e mod N ] is uniform (since
raising to eth powers is a permutation), and thus [(ri)

e · y mod N ] is
uniform (because Z∗N is a group). Furthermore, if A ever correctly
computes an eth root in any iteration, then A′ outputs the eth root of y:
this follows since (xi)

e = (ri)
e · y mod N implies (xi/ri)

e = y mod N .

Combining the observations above and setting s = 100 ln 100, we see
that the probability that A′ fails to output an inverse is

(
1− 1

100

)100 ln 100

=

((
1− 1

100

)100
)ln 100

≤ e− ln 100 =
1

100

(using Proposition A.2). The running time of A′ is O(t · poly(∥N∥)).

8.15 Formally define the CDH assumption. Prove that hardness of the CDH
problem relative to G implies hardness of the discrete-logarithm problem
relative to G, and that hardness of the DDH problem relative to G implies
hardness of the CDH problem relative to G.
Solution: We first formally define what it means for the CDH problem
to be hard.

The CDH experiment CDHA,G(n):

(a) Run G(1n) to obtain (G, q, g), where G is a cyclic group
of order q (with ∥q∥ = n), and g is a generator of G.

(b) Choose h1, h2 ← G.

(c) A is given G, q, g, h1, h2, and outputs h3 ∈ G.

(d) The output of the experiment is defined to be 1 if h3 =
DHg(h1, h2), and 0 otherwise.

As described, it is unclear how to test whether h3 = DHg(h1, h2) effi-
ciently. However, by choosing uniform h1 with logg h1 known (which
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can be done by choosing uniform x1 ∈ Zq and setting h1 := gx1) it
becomes easy to perform.

DEFINITION We say that the CDH problem is hard relative to G if
for all probabilistic polynomial-time algorithms A there exists a negligible
function negl such that

Pr[CDHA,G(n) = 1] ≤ negl(n).

Assume the CDH problem is hard relative to G. Let A be a probabilistic

polynomial-time algorithm and set ε(n)
def
= Pr[DLogA,G(n) = 1]. We

show how A can be used by a probabilistic polynomial-time algorithm
A′ to solve the CDH problem with success probability ε(n):

Algorithm A′:
The algorithm is given G, q, g, h1, h2 as input.

(a) Run A(G, q, g, h1) and obtain output x1.

(b) Return hx1
2 .

Observe that the input given to A when run as a subroutine by A′ is
distributed exactly as in experiment DLogA,G(n). So with probability
ε(n) it holds that x1 = logg h1. Whenever this occurs, A′ outputs the
correct answer DHg(h1, h2). Since the CDH problem was assumed to be
hard, this implies that ε(n) is negligible and so the discrete logarithm
problem must be hard as well.

We now proceed to prove that the hardness of the DDH problem rel-
ative to G implies the hardness of the CDH problem relative to G.
Let A be a probabilistic polynomial-time algorithm and set ε(n)

def
=

Pr[CDHA,G(n) = 1]. We show how A can be used by a probabilistic
polynomial-time algorithm A′ to solve the DDH problem with roughly
the same probability:

Algorithm A′:
The algorithm is given G, q, g, h1, h2, h3 as input.

(a) Run A(G, q, g, h1, h2) and obtain output h′3.

(b) If h′3 = h3 output 1; else output 0.

We need to analyze the probability that A′ outputs 1 when the final
component of its input h3 is equal to DHg(h1, h2), as compared to the
probability that it outputs 1 when h3 is chosen uniformly at random
from G. The input given to A when run as a subroutine by A′ is dis-
tributed exactly as in experiment CDHA,G(n). So with probability ε(n),
it holds that h′3 = DHg(h1, h2). It follows that when h3 = DHg(h1, h2),
algorithm A′ outputs 1 with probability at least ε(n).
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On the other hand, when h3 is chosen uniformly at random from G,
then regardless of the behavior of A′ the probability that h′3 = h3 is
exactly 1/|G| = 1/q. Thus,∣∣∣Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]

∣∣∣
≥ ε(n)− 1/q.

Since the above must be negligible by the assumption that the DDH
problem is hard, and 1/q is negligible, it follows that ε(n) must be
negligible. We conclude that the CDH problem is hard as well.

8.16 Determine the points on the elliptic curve E : y2 = x3+2x+1 over Z11.
How many points are on this curve?

Solution: This simply involves finding all values of x for which x3+2x+
1 is either 0 or a quadratic residue modulo 11. The quadratic residues
modulo 11 are 1, 3, 4, 5, and 9. So we have the points (0, 1), (0, 10),
(1, 2), (1, 9), (3, 1), (3, 10), (5, 2), (5, 9), (6, 3), (6, 8), (8, 1), (8, 10), (9, 0),
(10, 3), (10, 8), plus the point at infinity.

8.17 Consider the elliptic-curve group from Example 8.67. (See also Exam-
ple 8.69.) Compute (1, 0)+(4, 3)+(4, 3) in this group by first converting
to projective coordinates and then using Equations (8.3) and (8.4).

Solution: In projective coordinates these points can be represented as
(1, 0, 1), (4, 3, 1), and (4, 3, 1). To compute (1, 0, 1) + (4, 3, 1) we first
compute u = 3, v = 3, and w = 6. Then

(1, 0, 1) + (4, 3, 1) = (4, 2, 6) = (−4,−2,−6) = (3, 5, 1).

To compute (3, 5, 1)+(4, 3, 1) we proceed similarly. The answer, in affine
coordinates, is (4, 4) in agreement with Exercise 8.69.

8.18 Prove the fourth statement in Proposition 8.68.

Solution: To compute the slope of the line tangent to E at P1 = P2 =
(x1, y1), we first compute the partial derivatives of E as

2y · dy = 3x2 · dx+A · dx,

so that the slope at (x1, y1) is given by

m
def
=

dy

dx
(x1, y1) =

[
3x2

1 +A

2y1
mod p

]
.

The rest of the proof follows the derivation of Proposition 8.68 verbatim,
using the above as the value of m.
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8.19 Can the following problem be solved in polynomial time? Given a prime
p, a value x ∈ Z∗p−1, and y := [gx mod p] (where g is a uniform value

in Z∗p), find g, i.e., compute y1/x mod p. If your answer is “yes,” give a
polynomial-time algorithm. If your answer is “no,” show a reduction to
one of the assumptions introduced in this chapter.

Solution: The problem can be solved efficiently. Since x ∈ Z∗p−1 (and
p− 1 is known), we can compute d := [x−1 mod p− 1]. Then

yd = (gx)
d
= gxd = g[xd mod p−1] = g mod p.

8.20 Let GenRSA be as in Section 8.2.4. Prove that if the RSA problem is
hard relative to GenRSA then the construction shown below is a fixed-
length collision-resistant hash function.

CONSTRUCTION 8.3-S

Define (Gen,H) as follows:

• Gen: on input 1n, run GenRSA(1n) to obtain N, e, d, and select
y ← Z∗

N . The key is s := ⟨N, e, y⟩.
• H: if s = ⟨N, e, y⟩, then Hs maps inputs in {0, 1}3n to outputs

in Z∗
N . Let fs

0 (x)
def
= [xe mod N ] and fs

1 (x)
def
= [y · xe mod N ].

For a 3n-bit long string x = x1 · · ·x3n, define

Hs(x)
def
= fs

x3n

(
fs
x3n−1

(
· · ·

(
1
)
· · ·

))
.

Solution: We show that an eth root of y can be computed from any
collision; given this, a formal proof follows along the lines of the proof
of Theorem 8.79.

Fix s = ⟨N, e, y⟩, and assume y ̸= 1 (computing an eth root of y is trivial
if y = 1). Let x, z be distinct inputs with Hs(x) = Hs(z). Define x0 = 1
and, for for i = 1 to 3n, inductively define xi = fs

xi
(xi−1) (note that

x1, . . . , x3n is the sequence of values produced when computing Hs(x)).
Define zi analogously. Since x ̸= z, there is some index i with xi ̸= zi

(in particular, take i to be the first position where the strings x and z
differ, i.e., where xi ̸= zi). But since x3n = z3n, there must be an index
j < 3n with

xj ̸= zj but xj+1 = zj+1.

Since fs
0 , f

s
1 are permutations (this can be easily verified), it must be

the case that xj+1 ̸= zj+1. Assume without loss of generality that
xj+1 = 0. The above shows that given a collision we can efficiently
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compute distinct elements X,Z ∈ Z∗N with fs
0 (X) = fs

1 (Z). Then

Xe = y · Ze mod N,

and we see that X/Z mod N is an eth root of y.

8.21 Consider the following generalization of Construction 8.78:

CONSTRUCTION 8.4-S

Define a fixed-length hash function (Gen, H) as follows:

• Gen: on input 1n, run G(1n) to obtain (G, q, h1) and then select
h2, . . . , ht ← G. Output s := ⟨G, q, (h1, . . . , ht)⟩ as the key.

• H: given a key s = ⟨G, q, (h1, . . . , ht)⟩ and input (x1, . . . , xt)
with xi ∈ Zq, output H

s(x1, . . . , xt) :=
∏

i h
xi
i .

(a) Prove that if the discrete logarithm problem is hard relative to G,
and q is prime, then for any t = poly(n) this construction is a
fixed-length collision-resistant hash function.

(b) Discuss how this construction can be used to obtain compression
regardless of the number of bits needed to represent elements of G
(as long as it is polynomial in n).

Solution:

(a) The easiest way to prove this is by reducing to the security of
Construction 8.78. That is, we show that any algorithm A finding
a collision in Construction 8.4-S can be used as a subroutine to find
collisions in Construction 8.78.

Let Π = (Gen,H) denote Construction 8.4-S and let Π̂ = (Ĝen, Ĥ)
denote Construction 8.78. Given a probabilistic polynomial-time

algorithmA attacking Π, let ε(n)
def
= Pr[Hash-collA,Π(n) = 1]. Con-

struct algorithm Â attacking Π̂ as follows:

Algorithm Â:
The algorithm is given ŝ = ⟨G, q, g, h⟩ as input.
i. Set h1 := g and let β1 := 1. Choose i ← {2, . . . , t}

and set hi := h.

ii. For j ∈ {2, . . . , t} \ {i}, choose βj ← Zq and set hj :=
gβj . Set s := ⟨G, q, (h1, . . . , ht)⟩.

iii. RunA(s) and obtain outputs (x1, . . . , xt) and (x′1, . . . , x
′
t).

iv. If xi ̸= x′i then

A. Set X1 :=
∑

j ̸=i βj · xj and X2 := xi.
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B. Set X ′1 :=
∑

j ̸=i βj · x′j and X ′2 := x′i.

v. Output (X1, X2) and (X ′1, X
′
2).

We first claim that whenever (x1, . . . , xt) and (x′1, . . . , x
′
t) form a

collision in Hs with xi ̸= x′i, then Â outputs a collision in Ĥ ŝ. To
see this, note that

Hs(x1, . . . , xt) =
∏

j h
xj

j

= hxi ·
∏

j ̸=i

(
gβj
)xj

= hxi · g
∑

j ̸=i βj ·xj

= gX1 · hX2 = Ĥ ŝ(X1, X2),

and similarly Hs(x′1, . . . , x
′
t) = Ĥ ŝ(X ′1, X

′
2). Since the values out-

put by A collide, Ĥ ŝ(X1, X2) = Ĥ ŝ(X ′1, X
′
2); since xi ̸= x′i we have

X ′1 ̸= X ′2 and so (X1, X2) and (X ′1, X
′
2) are a collision in Ĥ ŝ.

We now analyze the probability that Â outputs a collision. First
note that the distribution on the inputs given to A when run as
a subroutine by Â is identical to the distribution in experiment
Hash-collA,Π(n), and A therefore outputs a collision (x1, . . . , xt),
(x′1, . . . , x

′
t) with probability exactly ε(n). We claim that for at

least one value k ∈ {2, . . . , t} we have xk ̸= x′k. Since (x1, . . . , xt)
and (x′1, . . . , x

′
t) are distinct, the only other possibility is that x1 ̸=

x′1; in this case, however, it follows from the fact that
∏

j h
xj

j =∏
j h

x′
j

j that (x2, . . . , xt) and (x′2, . . . , x
′
t) cannot all be the same.

(Note that h1 ̸= 1 since it is a generator of G.)

A has no information about Â’s choice of i, since each element
h2, . . . , ht is a uniform element in G. It follows that xi ̸= x′i with
probability at least 1/(t − 1). Combining this with the argument
given earlier, we see that Â outputs a collision with probability at
least ε(n)/(t− 1). Since this must be negligible (by security of Π̂)
and t = poly(n), it follows that ε(n) must be negligible as well.

(b) The input length of Construction 8.4-S can be t·(n−1) (since ∥q∥ =
n), and the output length is given by the length of a bit-string
needed to represent an element of G. The latter is p(n) for some
polynomial p. Setting t > p(n)/(n− 1), we obtain compression.





Chapter 9

Algorithms for Factoring and
Computing Discrete Logarithms –
Solutions

9.1 In order to speed up the key generation algorithm for RSA, it has been
suggested to generate a prime by generating many small random primes,
multiplying them together and adding one (of course, then checking that
the result is prime). Ignoring the question of the probability that such
a value really is prime, what do you think of this method?

Solution: This is not a good idea, since if a prime p is generated using
this method then p − 1 will have small prime factors and so Pollard’s
p− 1 algorithm can be applied.

9.2 In an execution of Algorithm 9.2, define x(i) def
= F (i)(x(0)). Show that if,

in a given execution of the algorithm, there exist i, j ≤ 2n/2 such that
x(i) ̸= x(j) but x(i) = x(j) mod p, then that execution of the algorithm
outputs p with overwhelming probability.

Solution: Let x
(i)
p

def
= [x(i) mod p]. As in the proof of Claim 5.10, if

x
(I)
p = x

(J)
p for 1 ≤ I < J ≤ 2n/2 then there is an i < J such that

x
(i)
p = x

(2i)
p . In addition (as noted already in Section 9.1.2), x(i) ̸= x(2i)

with overwhelming probability if we model F as a random function

In iteration i of Algorithm 9.2, x is set equal to x(i) and x′ is set equal
to x(2i). Thus, iteration i of the algorithm will output p with over-
whelming probability.

9.3 (a) Show that if ab = c mod N and gcd(b,N) = d, then:

i. d | c;
ii. a · (b/d) = (c/d) mod (N/d); and

iii. gcd(b/d,N/d) = 1.

(b) Describe how to use the above to compute discrete logarithms in
ZN efficiently even when the base g is not a generator of ZN .

Solution:

(a) Since ab = c mod N we have ab − αN = c for some integer α.
Since d | b and d |N , it follows immediately that d | c, proving (i).

101
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Furthermore, a(b/d) − α(N/d) = c/d proving (ii). To prove (iii),
let d′ be a positive integer dividing both b/d and N/d. Then dd′

divides both b and N . Since d = gcd(b,N), this implies d′ = 1.

(b) Say we are given N along with g, y ∈ ZN , and want to compute x ∈
{0, . . . , N−1} such that x·g = y mod N . If g is a generator then, as
discussed in Section 8.2.3, we could compute x := [y · g−1 mod N ].
If g is not a generator then gcd(g,N) = d > 1. If d ̸ | y then, by (i),
we know that no solution exists. If d | y, then by (ii) we need only
solve the equation

x · (g/d) = (y/d) mod (N/d).

By (iii), we have gcd(g/d,N/d) = 1 and so we can compute the
solution x = [(y/d) · (g/d)−1 mod (N/d)].

9.4 Here we show how to solve the discrete logarithm problem in a cyclic
group of order q = pe in time O(polylog(q)·√p ). Given as input a gener-
ator g of known order pe and a value y, we want to compute x = logg y.

(a) Show how to find [x mod p] in time O(polylog(q) · √p ).
(b) Say x = x0+x1 ·p+· · ·+xe−1 ·pe−1 with 0 ≤ xi < p. In the previous

step we determined x0. Show how to compute in polylog(q) time a

value y1 such that (gp)x1+x2·p+···+xe−1·pe−2

= y1.

(c) Use recursion to obtain the claimed running time for the original
problem. (Note that e = log(q).)

Solution:

(a) As suggested by the hint, set g0 := gp
e−1

and y0 := yp
e−1

. Note
that gx0 = y0, and so there must exist an x0 ∈ {0, . . . , ord(g0)− 1}
such that gx0

0 = y0. Since ord(g0) = pe/pe−1 = p (cf. Lemma 8.7),
it follows from Proposition 7.50 that x0 = [x mod p]. Working in
the group of order p generated by g0, we can compute x0 in time√
p using, e.g, the baby-step/giant-step algorithm.

(b) Setting y1 := y · g−x0 works. Thus is so since

y · g−x0 = gx0+x1·p+···+xe−1·pe−1

· g−x0

= (gp)
x1+x2·p+···+xe−1·pe−2

.

(c) Note that ord(gp) = pe−1, and so the group G1 generated by gp has

order pe−1. Letting x′
def
= x1+x2 ·p+ · · ·+xe−1 ·pe−2, we can apply

the result from part (a) in group G1 to compute [x′ mod p] = x1.
Repeatedly applying parts (b) and (a) thus allows us to compute
x2, . . . , xe−1 and hence all of x. The computation requires a total of
O(e) = O(log q) computations, each taking timeO(polylog(q)·√p ),
giving the claimed running time.
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9.5 Let q have prime factorization q =
∏k

i=1 p
ei
i . Using the result from the

previous problem, show a modification of the Pohlig-Hellman algorithm
that solves the discrete logarithm problem in a group of order q in time

O
(
polylog(q) ·

∑k
i=1 ei

√
pi

)
= O

(
polylog(q) ·max{√pi }

)
.

Solution: Using the Pohlig-Hellman algorithm, a discrete-logarithm
computation in a group of order q reduces to k discrete-logarithm com-
putations in groups of order pe11 , . . . , pekk . The previous exercise shows
that discrete logarithms in a group of order pe can be computed in time
O(polylog(pe) · √p ). Thus, the total computation is

O
(∑k

i=1 polylog(p
ei
i ) · √pi

)
.

Since peii = O(q) and k = O(log q), this simplifies to a complexity of
O
(
polylog(q) ·maxi{

√
pi }
)
.

9.6 Give pseudocode for the small-space algorithm for computing discrete
logarithms described in Section 9.2.3, and give a heuristic analysis of
the probability with which it succeeds.

Solution: Let g, h ∈ G be given; we want to compute logg h. To
do this, define F : G → Zq × Zq (modeled as a random function),
Hg,h : Zq × Zq → G, and H = Hg,h ◦ F : G → G as in Section 9.2.3.
Use Algorithm 5.9 to find a collision k, k′ in H using

√
q invocations

of H, and hence
√
q invocations of F . With overwhelming probability,

F (k) ̸= F (k′); this follows from Lemma A.15 because the range of F
has size q2. Thus, F (k), F (k′) are a collision in Hg,h, and as discussed
in Theorem 8.79 allow computation of logg h.





Chapter 10

Key Management and the
Public-Key Revolution – Solutions

10.1 Let Π be a key-exchange protocol, and (Enc,Dec) be a private-key en-
cryption scheme. Consider the following interactive protocol Π′ for en-
crypting a message: first, the sender and receiver run Π to generate a
shared key k. Next, the sender computes c ← Enck(m) and sends c to
the other party, who decrypts and recovers m using k.

(a) Formulate a definition of indistinguishable encryptions in the pres-
ence of an eavesdropper (cf. Definition 3.8) appropriate for this
interactive setting.

(b) Prove that if Π is secure in the presence of an eavesdropper and
(Enc,Dec) has indistinguishable encryptions in the presence of an
eavesdropper, then Π′ satisfies your definition.

Solution:

(a) Consider the following experiment, defined for any interactive pro-
tocol Π′ (that is in turn composed of a key-exchange protocol Π and
a private-key encryption scheme Πenc = (Gen,Enc,Dec)), any adversary
A, and any value n for the security parameter:

The eavesdropping indistinguishability experiment
KE-EncA,Π,Πenc(n):

(a) The adversary A is given input 1n, and outputs a pair of
messages m0,m1 of the same length.

(b) Two parties holding 1n execute protocol Π, which results
in a transcript trans and a key k that is output by each of
the parties.

(c) A random bit b← {0, 1} is chosen, and then a ciphertext
c← Enck(mb) is computed.

(d) A is given trans and c, and outputs a bit b′.

(e) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.

DEFINITION Interactive protocol Π′, composed of Π and Πenc, has
indistinguishable encryptions in the presence of an eavesdropper if for all

105



106 Introduction to Modern Cryptography – 2nd Edition Solutions Manual

probabilistic polynomial-time adversaries A there exists a negligible func-
tion negl such that

Pr [KE-EncA,Π,Πenc(n) = 1] ≤ 1

2
+ negl(n),

where the probability is taken over the random coins used by A, as well
as the random coins used in the experiment.

(b) Fix an arbitrary probabilistic polynomial-time adversary A. Our
goal is to prove that there exists a negligible function negl such that

Pr [KE-EncA,Π,Πenc(n) = 1] ≤ 1

2
+ negl(n).

Let us write

Pr [KE-EncA,Π,Πenc(n) = 1] = Pr
(trans,k)←Π

[A(trans,Enck(mb)) = b],

where b is chosen uniformly at random, trans is generated by running an
execution of protocol Π, and k is the key resulting from that execution.
(To emphasize the latter, we include (trans, k)← Π as a subscript.)

We first prove that there is a negligible function negl1 such that

Pr
(trans,k)←Π

[A(trans,Enck(mb)) = b] (10.1)

≤ Pr
(trans,k)←Π

[A(trans,Enck′(mb)) = b] + negl1(n),

where k′ is now chosen uniformly at random, independently of trans.
The above follows from the assumed security of Π. We then show that
there exists a negligible function negl2 with

Pr
(trans,k)←Π

[A(trans,Enck′(mb)) = b] ≤ 1

2
+ negl2(n). (10.2)

This follows from security of Πenc. Taken together, Equations (10.1)
and (10.2) prove the desired result.

We now prove Equation (10.1). Consider the following adversary A1

that eavesdrops on an execution of Π:

Adversary A1:

(a) A1 is given a transcript trans and a key k̂. Let n = |k̂|.
(b) A1 runs A(1n) to obtain two messages (m0,m1).

(c) A1 chooses a bit b← {0, 1} and computes c← Enck̂(mb).
It then runs A(trans, c) to obtain a bit b′.

(d) If b′ = b then A1 outputs 1; otherwise, A1 outputs 0.
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Consider the experiment KEeav
A1,Π(n). When the random bit (call it bke)

used in that experiment is equal to 1, then k̂ is equal to the actual key
generated by the execution of Π resulting in trans. Furthermore, in this
case the experiment evaluates to 1 exactly when A1 outputs 1 (since
this implies that A1 has correctly guessed the value of bke = 1). Since
this occurs exactly when A correctly guesses the value of b, we have

Pr[KEeav
A1,Π(n) = 1 | bke = 1] = Pr

(trans,k)←Π
[A(trans,Enck(mb)) = b].

On the other hand, when bke = 0 then k̂ is a uniformly random key,
chosen independently of anything else. In this case, the experiment
evaluates to 1 if and only if A1 outputs 0. Since this occurs only when
A correctly fails to guess the value of b, we have

Pr
[
KEeav
A1,Π(n) = 1 | bke = 0

]
= 1− Pr

(trans,k)←Π
[A(trans,Enck′(mb)) = b] .

Altogether, then, we have

Pr[KEeav
A1,Π(n) = 1]

=
1

2
· Pr[KEeav

A1,Π(n) = 1 | bke = 1] +
1

2
· Pr[KEeav

A1,Π(n) = 1 | bke = 0]

=
1

2
+

1

2
·
(

Pr
(trans,k)←Π

[A(trans,Enck(mb)) = b]

− Pr
(trans,k)←Π

[A(trans,Enck′(mb)) = b]

)
.

But since Π is secure in the presence of an eavesdropper, we know there
exists a negligible function negl′1 such that

Pr[KEeav
A1,Π(n) = 1] ≤ 1

2
+ negl′1(n).

These last two equations imply Equation (10.1).

We now prove Equation (10.2). Consider the following adversary A2,
attacking Πenc in the sense of Definition 3.8:

Adversary A2:

(a) A2 is given 1n, and runs A(1n) to obtain two messages
(m0,m1). These same messages are output by A2.

(b) A2 is given a ciphertext c.

(c) A2 runs Π itself, playing the roles of both Alice and Bob,
to generate a transcript trans and a key k. (It will ig-
nore k.)
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(d) A2 runs A(trans, c) to obtain a bit b. This same bit is
output by A2.

In experiment PrivKeav
A2,Πenc

(n), the key k′ used (by the experiment) to
generate the ciphertext c is indeed chosen uniformly and independently
of trans. Furthermore, A is given an encryption ofm0 (resp., m1) exactly
when A2 is given an encryption of m0 (resp., m1), and A2 outputs as
its guess whatever is output by A. Thus,

Pr[PrivKeav
A2,Πenc

(n) = 1] = Pr
(trans,k)←Π

[A(trans,Enck′(mb)) = b].

Since Πenc satisfies Definition 3.8, we know that there exists a negligible
function negl2 such that

Pr[PrivKeav
A2,Πenc

(n) = 1] ≤ 1

2
+ negl2(n).

Equation (10.2) follows.

10.2 Show that, for either of the groups considered in Sections 8.3.3 or 8.3.4,
a uniform group element (expressed using the natural representation) is
easily distinguishable from a uniform bit-string of the same length.

Solution: Consider first the case of a subgroup G of order q of Z∗p,
with p = rq + 1. As we have seen in Section 8.3.3, h ∈ G if and only
if hq = 1 mod p. Now, a uniform string of the same length will be
in G with probability at most 1/r, and so can easily be distinguished.
However, a much more serious problem arises with the higher order bits
of a uniform string. To be concrete, let p = 23, with a representation of
5 bits. Then, a uniform 5-bit string will be greater than or equal to p
with probability 9/32, whereas an element of any subgroup of Z∗32 will
never be greater than or equal to p. Thus, elements of the group will
have the most significant bit equal to 1 with probability significantly
lower than a uniform string.

In Section 8.3.4, elements of the group are pairs (x, y) that satisfy the
equation y2 = x3 + Ax + B mod p. The number of elements on the

curve is q
def
= |E(Zp)|, whereas the number of pairs (x, y) is 22n (where n

denotes the number of bits in the representation of p). By Theorem 8.70,
we have q ≤ p + 1 + 2

√
p ≪ 22n. Thus, the vast majority of pairs

(x, y) will not satisfy the equation, and a uniform string can be easily
distinguished from a uniform group element.

10.3 Describe a man-in-the-middle attack on the Diffie–Hellman protocol
where the adversary shares a key kA with Alice and a (different) key
kB with Bob, and Alice and Bob cannot detect that anything is wrong.

Solution: The man-in-the-middle attack consists of simply running
independent executions of the protocol with Alice and with Bob. (I.e.,
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the adversary plays the role of Bob when interacting with Alice, and
plays the role of Alice when interacting with Bob.) This results in a
key kA output by Alice and a key kB output by Bob, both of which are
known to the adversary. Since the adversary ran the protocol honestly
with each party, neither party can detect that anything is amiss.

10.4 Consider the following key-exchange protocol:

(a) Alice chooses uniform k, r ∈ {0, 1}n, and sends s := k ⊕ r to Bob.

(b) Bob chooses uniform t ∈ {0, 1}n, and sends u := s⊕ t to Alice.

(c) Alice computes w := u⊕ r and sends w to Bob.

(d) Alice outputs k and Bob outputs w ⊕ t.

Show that Alice and Bob output the same key. Analyze the security of
the scheme (i.e., either prove its security or show a concrete attack).

Solution: Alice outputs k, while Bob outputs

w ⊕ t = (u⊕ r)⊕ t = ((s⊕ t)⊕ r)⊕ t = (((k ⊕ r)⊕ t)⊕ r)⊕ t = k.

The scheme, however, is not secure. Given a transcript (s, u, w) of an
execution of the protocol, an adversary can compute s⊕ u⊕w and this
is equal to the key since

s⊕ u⊕ w = (k ⊕ r)⊕ u⊕ (u⊕ r) = k.





Chapter 11

Public-Key Encryption – Solutions

11.1 Assume a public-key encryption scheme for single-bit messages with no
decryption error. Show that, given pk and a ciphertext c computed via
c ← Encpk(m), it is possible for an unbounded adversary to determine
m with probability 1.

Solution: This is just a trivial brute-force search. We describe the
attack assuming that m is a single bit, but the attack generalizes easily
to m of arbitrary length or even m of unknown length. The attack is as
follows: let ℓ = ℓ(n) denote the length of the random coins used by Enc.
Given pk and c, compute cr := Encpk(0; r) for all r ∈ {0, 1}ℓ. If c = cr
for some r, then output “m = 0”; else, output “m = 1.” This adversary
is clearly far from efficient, but that is ok since in this exercise we allow
the adversary to be unbounded.

If c is an encryption of 0 then c = Encpk(0; r) for some r and so the
above adversary always (correctly) outputs “m = 0.” But if c is an
encryption of 1 then c ̸= cr for all r. (This follows from correctness.)
So in this case the adversary always (correctly) outputs “m = 1.”

11.2 Show that for any CPA-secure public-key encryption scheme for single-
bit messages, the length of the ciphertext must be superlogarithmic in
the security parameter.

Solution: We aim for simplicity rather than trying to optimize param-
eters. Let Π = (Gen,Enc,Dec) be an encryption scheme. For a given
public key pk generated using Gen and a bit b, let Cpk(b) denote the set
of ciphertexts corresponding to possible encryptions of b with respect
to pk. Say that for some fixed bit b the length of the ciphertext after
encrypting b is at most logarithmic in the security parameter (for every
public key). Then for any public key, the set Cpk(b) has size at most
p(n) for some polynomial p. We exploit this in the following attack:

Adversary A:

(a) A is given pk, and computes c0 ← Encpk(0) and
c1 ← Encpk(1).

(b) A outputs the two messages (0, 1), and is given in return
a ciphertext c.
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(c) If c = c0 then A outputs 0; if c = c1 then A outputs 1;
otherwise A outputs a random bit.

As above, let b be the bit for which |Cpk(b)| ≤ p(n) (if this holds for
both 0 and 1 then set b arbitrarily). Let c∗b ∈ Cpk(b) be the cipher-
text that occurs most frequently when encrypting b, and note that
Pr[Encpk(b) = c∗b ] ≥ 1/|Cpk(b)|. We now analyze the behavior of A.

Pr[A outputs b | c is an encryption of b] = Pr[c = cb] +
1

2
· Pr[c ̸= cb]

=
1

2
+

1

2
· Pr[c = cb]

=
1

2
+

1

2
· Pr[c = c∗b

∧
cb = c∗b ]

≥ 1

2
+

1

2p2(n)
.

(In fact, one can show that Pr[c = cb] ≥ 1/|Cpk(b)| ≥ 1/p(n) but this is
not needed for the proof.) We also have

Pr[A outputs b̄ | c is an encryption of b̄ ]

= Pr[c = cb̄] +
1

2
· Pr[c ̸= cb̄] ≥

1

2
.

From the above, we have

Pr[PubKeav
A,Π(n) = 1] =

1

2
· Pr[A outputs b | c is an encryption of b ]

+
1

2
· Pr[A outputs b̄ | c is an encryption of b̄ ]

≥ 1

2
·
(
1

2
+

1

2p2(n)

)
+

1

2
· 1
2

=
1

2
+

1

4p2(n)
.

Since 1/4p2(n) is not negligible, Π is not CPA-secure.

11.3 Say a public-key encryption scheme (Gen,Enc,Dec) for n-bit messages
is one-way if any ppt adversary A has negligible probability of success
in the following experiment:

• Gen(1n) is run to obtain keys (pk, sk).

• A message m ∈ {0, 1}n is chosen uniformly at random,
and a ciphertext c← Encpk(m) is computed.

• A is given pk and c, and outputs a message m′. We say
A succeeds if m′ = m.

(a) Give a construction of a CPA-secure KEM in the random-oracle
model based on any one-way public-key encryption scheme.
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(b) Can a deterministic public-key encryption scheme be one-way? If
not, prove impossibility; if so, give a construction based on any of
the assumptions introduced in this book.

Solution:

(a) See Construction 11.1-S.

CONSTRUCTION 11.1-S

Let Π = (Gen,Enc,Dec) be a public-key encryption scheme, and let
ℓ(n) be an arbitrary polynomial. Let H be a function whose domain is
{0, 1}∗ and whose range can be set to {0, 1}ℓ(n) for any n. Construct
a public-key encryption scheme Π′ as follows:

• Gen′: on input 1n, run Gen(1n) to obtain (pk, sk). The public
key is pk and the private key is sk.

• Enc′: on input a public key pk and a message m ∈ {0, 1}ℓ(n),
choose a random r ← {0, 1}n and output the ciphertext

⟨Encpk(r), H(r)⊕m⟩ .

• Dec′: on input a private key sk and a ciphertext ⟨c1, c2⟩, compute
r := Decsk(c1) and then output the message H(r)⊕ c2.

A proof of security is similar-in-spirit to the proof of Theorem 11.38,
though simpler because only CPA-security is being shown.

(b) A public-key encryption scheme where encryption is deterministic
can be one-way. Textbook RSA encryption (Construction 11.26)
serves as one example: this scheme is one-way as long as the RSA
problem is hard relative to GenRSA.

11.4 Show that any two-round key-exchange protocol (that is, where each
party sends a single message) satisfying Definition 10.1 can be converted
into a CPA-secure public-key encryption scheme.

Solution: Let Π be a 2-round key-exchange protocol where Alice goes
first. A public-key encryption scheme can be constructed as in Construc-
tion 11.2-S. Correctness follows from the fact that msg1,msg2 jointly
form an execution of Π, and so the sender and receiver generate the
same key k. Thus, the receiver obtains the sender’s intended message m.

Let Πenc denote Construction 11.2-S. We prove that Πenc has indistin-
guishable encryptions in the presence of an eavesdropper.

Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Πenc
(n) = 1].
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CONSTRUCTION 11.2-S

Let Π be as in the text. Define a public-key encryption scheme as
follows:

• Gen: on input 1n run Alice’s side of Π to obtain msg1 along
with some state information s. The public key is msg1 and the
private key is s.

• Enc: on input public key pk = msg1 and message m ∈ {0, 1}n,
the sender runs Bob’s side of Π to obtain msg2 and a
key k ∈ {0, 1}n. Output the ciphertext ⟨msg2, k ⊕m⟩.

• Dec: on input a private key sk = s and a ciphertext ⟨msg2, c⟩,
run Alice’s side of Π (using state s and incoming message msg2)
to obtain a key k. Then output the message m := c⊕ k.

Public-key encryption from key exchange.

Consider the modified “encryption scheme” Π̃ where Gen is the same
as in Πenc, but encryption of a message m with respect to the public
key msg1 is done by running Bob’s side of Π to obtain msg2 but then
choosing a random k ∈ {0, 1}n and outputting the ciphertext

⟨msg2, k ⊕m⟩.

Although Π̃ is not actually an encryption scheme (as there is no way
for the receiver to decrypt), the experiment PubKeav

A,Π̃
(n) is still well-

defined since that experiment depends only on the key generation and
encryption algorithms.

As in the case of the one-time pad, the second component of the cipher-
text in scheme Π̃ is a uniform string and, in particular, is independent of
the message m being encrypted. The first component of the ciphertext
is also independent of m. It follows that

Pr[PubKeav
A,Π̃

(n) = 1] =
1

2
.

Now consider the following ppt algorithm D attacking Π:

Algorithm D:
The algorithm is given trans = (msg1,msg2), k as input.

• Set pk = msg1 and run A(pk) to obtain two messages
m0,m1.

• Choose a uniform bit b, and give ⟨msg2, k ⊕mb⟩ to A.
• When A outputs b′, output 1 if b′ = b and 0 otherwise.

Let us analyze the behavior of D. There are two cases to consider:
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Case 1: Say the input to D is generated by running Π to obtain a
transcript trans and a key k. In this case the view of A when run
as a subroutine by D is distributed identically to A’s view in experi-
ment PubKeav

A,Πenc
(n), and so D outputs 1 in this case with probability

Pr[PubKeav
A,Πenc

(n) = 1].

Case 2: Say the input to D is generated by running Π to obtain a
transcript trans and a key k′, but then choosing k uniformly from {0, 1}n
and giving D the pair (trans, k). In this case the view of A when run as
a subroutine by D is distributed identically to A’s view in experiment
PubKeav

A,Π̃
(n). Since D outputs 1 exactly when the output b′ of A is

equal to b, the probability that D outputs 1 in this case is exactly
Pr[PubKeav

A,Π̃
(n) = 1] = 1

2 .

Since Π is a secure key-exchange protocol, there exists a negligible func-
tion negl such that

1

2
+ negl(n) ≥ Pr[KEeav

A,Π(n) = 1]

=
1

2
· Pr[D outputs 1 | k is output by Π]

+
1

2
· Pr[D outputs 0 | k is random]

=
1

2
· Pr[PubKeav

A,Πenc
(n) = 1] +

1

2
· 1
2
.

We thus conclude that

Pr[PubKeav
A,Πenc

(n) = 1] ≤ 1

2
+ 2 · negl(n).

Since A was arbitrary, this proves that Πenc has indistinguishable en-
cryptions in the presence of an eavesdropper.

11.5 Show that Claim 11.7 does not hold in the setting of CCA-security.

Solution: Let Π = (Gen,Enc,Dec) be a CCA-secure encryption scheme
for 1-bit messages, and let Π′ = (Gen,Enc′,Dec′) denote the encryption
scheme for arbitrary-length messages where

Encpk(m1 · · ·mt) = Encpk(m1), . . . ,Encpk(mt).

We show that Π′ is not CCA-secure. Consider the following adversary:

Algorithm A:

(a) Given pk, output messages m0 = 00 and m1 = 11.

(b) Receive in return a ciphertext c = c1, c2.
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(c) Compute c′2 ← Encpk(0). Submit the ciphertext c′ =
c1, c

′
2 to the decryption oracle, and receive in return the

message b 0, with b ∈ {0, 1}.
(d) Output b.

First note that this is a legal attack: m0 and m1 have the same length,
and the ciphertext c′ submitted to the decryption oracle satisfies c′ ̸= c.
It is easy to see that this attacker succeeds in guessing the bit b used by
the experiment with probability 1; thus, Π′ is not CCA-secure.

11.6 Consider the following public-key encryption scheme. The public key
is (G, q, g, h) and the private key is x, generated exactly as in the El
Gamal encryption scheme. In order to encrypt a bit b, the sender does
the following:

(a) If b = 0 then choose a uniform y ∈ Zq and compute c1 := gy and
c2 := hy. The ciphertext is ⟨c1, c2⟩.

(b) If b = 1 then choose independent uniform y, z ∈ Zq, compute
c1 := gy and c2 := gz, and set the ciphertext equal to ⟨c1, c2⟩.

Show that it is possible to decrypt efficiently given knowledge of x.
Prove that this encryption scheme is CPA-secure if the decisional Diffie–
Hellman problem is hard relative to G.
Solution: Decryption is easy. Given a ciphertext ⟨c1, c2⟩ and secret
key x, output 0 iff cx1 = c2. When the ciphertext is an encryption of 0
then decryption is always correct since

cx1 = (gy)
x
= (gx)

y
= hy = c2.

When the ciphertext is an encryption of 1 then cx1 = gyx. Unless it
happens that z = xy, decryption will correctly output 1. But z = xy
only with probability 1/q, which is negligible.

Let Π denote the encryption scheme of the exercise. Security of Π
follows fairly immediately from the observation that when ⟨c1, c2⟩ is an
encryption of 0 then c2 = DHg(h, c1), whereas if ⟨c1, c2⟩ is an encryption
of 1 then c1 and c2 are independent, random elements of G. Formally,
given an adversary A attacking the encryption scheme we can construct
an algorithm A′ solving the DDH problem as follows:

Algorithm A′:
The algorithm is given G, q, g, h, c1, c2 as input.

(a) Run A on the public key pk = ⟨G, q, g, h⟩. Assume for
simplicity that A outputs (m0 = 0,m1 = 1).

(b) Give to A the ciphertext ⟨c1, c2⟩. Output whatever bit b′

is output by A.
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Consider the case when the input to A′ is generated by running G(1n) to
obtain (G, q, g), then choosing uniform x, y, z ∈ Zq, and finally setting
h := gx, c1 := gy, and c2 := gz. Then, from the point of view of A (run
as a sub-routine by A′), the experiment is equivalent to PubKeav

A,Π(n)
conditioned on b = 1 (i.e., conditioned on the ciphertext ⟨c1, c2⟩ being
an encryption of 1). Furthermore, A′ outputs 1 in this case exactly
when A outputs 1, i.e., when A succeeds. Thus:

Pr[A′(G, q, g, gx, gy, gz) = 1] = Pr[PubKeav
A,Π(n) = 1 | b = 1].

When the input to A′ is generated by running G(1n) to obtain (G, q, g),
then choosing uniform x, y ∈ Zq, and finally setting h := gx, c1 := gy,
and c2 := gxy then, from the point of view of A, the experiment is
equivalent to PubKeav

A,Π(n) conditioned on b = 0. Again, A′ outputs 1
when A does; now, however, this means that A did not succeed. So,

Pr[A′(G, q, g, gx, gy, gxy) = 1] = 1− Pr[PubKeav
A,Π(n) = 1 | b = 0].

Putting this together and assuming the DDH problem is hard relative
to G, there exists a negligible function negl such that

negl(n)

≥ |Pr[A′(G, q, g, gx, gy, gz) = 1]− Pr[A′(G, q, g, gx, gy, gxy) = 1]|
=
∣∣Pr[PubKeav

A,Π(n) = 1 | b = 1] + Pr[PubKeav
A,Π(n) = 1 | b = 0]− 1

∣∣
= 2 ·

∣∣∣∣Pr[PubKeav
A,Π(n) = 1]− 1

2

∣∣∣∣ .
Since A was arbitrary, it follows that Π is CPA-secure.

11.7 Consider the following variant of El Gamal encryption. Let p = 2q + 1,
let G be the group of squares modulo p (so G is a subgroup of Z∗p of
order q), and let g be a generator of G. The private key is (G, g, q, x)
and the public key is (G, g, q, h), where h = gx and x ∈ Zq is chosen
uniformly. To encrypt a message m ∈ Zq, choose a uniform r ∈ Zq,
compute c1 := gr mod p and c2 := hr +m mod p, and let the ciphertext
be ⟨c1, c2⟩. Is this scheme CPA-secure? Prove your answer.

Solution: This scheme is not secure. In particular, consider an ad-
versary A that chooses uniform m0,m1 ∈ Zq and then receives the
challenge ciphertext ⟨c1, c2⟩. Observe that since c2 = hy +m mod p it
is not necessarily the case that c2 ∈ G (since addition is not the group
operation). However, it is guaranteed that [c2 − mb mod p] is in G,
where mb is the value that was encrypted in ⟨c1, c2⟩. Furthermore, as
we have seen in the text, it is possible to efficiently verify if a value
is in such a group G. The question remains as to the probability that
[c2−m1−b mod p] is also in G. However, as we know, G includes exactly
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half of the elements of Z∗p. Thus, since m1−b is a random value, it fol-
lows that [c2 −m1−b mod p] ∈ G with probability only 1/2. Thus, A’s
strategy is to check if [c2 −m0 mod p] ∈ G and if [c2 −m1 mod p] ∈ G.
If both elements are in the group, then A outputs a uniform bit. Oth-
erwise, it outputs the bit b for which [c2 − mb mod p] ∈ G. A simple
calculation shows that A succeeds with probability 3/4.

11.8 Consider the following protocol for two parties A and B to flip a fair coin
(more complicated versions of this might be used for Internet gambling):
(1) a trusted party T publishes her public key pk; (2) then A chooses a
uniform bit bA, encrypts it using pk, and announces the ciphertext cA
to B and T ; (3) next, B acts symmetrically and announces a ciphertext
cB ̸= cA; (4) T decrypts both cA and cB , and the parties XOR the
results to obtain the value of the coin.

(a) Argue that even if A is dishonest (but B is honest), the final value
of the coin is uniformly distributed.

(b) Assume the parties use El Gamal encryption (where the bit b is
encoded as the group element gb before being encrypted—note that
efficient decrypt is still possible). Show how a dishonest B can bias
the coin to any value he likes.

(c) Suggest what type of encryption scheme would be appropriate to
use here. Can you define an appropriate notion of security and
prove that your suggestion achieves this definition?

Solution:

(a) The ciphertext cA output by A corresponds to some bit bA. (It
could also be an invalid ciphertext that does not decrypt at all,
though this cannot occur [without being detected] when using El
Gamal encryption. If T detects an invalid ciphertext upon decryp-
tion, then it can just use cB as the coin.) If B is honest, then it
chooses a uniform cB, and so the coin cA ⊕ cB (or even just cB in
case cA is invalid) is uniform.

(b) The problem when trying to apply the argument in part (a) to the
case when A is honest but B is not is that B might choose cB in
a way that depends on cA (and hence bA); this was not possible
when the dishonest party went first. We show that, when El Gamal
encryption is used, B can bias the coin any way it likes.

B can bias the coin toward 0 as follows. Given the ciphertext
cA = ⟨c1, c2⟩ broadcast by A, player B chooses a random r ← Zq

and outputs cB = ⟨c′1, c′2⟩ with

c′1 := c1 · gr and c′2 := c2 · hr.
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One can check that cB always decrypts to bA, and so the coin is
always 0 if B follows this strategy. Furthermore, it holds that cB is
distributed exactly like a random encryption of bA (this is not too
much more difficult to show), and so this kind of cheating by B is
undetectable (since it is indistinguishable whether B is cheating or
whether it just happened that B chose bB = bA).

To bias toward 1, player B can do the following. Given cA as above,
choose random r ← Zq and output cB = ⟨c′1, c′2⟩ with

c′1 := (c1)
−1 · gr and c′2 := (c2)

−1 · g · hr.

One can check that now bB = 1− bA, and so the coin always comes
out to be 1. Once again, cB is in fact a random encryption of 1−bA
and so this form of cheating is undetectable.

(c) A CCA-secure encryption scheme should be used to prevent the
problems sketched in part (b).

We define security informally, since security of two-party protocols
is not covered in the book. Say a coin-tossing protocol Π is se-
cure if, for any ppt adversary corrupting either one of the parties,
the probability p = p(n) that the resulting coin is 0 is negligi-
bly close to 1

2 . (I.e., there is a negligible function negl such that
|p(n) − 1

2 | ≤ negl(n).) Note that we use absolute value here since
we don’t want the coin to be biased toward either 0 or 1. We
claim that the protocol in this exercise, when instantiated with a
CCA-secure public-key encryption scheme, is a secure coin-tossing
protocol. (We add one point of clarification for the protocol: if
either party’s ciphertext is invalid, including the case when it does
not decrypt to 0/1, then T outputs the bit obtained by decrypting
the other party’s ciphertext.)

We have seen already in part (a) that an adversary corrupting A
cannot bias the coin. So consider the case when B is corrupted. Let
Π denote the CCA-secure encryption scheme used in the protocol.
Define the following adversary A attacking Π:

Adversary A:
i. A is given pk, and outputs m0 = 0 and m1 = 1.

ii. A is given in return a ciphertext cA. It then runs
B(cA) to obtain a ciphertext cB ̸= cA. A submits cB
to its decryption oracle and receives in return a bit b′.
Then:

• If decryption of cB returns an error, or if b′ ̸∈ {0, 1}
then A outputs 0.

• If b′ = 0 then A outputs 0.

• If b′ = 1 then A outputs 1.
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We have

Pr[PubKcca
A,Π(n) = 1] =

1

2
· Pr[A outputs 0 | cA is an encryption of 0]

+
1

2
· Pr[A outputs 1 | cA is an encryption of 1]

=
1

2
· Pr[coin=0 | cA is an encryption of 0]

+
1

2
· Pr[coin=0 | cA is an encryption of 1]

= Pr[coin=0]
def
= p(n).

CCA-security of Π implies that p(n) ≤ 1
2 + negl(n) for some negli-

gible function negl. A similar argument, flipping the output of A,
shows that 1−p(n) ≤ 1

2 +negl(n) as well. Together, these complete
the proof of security for the protocol.

11.9 Prove formally that the El Gamal encryption scheme is not CCA-secure.

Solution: Consider the following attackerA: given public key (G, q, g, h),
choose arbitrary (distinct) h0, h1 ∈ G as the challenge messages. Upon
receiving the challenge ciphertext ⟨c1, c2⟩, compute c′2 = h · c2 and re-
quest decryption of ⟨c1, c′2⟩, receiving some u in return. Finally, output 0
if u

h = h0 and output 1 if u
h = h1.

We prove that A succeeds in the CCA-experiment with probability 1.
Observe that ⟨c1, c2⟩ = ⟨gy, hy · hb⟩ and so ⟨c1, c′2⟩ = ⟨gy, hy · hb · h⟩.
This implies that the decryption oracle returns u = hb · h and thus
u
h = hb, as required.

11.10 In Section 11.4.4 we showed that El Gamal encryption is malleable, and
specifically that given a ciphertext ⟨c1, c2⟩ that is the encryption of some
unknown message m, it is possible to produce a ciphertext ⟨c1, c′2⟩ that
is the encryption of α ·m (for known α). A receiver who receives both
these ciphertexts might be suspicious since both ciphertexts share the
first component. Show that it is possible to generate ⟨c′1, c′2⟩ that is the
encryption of α ·m, with c′1 ̸= c1 and c′2 ̸= c2.

Solution: Let ⟨c1, c2⟩ = ⟨gy, hy ·m⟩. Then, for any r we have ⟨c′1, c′2⟩
def
=

⟨c1 · gr, c2 · hr · α⟩ = ⟨gy+r, hy+r · α ·m⟩. Thus, ⟨c′1, c′2⟩ is an encryption
of α·m with c′1 ̸= c1 and c′2 ̸= c2. (In fact, c′1 is uniform and independent
of c1 and ⟨c′1, c′2⟩ is an independent random encryption of α ·m.)

11.11 Prove Theorem 11.22.

Solution: The proof is similar to that of Theorem 11.38, and is omitted.

11.12 One of the attacks on plain RSA discussed in Section 11.5.1 involves a
sender who encrypts two related messages using the same public key.
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Formulate an appropriate definition of security ruling out such attacks,
and show that any CPA-secure public-key encryption scheme satisfies
your definition.

Solution: There are multiple ways a definition can be formulated; we
provide one. Consider the following experiment involving an attacker A
and an encryption scheme Π:

PubKrelated
A,Π (n):

(a) Gen(1n) is run to obtain keys (pk, sk).

(b) Adversary A is given pk, and outputs a pair of messages
m0,m1 and a function f . We require that |m0| = |m1|
and |f(m0)| = |f(m1)| and that m0,m1, f(m0), f(m1) are
in the message space.

(c) A uniform bit b ∈ {0, 1} is chosen, and then ciphertexts
c← Encpk(mb) and c′ ← Encpk(f(mb)) are computed and
given to A.

(d) A outputs a bit b′. The output of the experiment is 1 if
b′ = b, and 0 otherwise.

Π = (Gen,Enc,Dec) is secure for encryption of related messages if for all
probabilistic, polynomial-time adversaries A there is a negligible func-
tion negl such that

Pr[PubKrelated
A,Π (n) = 1] ≤ negl(n).

Any attacker in the above experiment can be simulated by an attacker
in the PubKLR-cpa experiment (by submitting (m0,m1) to the LR-oracle,
followed by (f(m0), f(m1))). Since any CPA-secure scheme is secure in
that experiment, this implies that any CPA-secure scheme is also secure
for encryption of related messages according to the definition above.

11.13 One of the attacks on plain RSA discussed in Section 11.5.1 involves
a sender who encrypts the same message to three different receivers.
Formulate an appropriate definition of security ruling out such attacks,
and show that any CPA-secure public-key encryption scheme satisfies
your definition.

Solution: There are multiple ways a definition can be formulated; we
provide one. Consider the following experiment involving an attacker A
and an encryption scheme Π:

PubKℓ-keys
A,Π (n):

(a) Gen(1n) is run ℓ = ℓ(n) times to obtain (pk1, sk1), . . . , (pkℓ, skℓ).

(b) A is given pk1, . . . , pkℓ, and outputs a pair of equal-length
messages m0,m1.
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(c) A uniform b ∈ {0, 1} is chosen, and (for i = 1, . . . , ℓ)
ciphertexts ci ← Encpki(mb) are computed and given to A.

(d) A outputs a bit b′. The output of the experiment is 1 if
b′ = b, and 0 otherwise.

Π = (Gen,Enc,Dec) is secure for encrypting to different receivers if for
all polynomials ℓ and all ppt adversaries A there is a negligible function
negl such that

Pr[PubKℓ-keys
A,Π (n) = 1] ≤ negl(n).

A proof that CPA-security of Π implies security for encrypting to dif-
ferent receivers uses a hybrid argument as in the proof of Theorem 11.6,
and is omitted.

11.14 Consider the following modified version of padded RSA encryption: As-
sume messages to be encrypted have length exactly ∥N∥ /2. To encrypt,
first compute m̂ := 0x00∥r∥0x00∥m where r is a uniform string of length
∥N∥ /2− 16. Then compute the ciphertext c := [m̂e mod N ]. When de-
crypting a ciphertext c, the receiver computes m̂ := [cd mod N ] and
returns an error if m̂ does not consist of 0x00 followed by ∥N∥ /2 − 16
arbitrary bits followed by 0x00. Show that this scheme is not CCA-
secure. Why is it easier to construct a chosen-ciphertext attack on this
scheme than on PKCS #1 v1.5?

Solution: Consider the following adversary:

Algorithm A:
(a) Given the public key N, e, output m0 = 00 · · · 0 and m1 =

01 · · · 1. Receive in return a ciphertext c.

(b) Set c′ := [2e · c mod N ] and submit c′ to the decryption
oracle.

(c) If the decryption oracle returns an error, then output a
random bit. Otherwise, let m′ denote the message re-
turned by the decryption oracle.

(d) Output the most-significant bit of m′.

Why does this attack succeed (with high probability)? Let b denote the
bit such that c is an encryption of mb, and let k = ∥N∥ /2− 16. Then

c = [(0x00 ∥ r1 · · · rk ∥ 0x00 ∥ 0b · · · b)e mod N ]

and

c′ = 2e · c = [(2 · (0x00 ∥ r1 · · · rk ∥ 0x00 ∥ 0b · · · b))e mod N ]

= [(07r1 ∥ r2 · · · rk0 ∥ 0x00 ∥ b · · · b0)e mod N ].

(Multiplication by 2 corresponds to a left-wise bit shift; there is no
overflow since the leading bit of the multiplicand is 0.) Decryption of
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c′ results in an error only if r1 = 1, which occurs with probability 1
2 ;

if no error occurs, then the high-order bit of the decrypted message is
exactly equal to b. Thus the above attack correctly determines b with
probability 3/4, which is significantly better than guessing at random.

This simple attack does not work on PKCS #1 v1.5. In that scheme,
encryption of a message m is done by computing

c := [(00000000 ∥ 00000010 ∥ r1r2 · · · ∥ 00000000 ∥ m1m2 · · · )e mod N ] ,

where r is uniform. Thus, setting c′ := [2e · c mod N ] would give

c′ = [(00000000 ∥ 0000010r1 ∥ r2 · · · 0 ∥ 0000000m1 ∥ m2 · · · )e mod N ] ,

which will never decrypt correctly (since the second byte is formatted
incorrectly, regardless of the value of r1).

11.15 Consider the RSA-based encryption scheme in which a user encrypts a
message m ∈ {0, 1}ℓ with respect to the public key ⟨N, e⟩ by computing
m̂ := H(m)∥m and outputting the ciphertext [m̂e mod N ]. (Here, let
H : {0, 1}ℓ → {0, 1}n and assume ℓ + n < ∥N∥.) The receiver recovers
m̂ in the usual way and verifies that it has the correct form before
outputting the ℓ least-significant bits as m. Prove or disprove that this
scheme is CCA-secure if H is modeled as a random oracle.

Solution: This scheme is not even CPA-secure, since encryption is
deterministic.

11.16 Show a chosen-ciphertext attack on Construction 11.34.

Solution: There are many possible answers; we provide one. We only
sketch an attack. Given a ciphertext c that encapsulates an unknown
key k1 · · · kn, compute c′ := [ce mod N ] and request decryption of c′.
The result will be k2 · · · knk, where k = lsb(c), thus revealing all-but-
one of the bits of the encapsulated key.

11.17 Let Π = (Gen,Enc,Dec) be a CPA-secure public-key encryption scheme,
and let Π′ = (Gen′,Enc′,Dec′) be a CCA-secure private-key encryption
scheme. Does Construction 11.3-S have indistinguishable encryptions
under a chosen-ciphertext attack, if H is modeled as a random oracle?
If yes, provide a proof. If not, where does the approach used to prove
Theorem 11.38 break down?

Solution: Π∗ does not, in general, have indistinguishable encryptions
under a chosen-ciphertext attack. The issue is that it might be easy to
take a ciphertext c1 encrypted using Π and generate a different cipher-
text c′1 that decrypts to the same value as c1. For example, El Gamal
encryption has this property (see Section 11.4.4). If Π has this property,
then there is an easy chosen-ciphertext attack on Π∗: given ciphertext
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CONSTRUCTION 11.3-S

Let H : {0, 1}n → {0, 1}n be a function. Construct a public-key
encryption scheme as follows:

• Gen∗: on input 1n, run Gen(1n) to obtain (pk, sk). Output these
as the public and private keys, respectively.

• Enc∗: on input a public key pk and a message m ∈ {0, 1}n,
choose a uniform r ∈ {0, 1}n and output the ciphertext⟨

Encpk(r), Enc
′
H(r)(m)

⟩
.

• Dec∗: on input a private key sk and a ciphertext ⟨c1, c2⟩, com-
pute r := Decsk(c1) and set k := H(r). Then output Dec′k(c2).

C = ⟨c1, c2⟩ generate a ciphertext C ′ = ⟨c′1, c2⟩ (where c′1 decrypts to
the same value as c1 with respect to the given public key) and then sub-
mit this ciphertext to the decryption oracle. Note that the decryption
of C ′ is the same as the decryption of C.

The feature of Construction 11.37 that prevents this attack is that text-
book RSA encryption is a permutation; that is, every message corre-
sponds to a unique ciphertext. Thus, given a ciphertext c1 encrypted
using textbook RSA encryption, there does not exist a different cipher-
text c′1 decrypting to the same value.

11.18 Consider the following variant of Construction 11.32:

CONSTRUCTION 11.4-S

Let GenRSA be as usual, and define a public-key encryption scheme as
follows:

• Gen: on input 1n, run GenRSA(1n) to obtain (N, e, d). Output
the public key pk = ⟨N, e⟩, and the private key sk = ⟨N, d⟩.

• Enc: on input a public key pk = ⟨N, e⟩ and a message
m ∈ {0, 1}, choose a uniform r ∈ Z∗

N . Output the ciphertext
⟨[re mod N ], lsb(r)⊕m⟩.

• Dec: on input a private key sk = ⟨N, d⟩ and a ciphertext ⟨c, b⟩,
compute r := [cd mod N ] and output lsb(r)⊕ b.

Prove that this scheme is CPA-secure. Discuss its advantages and dis-
advantages relative to Construction 11.32.

Solution: The proof is (conceptually) very similar to the proof of The-
orem 11.33. Let Π denote the above variant scheme, and let A be an ad-
versary attacking this scheme. Assume for simplicity (and without loss
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of generality) that A always outputs m0 = 0 and m1 = 1. Construct
an algorithm A′ for experiment RSA-lsb as follows: A′, given N, e, c,
chooses a uniform bit b̂ and computes b′ ← A(N, e, ⟨c, b̂⟩); it then out-

puts b̂ ⊕ b′. Let r be the (unknown) value such that c = [re mod N ].
Note that

Pr[A′(N, e, c) = 0 | lsb(r) = 0]

=
1

2
· (Pr[A(N, e, ⟨c, 0⟩) = 0 | lsb(r) = 0] + Pr[A(N, e, ⟨c, 1⟩) = 1 | lsb(r) = 0])

and

Pr[A′(N, e, c) = 1 | lsb(r) = 1]

=
1

2
· (Pr[A(N, e, ⟨c, 0⟩) = 1 | lsb(r) = 1] + Pr[A(N, e, ⟨c, 1⟩) = 0 | lsb(r) = 1]) .

Moreover,

Pr[A outputs 0 | 0 is encrypted]

=
1

2
· (Pr[A(N, e, ⟨c, 0⟩) = 0 | lsb(r) = 0] + Pr[A(N, e, ⟨c, 1⟩) = 0 | lsb(r) = 1]) ,

and similarly for Pr[A outputs 1 | 1 is encrypted]. Putting everything
together gives

Pr[PubKeav
A,Π(n) = 1] = Pr[RSA-lsbA′,GenRSA(n) = 1],

which shows that the scheme is CPA-secure if the RSA problem is hard
relative to GenRSA.

11.19 Say three users have RSA public keys ⟨N1, 3⟩, ⟨N2, 3⟩, and ⟨N3, 3⟩ (i.e.,
they all use e = 3), with N1 < N2 < N3. Consider the following method
for sending the same messagem ∈ {0, 1}ℓ to each of these parties: choose
a uniform r ← Z∗N1

, and send to everyone the same ciphertext⟨
[r3 mod N1], [r

3 mod N2], [r
3 mod N3],H(r)⊕m

⟩
,

where H : Z∗N1
→ {0, 1}ℓ. Assume ℓ≫ n.

(a) Show that this is not CPA-secure, and an adversary can recover m
from the ciphertext even when H is modeled as a random oracle.

(b) Show a simple way to fix this and get a CPA-secure method that
transmits a ciphertext of length 3ℓ+O(n).

(c) Show a better approach that is still CPA-secure but with a cipher-
text of length ℓ+O(n).
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Solution:

(a) The second attack presented in Section 10.4.2 shows how r can be
recovered in polynomial time given [r3 mod N1], [r

3 mod N2], and
[r3 mod N3]. Given r, the message m can be easily recovered.

(b) One simple way to fix the scheme is to use an independent value r
for each user. I.e., to encrypt the sender would choose random
ri ∈ ZNi for i ∈ {1, 2, 3} and then send the ciphertext⟨

[r31 mod N1], [r
3
2 mod N2], [r

3
3 mod N3],

H(r1)⊕m, H(r2)⊕m, H(r3)⊕m

⟩
.

(c) A better idea is to use a variant of hybrid encryption: use the
approach from part (b) to encrypt a key k, and then use the same
key k to encrypt m. In detail: let Π = (Enc,Dec) denote a CPA-
secure private-key encryption scheme. Then to encrypt the sender
would choose random ri ∈ ZNi for i ∈ {1, 2, 3} as well as random
k ∈ {0, 1}n, and then send the ciphertext⟨

[r31 mod N1], [r
3
2 mod N2], [r

3
3 mod N3],

H(r1)⊕ k, H(r2)⊕ k, H(r3)⊕ k,
Enck(m)

⟩
.

11.20 Fix an RSA public key ⟨N, e⟩ and assume we have an algorithm A that
always correctly computes lsb(x) given [xe mod N ]. Write full pseu-
docode for an algorithm A′ that computes x from [xe mod N ].

Solution: Let γ
def
= [2−1 mod N ]. The intuition is that xe · γe =

(xγ)e mod N ; thus, multiplication by γe can be used to effect a bit-
wise right-shift (i.e., division by 2), which can in turn be used to learn
all the bits of x one-by-one. There are, however, some technicalities.

ALGORITHM 11.5-S
GetBits

Input: ⟨N, e⟩; c ∈ Z∗
N ; ℓ

Output: the ℓ least significant bits of [c1/e mod N ]

if ℓ = 1, return A(N, e, c)
γ := [2−1 mod N ]
x0 := A(N, e, c)
x′ := GetBits(N, e, [c · γe mod N ], ℓ− 1)
if x0 = 0 return x′∥x0

else return [2x′ −N mod 2ℓ]

When lsb(x) = 0 then [γ ·x mod N ] is indeed just a right-shift of x (since
x, viewed as an integer, is divisible by 2). But when lsb(x) = 1, then
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[γ · x mod N ] = x+N
2 . (Note that N is odd.) We take this into account

in Algorithm 11.5-S, which is described recursively. The algorithm relies
on the assumed algorithm A for computing lsb(x). When called with
ℓ = ∥N∥ it returns all the bits of x = [c1/e mod N ].

11.21 Fix an RSA public key ⟨N, e⟩ and define

half(x) =

{
0 if 0 < x < N/2
1 if N/2 < x < N

Prove that half is a hard-core predicate for the RSA problem.

Solution: The key observation is that

half(x) = 0⇔ lsb([2x mod N ]) = 0.

This is because when x < N/2 then [2x mod N ] = 2x (there is no
overflow), which is even. On the other hand, when x > N/2 then
[2x mod N ] = 2x−N , which is odd.

Turning this around, given an algorithm A for computing half(x) from
N, e, [xe mod N ], we can compute lsb(x) from N, e, c = [xe mod N ] by
calling A(N, e, [c/2e mod N ]).





Chapter 12

Digital Signature Schemes –
Solutions

12.1 Show that Construction 4.7 for constructing a variable-length MAC from
any fixed-length MAC can also be used (with appropriate modifications)
to construct a signature scheme for arbitrary-length messages from any
signature scheme for messages of fixed length ℓ(n) ≥ n.

Solution: The proof that Construction 4.7 works also in the context
of signatures follows along exactly the same lines as the proof of Theo-
rem 4.8.

As long as ℓ(n) = ω(log n) (see Appendix A.2 for a definition of this no-
tation), the construction works. To see this, recall that the construction
needs to compute a signature on ”messages” of the form r∥len∥i∥mi,
where r is a uniform string of some length; len denotes the message
length (encoded in binary); i denotes the block number (encoded in
binary); and mi is the i block of the message. Using 1-bit blocks (so
|mi| = 1), we need |len| to be ω(log n) so that messages of any polyno-
mial length can be handled (at least asymptotically). It then suffices
for |i| to have length ω(log n) as well. For the security proof, we require
|r| = ω(log n) so that a “repeat” does not occur too often (cf. the proof
of Claim 4.7). Altogether, then, ℓ(n) = ω(log n) is sufficient.

12.2 Prove that the existence of a one-time-secure signature scheme for 1-bit
messages implies the existence of one-way functions.

Solution: Let (Gen, Sign,Vrfy) be a one-time signature scheme for 1-bit
messages. Since Gen runs in polynomial time, there exists a polynomial p
such that the number of random bits the algorithm uses on input 1n is
at most p(n). For simplicity, assume that Gen always uses exactly p(n)
random bits on input 1n, and further than p(n) is strictly increasing.
Define the following function f : on input a string x, compute n such
that p(n) ≤ |x| ≤ p(n + 1). Then compute (pk, sk) := Gen(1n;x) and
output pk.

A proof that f as defined above is one-way follows along the same lines
as the proof of Theorem 8.74. The only difference here is to note that
inverting f on a given pk allows computation of an associated private
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key sk′ (which need not be equal to sk), which then enables signature
forgery with respect to pk.

12.3 In Section 12.4 we showed an attack on the plain RSA signature scheme
in which an attacker forges a signature on an arbitrary message using
two signing queries. Show how an attacker can forge a signature on an
arbitrary message using a single signing query.

Solution: Let (N, e) be the public key and let x ∈ ZN be the message
that the attacker A wishes to obtain a signature for. Then, A chooses
an arbitrary r ∈ ZN and computes s = re mod N . Then, A asks for a
signature on x · s mod N and receives back some σ. Finally, A outputs
the pair (x, σ̂) where σ̂ = σ

r mod N . In order to see why this is correct,

observe that σ̂e = σe

re = ((x·s)d)e
re = x·s

re = x·re
re = x mod N , as required.

12.4 Assume the RSA problem is hard. Show that the plain RSA signature
scheme satisfies the following weak definition of security: an attacker is
given the public key ⟨N, e⟩ and a uniform message m ∈ Z∗N . The adver-
sary succeeds if it can output a valid signature on m without making
any signing queries.

Solution: A formal proof follows easily from the fact that computing
a signature on a random message m is equivalent to solving the RSA
problem on a random instance.

12.5 Another approach (besides hashing) that has been tried to construct
secure RSA-based signatures is to encode the message before applying
the RSA permutation. Here the signer fixes a public encoding function
enc : {0, 1}ℓ → Z∗N as part of its public key, and the signature on a
message m is σ := [enc(m)d mod N ].

(a) How is verification performed in encoded RSA?

(b) Discuss why appropriate choice of encoding function for ℓ ≪ ∥N∥
prevents the “no-message attack” described in Section 12.4.1.

(c) Show that encoded RSA is insecure if enc(m) = 0κ/10∥m∥0κ/10

(where κ
def
= ∥N∥, ℓ = |m| def= 4κ/5, andm is not the all-0 message).

Assume e = 3.

(d) Show that encoded RSA is insecure for enc(m) = 0∥m∥0∥m (where

ℓ = |m| def= (∥N∥ − 1)/2 and m is not the all-0 message). Assume
e = 3.

(e) Solve parts (c) and (d) for arbitrary e.

Solution:

(a) To verify a signature σ on a message m with respect to a public
key pk = ⟨N, e⟩, simply check whether

σe ?
= enc(m) mod N.
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(b) The “no-message attack” from Section 12.3.1 would work by choos-
ing a uniform σ ∈ Z∗N and then trying to find an m such that
enc(m) = σe mod N . If enc is such that a uniform element of Z∗N
lies in the range of enc with only negligible probability, then this
attack will not work since [σe mod N ] is not even in the range of
enc except with negligible probability.

We remark that the encoding schemes used in parts (c) and (d)
both have the above property.

(c) The key observation is that enc(m) = m · 2κ/10 mod N , as long as
m can be expressed as an ℓ-bit binary integer.

An attack on the scheme is as follows: Set m := 0 · · · 01000 = 2e

and request a signature σ on m. Then output the forged signature
[σ ·2−1 mod N ] on the message m′ = 0 · · · 01 = 1. This works since(
σ · 2−1

)e
= enc(m) · 2−e = 2e2κ/102−e = 2κ/10 = enc(m′) mod N.

(d) Observe that enc(m) = m · (2ℓ+1 + 1) mod N as long as m can be
expressed as an ℓ-bit binary integer. The same attack as in the
previous part works here as well.

(e) Both parts use an encoding of the form enc(m) = m · α, so we
show one attack that applies to both. Request a signature σ4

on the message 0 · · · 0100 = 4 and a signature σ2 on the message
0 · · · 010 = 2. Then output the forgery σ := [σ2

4/σ2 mod N ] on the
message 0 · · · 01000 = 8. This is a valid forgery since

σe =
(
σ2
4/σ2

)e
= enc(4)2/enc(2)

=
(4 · α)2

2 · α
= 8 · α = enc(8) mod N.

12.6 Consider a variant of the Fiat–Shamir transform in which the signature
is (I, s) rather than (r, s) and verification is changed in the natural way.
Show that if the underlying identification scheme is secure, then the
resulting signature scheme is secure here as well.

Solution: This follows immediately from the fact that, given only the
public key, it is possible to convert a signature of the first type to a
signature of the second type, and vice versa.

12.7 Consider a variant of DSA in which the message space is Zq and H
is omitted. (So the second component of the signature is now s :=
[k−1 · (m+ xr) mod q].) Show that this variant is not secure.

Solution: The key observation is that k can be set implicitly and thenm
can be chosen to make things cancel appropriately. The easiest example
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is to set k implicitly equal to x, by using y in place of gk in the signing
calculation. I.e., compute r := F (y) (so k = x), and then observe that

s := [k−1 · (m+ xr) mod q] = [x−1m+ r mod q].

Thus, if we set m := 0 then s can be computed without knowing x.

More generally, we can compute r := F (gαyβ) so k = α+ βx. Then

s := [(α+ βx)−1 · (m+ xr) mod q],

and we see that by setting m = rα/β it is possible to compute s without
knowing x.

12.8 Let f be a one-way permutation. Consider the following signature
scheme for messages in the set {1, . . . , n}:

• To generate keys, choose uniform x ∈ {0, 1}n and set y := f (n)(x)

(where f (i)(·) refers to i-fold iteration of f , and f (0)(x)
def
= x). The

public key is y and the private key is x.

• To sign message i ∈ {1, . . . , n}, output f (n−i)(x).

• To verify signature σ on message i with respect to public key y,

check whether y
?
= f (i)(σ).

(a) Show that the above is not a one-time-secure signature scheme.
Given a signature on a message i, for what messages j can an
adversary output a forgery?

(b) Prove that no ppt adversary given a signature on i can output a
forgery on any message j > i except with negligible probability.

(c) Suggest how to modify the scheme so as to obtain a one-time-secure
signature scheme.

Solution:

(a) Here is an attack. Request a signature on the message n. This
gives the secret key x = fn−n(x), after which a signature on any
other message can be computed.

More generally, given a signature on a message i it is possible to
forge a signature for any message j with j < i. (In detail, if σi is a

signature on i, then σj
def
= f i−j(σi) is a signature on j. Since i > j

and f is known, computation of σj can be done efficiently.)

(b) We first give a formal security definition. Consider the following
experiment for an adversary A and security parameter n (the ex-
periment is tailored for the scheme proposed in this exercise):
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The modified signature experiment Sig-forge′A(n):

i. Choose x← {0, 1}n and set y := fn(x).

ii. Adversary A is given y. It then outputs any i ∈ {1, . . . , n}
and is given in return the signature σi = fn−i(x) on i.

iii. A outputs (j, σj) with j > i.

iv. The output of the experiment is defined to be 1 if and
only if f j(σj) = y.

DEFINITION The signature scheme is weakly secure if for all
probabilistic polynomial-time adversaries A, there exists a negligible
function negl such that Pr[Sig-forge′A(n) = 1] ≤ negl(n).

We now show that if f is a one-way permutation then the scheme is
weakly secure. Let A be any ppt adversary. Consider the following
algorithm trying to invert f on a given point:

Algorithm D:
The algorithm is given z and its goal is to compute f−1(z).

• Choose i∗ ← {1, . . . , n}.
• Set y = f i∗(z).

• Run A on the public key y. When A requests a signa-
ture on i, abort unless i = i∗. If i = i∗ then give the
adversary the signature σi = z.

• When A outputs (j, σj), output f
j−i∗−1(σj).

Let us analyze D when its input z satisfies z = f(x) for uniform
x ∈ {0, 1}n. Note first that, since f is a permutation, the public
key y is uniform in {0, 1}n just as in the real signature scheme.
Furthermore, the probability that i∗ = i is exactly 1/n because i∗

is chosen uniformly from {1, . . . , n}. Conditioned on this being the
case, the signature σi given to the adversary is correct. Finally,
if A outputs a valid forgery, then the output of D is indeed the
inverse of z. Putting everything together, we have:

Pr[InvertD,f (n) = 1] =
1

n
· Pr[Sig-forge′A(n) = 1].

If f is one-way, then this implies the existence of a negligible func-
tion negl such that Pr[Sig-forge′A(n) = 1] < negl(n).

(c) Consider the following modified scheme, which signs messages in
{1, . . . , n− 1}:
• To generate keys, choose uniform x, x′ ← {0, 1}n and set y :=
fn(x) and y′ := fn(x′). The public key is ⟨y, y′⟩ and the
private key is ⟨x, x′⟩.
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• To sign message i ∈ {1, . . . , n}, output σ = fn−i(x) and σ′ =
f i(x′).

• To verify signature ⟨σ, σ′⟩ on message i with respect to public

key ⟨y, y′⟩, check whether y
?
= f i(σ) and y′

?
= fn−i(σ′).

Note that a signature on i in the modified scheme consists of two
signatures in the original scheme: one on i, and one on n−i. Given
the result from part (b), one-time security of this modified scheme
follows easily.

12.9 A strong one-time-secure signature scheme satisfies the following (infor-
mally): given a signature σ′ on a message m′, it is infeasible to output
(m,σ) ̸= (m′, σ′) for which σ is a valid signature onm (note thatm = m′

is allowed).

(a) Give a formal definition of strong one-time-secure signatures.

(b) Assuming the existence of one-way functions, show a one-way func-
tion for which Lamport’s scheme is not a strong one-time-secure
signature scheme.

(c) Construct a strong one-time-secure signature scheme based on any
assumption used in this book.

Solution:

(a) Let Π = (Gen,Sign,Vrfy) be a signature scheme, and consider the
following experiment for an adversary A and parameter n:

The strong one-time signature experiment
Sig-forge1-strongA,Π (n):

i. Gen(1n) is run to obtain keys (pk, sk).

ii. Adversary A is given pk and asks a single query m′

to oracle Signsk(·). Let σ′ denote the signature that
was returned. A then outputs (m,σ) where (m,σ) ̸=
(m′, σ′).

iii. The output of the experiment is defined to be 1 if and
only if Vrfypk(m,σ) = 1.

DEFINITION A signature scheme Π = (Gen, Sign,Vrfy) is is a
strong one-time signature scheme, if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl such that:

Pr[Sig-forge1-strongA,Π (n) = 1] ≤ negl(n).

(b) Let f be a one-way function and define f ′ as follows: f ′(x∥b) =
f(x) (where we let b denote the last bit of the input to f ′). It is not
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hard to see that f ′ is a one-way function, but given an inverse of any
point y it is easy to come up with a different inverse of y. (Namely,
given x′ = x∥b such that f ′(x′) = y we know that x′′ = x∥b̄ also
satisfies f ′(x′′) = y.)

When f ′ is used in Lamport’s scheme, the resulting signature
scheme is clearly not a strong one-time signature scheme. E.g.,
take ℓ = 1 and note that if x′ = x∥b is a signature on the mes-
sage 0, then so is x′′ = x∥b̄.

(c) Take f to be a collision-resistant hash function mapping, say, 2n-
bit strings to n-bit outputs. (See the next exercise for a proof that
such a collision-resistant hash function is one-way.) Formally, as
part of key generation the signer generates a uniform key s for a
collision-resistant hash function and includes s as part of the public
key; the rest is exactly as in Construction 12.7 except that Hs is
used in place of f .

Assuming the result of the following exercise, this scheme is cer-
tainly a one-time signature scheme. But any two signatures σ, σ′

on the same message m yield a collision in the hash function. A
formal proof that this scheme is a strong one-time signature scheme
is immediate.

12.10 Consider the Lamport signature scheme. Describe an adversary who
obtains signatures on two messages of its choice and can then forge
signatures on any message it likes.

Solution: The attack is simple. Consider the scheme defined for mes-
sages of length ℓ = ℓ(n). The adversary can request signatures on the
two messages 0ℓ and 1ℓ. The values contained in the two signatures
together yield the entire private key, at which point a signature on any
message can be forged.

12.11 The Lamport scheme uses 2ℓ values in the public key to sign messages
of length ℓ. Consider the variant in which the private key contains 2ℓ
values x1, . . . , x2ℓ and the public key contains the values y1, . . . , y2ℓ with
yi := f(xi). A message m ∈ {0, 1}ℓ′ is mapped in a one-to-one fashion
to a subset Sm ⊂ {1, . . . , 2ℓ} of size ℓ. To sign m, the signer reveals
{xi}i∈Sm . Prove that this gives a one-time-secure signature scheme.
What is the maximum message length ℓ′ that this scheme supports?

Solution: A proof that this gives a one-time signature scheme is very
similar to the proof of Theorem 12.8. Let Π denote the scheme, and let
A be a probabilistic polynomial-time adversary. Consider the following
ppt algorithm I attempting to invert the one-way function f :

Algorithm I:
The algorithm is given y and 1n as input.
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• Choose i∗ ← {1, . . . , 2ℓ}, and set yi∗ := y.

• For i ∈ {1, . . . , 2ℓ} \ {i∗}, do:
– Choose xi ← {0, 1}n.
– Set yi := f(xi).

• Set pk = (y1, . . . , y2ℓ) and run A(pk).
• When A requests a signature of the message m′, map
m′ to a subset Sm′ of size ℓ. If i∗ ∈ Sm′ , then abort.
Otherwise, give {xi}i∈Sm′ to A.
• When A outputs (m,σ′ = (xi1 , . . . , xiℓ)), map m to a
subset Sm of size ℓ. If i∗ is the first index for which
i∗ ∈ Sm but i∗ ̸∈ Sm′ , then output xi∗ . Otherwise, abort.

In an execution of A, let m′ denote the message whose signature is
requested by A, and let m ̸= m′ denote the message whose signature is
(purportedly) forged by A. Let Sm′ and Sm be defined in the natural
way, and let j ∈ {1, . . . , 2ℓ} denote the first index such that j ∈ Sm but
j ̸∈ Sm′ . (Note that such j must always exist.)

In the execution of I, above, observe that the public key given to A
is distributed identically to the public key in a real execution of Π.
Furthermore, if I correctly guesses i∗ = j, then the signature given by
I to A is correct. Finally, conditioned on i∗ = j, whenever A outputs
a valid forgery it is the case that I correctly inverts the given value y.
Since i∗ = j with probability exactly 1/2ℓ, we have

Pr[InvertI,f (n) = 1] =
1

2ℓ
· Pr[Sig-forge1-time

A,Π (n) = 1].

Since f is one-way, this implies the existence of a negligible function
negl such that Pr[Sig-forge1-time

A,Π (n) = 1] < negl(n).

The number of subsets of size ℓ is
(
2ℓ
ℓ

)
, and so this is the number of

messages that can be signed. So the maximum message length is given
by ℓ′ = ⌊log2

(
2ℓ
ℓ

)
⌋.

12.12 At the end of Section 12.6.2, we show how a pseudorandom function can
be used to make Construction 12.12 stateless. Does a similar approach
work for the chain-based scheme described in Section 12.6.1? If so,
sketch a construction and proof. If not, explain why and modify the
scheme to obtain a stateless variant.

Solution: A similar approach cannot be directly applied to the chain-
based scheme, since that scheme required the signer’s state to include
the entire history of messages that have been signed so far.

We describe a way to adapt the chain-based scheme so that the message
history does not need to be stored as part of the signer’s state; this vari-
ant can be made stateless following the approach used in Section 12.6.2.
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On a high level, the modification will be to use each public key pki to
sign the concatenation of two public keys pk′i+1∥pki+1, and to use pk′i+1

to sign the message mi. (Looking at Figure 12.2, imagine replacing each
message mi with a public key pk′i+1 along with an additional arrow from
pk′i+1 to mi.) We now give the details.

In the variant we describe, the public key again consists of just a single
public key pk1 generated using Gen and the private key contains the
associated private key sk1. To sign the first message m1, the signer
first generates two new key-pairs (pk2, sk2), (pk

′
2, sk

′
2) using Gen, and

then signs both pk′2 and pk2 using sk1 to obtain σ1 ← Signsk1
(pk′2∥pk2).

Finally, the signer signs m1 using sk′2 to obtain σ′1 ← Signsk′
2
(m1). The

signature that is output includes pk′2, pk2, σ1, and σ′1 and the signer
adds (pk′2, pk2, sk2, σ1) to its current state. We stress that neither m1

nor σ′1 need to be stored.

In general, when it comes time to sign the ith message the signer will
have stored {(pk′j+1, pkj+1, skj+1, σj)}i−1j=1 as part of its state. To sign
the ith messagemi, the signer generates two new key-pairs (pki+1, ski+1),
(pk′i+1, sk

′
i+1) using Gen; signs pk′i+1 and pki+1 using ski to obtain

a signature σi ← Signski
(pk′i+1∥pki+1); and signs mi using sk′i+1 to

obtain σ′i ← Signsk′
i+1

(mi). The actual signature that is output in-

cludes pk′i+1, pki+1, σi, σ′i, and also the values {pk′j+1, pkj+1, σj}i−1j=1.
The signer then adds (pk′i+1, pki+1, ski+1, σi) to its state. Verification is
done in the expected way.

As in the case of the original chain-based scheme, security follows on an
intuitive level from the fact that every key-pair generated by the signer
is used to sign only a single “message”.

12.13 Prove Theorem 12.22.

Solution: Let Π∗ denote Construction 12.20 and let Π denote the state-
less variant, instantiated with a pseudorandom function F as discussed
in the book. We assume that the signing algorithm of the underlying
one-time signature scheme used in Construction 12.20 is deterministic.
Fix a ppt adversary A. We now construct an algorithm D that is given
access to an oracle O(·) and must decide whether O(·) is a function
chosen truly at random, or whether O(·) = Fk(·) for a uniform key k.

Algorithm D:
The algorithm is given 1n and access to an oracle O(·).

• Implement Construction 12.20 for A. In the course of
this experiment, every time randomness rw is needed to
generate (pkw, skw) the algorithm obtains rw by query-
ing O(w).
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• Eventually, A outputs a message/signature pair (m,σ).
If this is a valid forgery then A outputs 1; otherwise, it
outputs 0.

It is easy to see that if O(·) is a function chosen at random, then D
exactly implements scheme Π∗ for A; on the other hand, if O(·) = Fk(·)
for a uniform key k then D implements Π for A. Therefore,∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣
=
∣∣Pr[Sig-forgeA,Π(n) = 1]− Pr[Sig-forgeA,Π∗(n) = 1]

∣∣
By Theorem 12.21 says that there exists a negligible function negl for
which Pr[Sig-forgeA,Π∗(n) = 1] ≤ negl(n). The fact that F is a pseu-

dorandom function means that there is a negligible function negl′ such

that
∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ negl′(n). Thus,

Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n) + negl′(n).

Since A was arbitrary, this proves the theorem.

12.14 Assume revocation of certificates is handled in the following way: when
a user Bob claims that the private key corresponding to his public key
pkB has been stolen, the user sends to the CA a statement of this fact
signed with respect to pkB . Upon receiving such a signed message, the
CA revokes the appropriate certificate.

Explain why it is not necessary for the CA to check Bob’s identity in this
case. In particular, explain why it is of no concern that an adversary who
has stolen Bob’s private key can forge signatures with respect to pkB .

Solution: Say the CA receives a message, signed with respect to pkB ,
requesting revocation of B’s key. There are two cases: either B signed
this message or not. If B signed the message, then the legitimate user is
requesting revocation of the key and so it is ok for the CA to revoke it. If
B did not sign the message, then B’s key must have been compromised
(or the scheme has been broken in some other way) in which case B
would want its key to be revoked, anyway!



Chapter 13

Advanced Topics in Public-Key
Encryption – Solutions

13.1 Construct and prove CPA-security for a KEM based on any trapdoor
permutation by suitably generalizing Construction 11.34.

Solution: See Construction 13.1-S. A proof of security is similar to that
of Theorem 11.35.

CONSTRUCTION 13.1-S

Let Π̂ = (Ĝen, f, Inv) be a family of trapdoor permutations with hard-
core predicate hc. Define a public-key encryption scheme as follows:

• Gen: on input 1n, run Ĝen(1n) to obtain (I, td). Output the
public key I and the private key td.

• Encaps: on input pk = I and 1n, choose uniform c1 ∈ DI . Then
for i = 1, . . . , n do:

(a) Compute ki := hcI(ci).

(b) Compute ci+1 := fI(ci).

Output the ciphertext cn+1 and the key k = k1 · · · kn.
• Decaps: on input sk = td, a ciphertext cn+1, and 1n, for i =

n, . . . , 1 do:

(a) Compute ci := InvI(ci+1).

(b) Compute ki := hcI(ci).

Output the key k = k1 · · · kn.

A KEM based on any trapdoor permutation.

13.2 Show that the isomorphism of Proposition 13.6 can be efficiently in-
verted when the factorization of N is known.

Solution: We are given y ∈ Z∗N2 and want to find a ∈ ZN and b ∈ Z∗N
such that

y = (1 +N)a · bN mod N2.

139
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The decryption algorithm of the Paillier scheme allows recovery of a.
To recover b, we compute

b :=
[
[y mod N ][N

−1 mod ϕ(N)] mod N
]

(recall that gcd(ϕ(N), N) = 1 and so [N−1 mod ϕ(N)] is well-defined).
Let us see why this works. We claim first that

[y mod N ] = [bN mod N ].

To see this, observe that (1 +N)a · bN = y + r ·N2 for some integer r.
(Note that this is an equation over the integers.) So

[y mod N ] =
[
(1 +N)a · bN − rN2 mod N

]
= [1 · bN mod N ].

Given this, we have[
[y mod N ][N

−1 mod ϕ(N)] mod N
]
=

[(
bN
)[N−1 mod ϕ(N)]

mod N

]
=
[
b[N ·N

−1 mod ϕ(N)]
]

= [b mod N ] = b.

13.3 Let Φ(N2) denote the set {(a, 1) | a ∈ ZN} ⊂ Z∗N2 . Show that it is not
hard to decide whether a given element y ∈ Z∗N2 is in Φ(N2).

Solution: Using Proposition 13.6(2), we have that

Φ(N2) = {[1 + aN mod N2] | a ∈ ZN}.

It is easy to decide whether y ∈ Φ(N2) by checking whether the integer
y − 1 is divisible by N .

13.4 Let G be an abelian group. Show that the set of quadratic residues in
G forms a subgroup.

Solution: Let Q = {x2 | x ∈ G} denote the set of quadratic residues.
We show that Q is a subgroup.

• Let a, b ∈ Q. So there exist x, y ∈ G such that a = x2 and b = y2.
Then

ab = x2 · y2 = (xy)2 ,

and so ab ∈ Q. (Note we use here the fact that G is abelian.)

• Let 1 denote the identity in G. Then 12 = 1 and so 1 ∈ Q.

• Let a ∈ Q. So there exists x ∈ G such that a = x2. Then

a−1 =
(
x2
)−1

=
(
x−1

)2
,

and so a−1 ∈ Q.
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• Associativity in Q is inherited from G.

13.5 This question concerns the quadratic residues in the additive group ZN .
(An element y ∈ ZN is a quadratic residue if and only if there exists an
x ∈ ZN with 2x = y mod N .)

(a) What are the quadratic residues in Zp for p an odd prime?

(b) Let N = pq be a product of two odd primes p and q. What are the
quadratic residues in ZN?

(c) Let N be an even integer. What are the quadratic residues in ZN?

Solution:

(a) All elements are quadratic residues. To see this, note that for
any a ∈ Zp, the equation a = 2x mod p has the solution x =
[2−1 · a mod p]. (This follows since 2 is invertible modulo p.)

(b) As in the previous part, all elements are quadratic residues.

(c) Only even integers are quadratic residues in ZN . If a ∈ ZN is even,
then the equation a = 2x mod N clearly has the solution x = a/2
(it also has the solution x = (N + a)/2). On the other hand, if a is
odd then a = 2x mod N cannot have a solution since, if it did, then
there would exist an integer b with a = 2x + bN in contradiction
to the fact that a is odd.

13.6 Let N = pq with p, q distinct, odd primes. Show a ppt algorithm for
choosing a uniform element of QNR+1

N when the factorization of N is
known. (Your algorithm can have failure probability negligible in ∥N∥.)
Solution: We can choose a uniform quadratic non-residue xp ∈ QNRp

by repeatedly choosing uniform elements from Z∗p until we find one that
is not a quadratic residue; since half the elements of Z∗p are not quadratic
residues, if we choose n uniform elements from Z∗p this procedure fails
with only negligible probability. A uniform quadratic non-residue xq ∈
QNRq can be chosen similarly. We then use the bijection provided by
the Chinese remainder theorem to compute x ∈ Z∗N with (xp, xq)↔ x.

13.7 Let N = pq with p, q distinct, odd primes. Prove that if x ∈ QRN then
[x−1 mod N ] ∈ QRN , and if x ∈ QNR+1

N then [x−1 mod N ] ∈ QNR+1
N .

Solution: If x ∈ QRN then there exists a y ∈ Z∗N such that x =
y2 mod N . So

x−1 =
(
y2
)−1

=
(
y−1

)2
mod N ,

and [x−1 mod N ] is a quadratic residue.

Let x ↔ (xp, xq). If x ∈ QNR+1
N , then this implies that xp ∈ QNRp

and xq ∈ QNRq. This means that [x−1p mod p] ∈ QNRp and [x−1q mod

q] ∈ QNRq. (If not, then [
(
x−1p

)−1
mod p] ∈ QRp, a contradiction.)
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Since [x−1 mod N ] ↔
(
[x−1p mod p], [x−1q mod q]

)
, this means that we

have [x−1 mod N ] ∈ QNR+1
N .

13.8 Let N = pq with p, q distinct, odd primes, and fix z ∈ QNR+1
N . Show

that choosing uniform x ∈ QRN and setting y := [z ·x mod N ] gives a y
that is uniformly distributed in QNR+1

N . That is, for any ŷ ∈ QNR+1
N

Pr[z · x = ŷ mod N ] = 1/|QNR+1
N |,

where the probability is taken over uniform choice of x ∈ QRN .

Solution: zx = ŷ mod N iff x = z−1ŷ mod N . By the previous exer-
cise, we know that [z−1 mod N ] ∈ QNR+1

N . Using Corollary 13.25(2),
we see that [z−1ŷ mod N ] ∈ QRN . So

Pr[zx = ŷ mod N ] = Pr[x = z−1ŷ mod N ] = 1/|QRN |.

Since |QRN | = |QNR+1
N |, this proves the desired result.

13.9 Let N be the product of 5 distinct odd primes. If y ∈ Z∗N is a quadratic
residue, how many solutions are there to the equation x2 = y mod N?

Solution: Let N =
∏5

i=1 pi, with the pi distinct odd primes. Apply-
ing the Chinese remainder theorem several times, we see there is an
isomorphism x ↔ (x1, x2, x3, x4, x5) between elements x ∈ Z∗N and ele-
ments (x1, x2, x3, x4, x5) ∈ ×5

i=1Z∗pi
. Using arguments as in this chapter,

y ↔ (y1, y2, y3, y4, y5) is a quadratic residue modulo N iff each yi is a
quadratic residue modulo pi, and x ↔ (x1, x2, x3, x4, x5) is a square
root of y modulo N iff each xi is a square root of yi modulo pi. Since
each yi has two square roots modulo pi, there are 25 square roots of y
modulo N .

13.10 Show that the Goldwasser-Micali encryption scheme is homomorphic if
the message space {0, 1} is viewed as the group Z2.

Solution: In Goldwasser-Micali encryption, a ciphertext corresponding
to the bit m is of the form [zm ·x2 mod N ] for some x ∈ Z∗N . So if c1, c2
are encryptions of m1,m2, respectively, we have

c
def
= c1 · c2 = zm1 · x2

1 · zm2 · x2
2 = zm1+m2 · (x1x2)

2 mod N.

If either m1 or m2 is 0, then c is clearly a ciphertext corresponding to
the bit [m1 +m2 mod 2]. If m1 = m2 = 1, then

c = z2 · (x1x2)
2 = z0 · (z · x1x2)

2 mod N,

and so here also c is a ciphertext corresponding to [m1 +m2 mod 2].
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13.11 Consider the following variation of the Goldwasser-Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q) where N = pq and
p = q = 3 mod 4. (I.e., N is a Blum integer.) The public key is N
and the secret key is ⟨p, q⟩. To encrypt m ∈ {0, 1}, the sender chooses
uniform x ∈ ZN and computes the ciphertext c := [(−1)m · x2 mod N ].

(a) Prove that for N of the stated form, [−1 mod N ] ∈ QNR+1
N .

(b) Prove that the scheme described has indistinguishable encryptions
under a chosen-plaintext attack if deciding quadratic residuosity is
hard relative to GenModulus.

Solution:

(a) Looking at Algorithm 13.18, we see that [−1 mod p] is a quadratic
non-residue when p = 3 mod 4. This holds since p = 4s + 3 for
some integer s, and so

(−1)
p−1
2 = (−1)2s+1 = −1 mod p.

Similarly, [−1 mod q] is a quadratic non-residue. It follows that
[−1 mod N ] ∈ QNR+1

N .

(b) Let Π denote the modified scheme. We prove that Π has indistin-
guishable encryptions in the presence of an eavesdropper.

Let A be a probabilistic polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

Consider the following ppt adversary D that attempts to solve the
quadratic residuosity problem relative to GenModulus:

Algorithm D:
The algorithm is given N and z as input and its goal is to
determine if z ∈ QRN or z ∈ QNR+1

N .

• Set pk = N and run A(pk) to obtain m0,m1. Assume
without loss of generality that m0 = 0 and m1 = 1.

• Set c := z. Give the ciphertext c to A and obtain a
bit b′. Output b′.

Observe that

Pr[D(N, qr) = 0] = Pr[A outputs 0 | c is an encryption of 0],

where qr denotes a uniform quadratic residue. This follows be-
cause an encryption of 0 in Π is just a uniform quadratic residue.
Similarly,

Pr[D(N, qnr) = 0] = Pr[A outputs 0 | c is an encryption of 1],
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where qnr denotes a uniform element of QNR+1
N . This holds since

an encryption of 1 in Π is just a uniform element in QNR+1
N . So∣∣∣Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]

∣∣∣
=
∣∣∣Pr[D(N, qr) = 0]− Pr[D(N, qnr) = 0]

∣∣∣
=
∣∣∣Pr[A outputs 0 | c is an encryption of 0]

− Pr[A outputs 0 | c is an encryption of 1]
∣∣∣

=
∣∣∣Pr[A outputs 0 | c is an encryption of 0

+ Pr[A outputs 1 | c is an encryption of 1]− 1
∣∣∣

= 2 ·
∣∣∣∣ε(n)− 1

2

∣∣∣∣ .
So if deciding quadratic residuosity is hard relative to GenModulus,
there must be a negligible function negl with ε(n) ≤ 1

2 + negl(n).

13.12 Assume deciding quadratic residuosity is hard for GenModulus. Show
that this implies the hardness of distinguishing a uniform element of
QRN from a uniform element of J +1

N .

Solution: Fix a probabilistic polynomial-time algorithm D, and define

ε(n)
def
= |Pr[D(N, qr) = 1]− Pr[D(N,J ) = 1]| ,

where the probabilities are taken over N generated by GenModulus and,
in the first case, qr chosen uniformly from QRN and, in the second case,
J chosen uniformly from J +1

N . We know that with probability 1/2 we
have J ∈ QRN (in which case J is uniformly distributed over QRN )
and with probability 1/2 we have J ∈ QNR+1

N (in which case J is
uniformly distributed over QNR+1

N ). So,

Pr[D(N,J ) = 1] =
1

2
· Pr[D(N, qr) = 1] +

1

2
· Pr[D(N, qnr) = 1],

where qnr is chosen uniformly from QNR+1
N . Thus,

ε(n) =
1

2
· |Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]| .

So if deciding quadratic residuosity is hard relative to GenModulus, there
must exist a negligible function negl with ε(n) ≤ negl(n).

13.13 Show that plain RSA encryption of a message m leaks JN (m).
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Solution: We prove that Jp(me) = Jp(m) when p is prime and e is
relatively prime to p − 1. This implies that JN (me) = JN (m). Since
JN (x) can be computed efficiently for any x, it follows that plain RSA
encryption of m leaks JN (m).

To see that Jp(me) = Jp(m), note first that if m = x2 mod p is a
quadratic residue modulo p, then so is me = (xe)2 mod p. Moreover, if
me = y2 mod p is a quadratic residue modulo p, then so is m = (me)d =
(yd)2 mod p, where d is such that ed = 1 mod p− 1.

13.14 Consider the following variation of the Goldwasser-Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q). The public key is N
and the secret key is ⟨p, q⟩. To encrypt a 0, the sender chooses n uniform
elements c1, . . . , cn ← QRN . To encrypt a 1, the sender chooses n uni-
form elements c1, . . . , cn ← J +1

N . In each case, the resulting ciphertext
is c∗ = ⟨c1, . . . , cn⟩.

(a) Show how the sender can generate a uniform element of J +1
N in

polynomial time.

(b) Suggest a way for the receiver to decrypt efficiently, though with
error probability negligible in n.

(c) Prove that if deciding quadratic residuosity is hard relative to
GenModulus, then this scheme is CPA-secure.

Solution:

(a) A uniform element of J +1
N can be generated in polynomial time

by repeatedly sampling elements from Z∗N and outputting the first
such element with Jacobi symbol +1. This works because (1) it
is possible to compute the Jacobi symbol in polynomial time, and
(2) half the elements of Z∗N are in J +1

N .

(b) Given a ciphertext ⟨c1, . . . , cn⟩, the receiver can determine whether
each ci is a quadratic residue or not. If every ci is a quadratic
residue, the receiver outputs 0; otherwise, the receiver outputs 1.

When ⟨c1, . . . , cn⟩ is an encryption of 0, then ci ∈ QRN for all i and
so the receiver always outputs the correct result. When ⟨c1, . . . , cn⟩
is an encryption of 1, then for every i we have ci ∈ QRN with prob-
ability 1/2 and so the probability that ci ∈ QRN for all i is 2−n.
Thus, the receiver errs in this case only with probability 2−n.

(c) Let Π denote the encryption scheme above. We prove that Π has
indistinguishable encryptions in the presence of an eavesdropper;
as usual, this implies that it is CPA-secure.

Let A be a probabilistic polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].
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Consider the following ppt adversary D that attempts to distin-
guish uniform quadratic residues from uniform elements ofQNR+1

N :

Algorithm D:
The algorithm is given N and z as input and its goal is to
determine if z ∈ QRN or z ∈ QNR+1

N .

• Set pk = N and run A(pk) to obtain m0,m1. Assume
without loss of generality that m0 = 0 and m1 = 1.

• For i = 1 to n, choose uniform xi ∈ QRN and uniform
bi ∈ {0, 1}, and set ci := [zbi · xi mod N ].

• Give the ciphertext c = ⟨c1, . . . , cn⟩ to A and obtain
an output bit b′. Output 1− b′.

The thing to notice about the algorithm above is the following: if
z ∈ QRN , then each ci is a uniform element of QRN and hence
c corresponds to a random encryption of 0. This follows since for
any y ∈ QRN we have

Pr[zbi · xi = y] =
1

2
· Pr[z0 · xi = y] +

1

2
· Pr[z1 · xi = y]

=
1

2
· 1

|QRN |
+

1

2
· Pr[xi = y/z] =

1

|QRN |
,

where xi is chosen uniformly from QRN in the above. On the other
hand, when z ∈ QNR+1

N then each ci is a uniform element of J +1
N

and so c corresponds to a random encryption of 1. This is true
because for any y ∈ J +1

N we have

Pr[zbi · xi = y] =
1

2
· Pr[xi = y] +

1

2
· Pr[xi = y/z],

while

Pr[xi = y] =

{ 1
|QRN | y ∈ QRN

0 y ∈ QNR+1
N

and (cf. Exercise 13.7)

Pr[xi = y/z] =

{
0 y ∈ QRN
1

|QRN | y ∈ QNR+1
N

.

So for any y ∈ J +1
N we have Pr[zbi · xi = y] = 1

2·|QRN | =
1

|J+1
N |

.
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From the above, we have

|Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]|

=
∣∣∣Pr[A outputs 0 | c is an encryption of 0]

− Pr[A outputs 0 | c is an encryption of 1]
∣∣∣

=
∣∣∣Pr[A outputs 0 | c is an encryption of 0

+ Pr[A outputs 1 | c is an encryption of 1]− 1
∣∣∣

= 2 ·
∣∣∣∣ε(n)− 1

2

∣∣∣∣ .
So if deciding quadratic residuosity is hard relative to GenModulus,
there must be a negligible function negl with ε(n) ≤ 1

2 + negl(n).

13.15 Let G be a polynomial-time algorithm that, on input 1n, outputs a prime
p with ∥p∥ = n and a generator g of Z∗p. Prove that the DDH problem
is not hard relative to G.
Solution: Consider Algorithm 13.2-S. Note that the algorithm can be
implemented efficiently since deciding quadratic residuosity modulo a
prime can be done efficiently.

ALGORITHM 13.2-S
Solving DDH in Z∗

p

Input: prime p and generator g of Z∗
p; elements h1, h2, h

′ ∈ Z∗
p

Output: Decide whether h′ = DHg(h1, h2)

If h1 ∈ QRp, set b1 := 1; else set b1 := 0
If h2 ∈ QRp, set b2 := 1; else set b2 := 0
If h′ ∈ QRp, set b

′ := 1; else set b′ := 0
If b′ = b1 ∨ b2 then return “yes”; else return “no”

Let us analyze how well this algorithm performs. We first claim that
when h′ = DHg(h1, h2) then it is always the case that b′ = b1∨b2. To see
this, note that h ∈ Z∗p is a quadratic residue iff logg h is even. (Here we
rely on the fact that the order of Z∗p is even. See the following exercise
for a proof.) Since

logg h
′ =

[(
logg h1 · logg h2

)
mod (p− 1)

]
,

logg h
′ is even iff either logg h1 or logg h2 is even. The claim follows. We

conclude that the algorithm always outputs “yes” when h′ = DHg(h1, h2).

On the other hand, when h′ is uniform them b′ is equally likely to be 0
or 1. So the probability that b′ = b1 ∨ b2 is exactly 1/2.



148 Introduction to Modern Cryptography – 2nd Edition Solutions Manual

Letting D denote Algorithm 13.2-S, we thus have (cf. Definition 8.63):∣∣∣Pr[D(p, g, h1, h2, ĥ) = 1]− Pr[D(p, g, h1, h2,DHg(h1, h2)) = 1]
∣∣∣ = 1

2

(above, ĥ represents a uniformly-chosen element of Z∗p). This, of course,
is not negligible.

13.16 The discrete logarithm problem is believed to be hard for G as in the
previous exercise. This means that the function (family) fp,g where

fp,g(x)
def
= [gx mod p] is one-way. Let lsb(x) denote the least-significant

bit of x. Show that lsb is not a hard-core predicate for fp,g.

Solution: Let g be a generator of Z∗p. We claim that h ∈ Z∗p is a
quadratic residue iff logg h is even. One direction is easy: if logg h is
even, then (

glogg h/2
)2

= glogg h = h

and so h is a quadratic residue. For the other direction, let h = y2 mod p
for some y. Then

h =
(
glogg y

)2
= g2 logg y,

and so logg h = [2 logg y mod (p− 1)]. (Recall that p− 1 is the order of
the group Z∗p.) But since p− 1 is even, [2 logg y mod (p− 1)] is even as
well.

Focusing on the problem at hand, this means that lsb(x) is 0 iff fp,q(x)
is a quadratic residue modulo p. Since quadratic residuosity modulo p
can be decided easily, this implies that lsb is not a hard-core predicate
for fp,g.

13.17 Consider the plain Rabin encryption scheme where a messagem ∈ QRN

is encrypted relative to a public key N (where N is a Blum integer) by
computing the ciphertext c := [m2 mod N ]. Show a chosen-ciphertext
attack on this scheme that recovers the entire private key.

Solution: Here is an attack: Choose uniform x ∈ Z∗N (not necessarily
in QRN ), compute c := [x2 mod N ], and request the decryption of c.
Call this m. If m ̸= ±x mod N (which occurs with probability 1/2)
then N can be factored as in Lemma 13.35.

13.18 The plain Rabin signature scheme is like the plain RSA signature scheme,
except using the Rabin trapdoor permutation. Show an attack on plain
Rabin signatures by which the attacker learns the signer’s private key.

Solution: In the plain Rabin signature scheme, a signature on y ∈ QRN

is given by x =
√
y mod N with x ∈ QRN . In a forgery attack, the

adversary A is allowed to ask for signatures on any value. Thus, A
can choose a uniform x̂ ∈ Z∗N and query its signing oracle with y =
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x̂2 mod N . It will receive back x =
√
y mod N with x ∈ QRN . If

x̂ ̸= ±x mod N , then (as in Lemma 13.35) this will enable A to factor
N . If x̂ = ±x mod N then A can try again until it succeeds.

13.19 Let N be a Blum integer.

(a) Define the set S
def
= {x ∈ Z∗N | x < N/2 and JN (x) = +1}. Define

the function fN : S → Z∗N by:

fN (x) =

{
[x2 mod N ] if [x2 mod N ] < N/2
[−x2 mod N ] if [x2 mod N ] > N/2

Show that fN is a permutation over S.

(b) Define a family of trapdoor permutations based on factoring using
fN as defined above.

Solution:

(a) Let low
def
= {x ∈ Z∗N | x < N/2} and high

def
= {x ∈ Z∗N | x > N/2}.

Note that S = J +1
N ∩ low. Observe that x ∈ low if and only if

[−x mod N ] ∈ high.

We first show that fN (x) ∈ S for any x ∈ Z∗N . Clearly fN (x) ∈
low. If N is a Blum integer, then [−1 mod N ] ∈ QNR+1

N (see
Exercise 13.11(a)) and so JN (y) = JN (−y) for all y ∈ Z∗N . Since
JN ([x2 mod N ]) = 1, this shows that fN (x) ∈ J +1

N .

We show that fN is a permutation by showing that it is surjective;
that is, for all y ∈ S there is an x ∈ S such that fN (x) = y. If
y ∈ S is a quadratic residue, then y has a square root x̂ ∈ QRN by
Proposition 13.37. Both x̂ and [−x̂ mod N ] have Jacobi symbol +1;
both of these are square roots of y; and one of them, call it x, is
in low. So x ∈ S is the desired inverse in this case.

If y ∈ S is a quadratic non-residue, then [−y mod N ] ∈ QRN

(this uses the fact that [−1 mod N ] is a quadratic non-residue).
Applying the same argument as above shows that there exists an
x ∈ S with x2 = −y mod N , and this x is the desired inverse of y.

(b) Define a trapdoor permutation (Gen, Samp, f) as follows. Gen is as
in Section 13.5.2: on input 1n it runs GenModulus(1n) to obtain
(N, p, q) and outputs I = N ; the domain is just the set S as de-
fined in this exercise. f is simply fN as defined in this exercise.
Samp repeatedly chooses elements of Z∗N and outputs the first such
element in S; this can be implemented in polynomial time (with
negligible failure probability) since membership in S can be tested
efficiently, and |S| = |J +1

N |/2 = |Z∗N |/4. (We did not prove the
claim about the size of S, but it is not hard to prove given the
solution to part (a).)
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The proof that this is a trapdoor permutation if factoring is hard
goes along the same lines as the proof of Theorem 13.36, using the
observation that we can map y ∈ QRN to either y or −y (both of
which have the same square root as y), one of which is in S.

13.20 (a) Let N be a Blum integer. Define the function halfN : Z∗N → {0, 1}
as

halfN (x) =

{
0 if x < N/2
1 if x > N/2

Show that the function f : Z∗N → QRN ×{−1,+1}×{0, 1} defined
as

f(x) = [x2 mod N ],JN (x), halfN (x)

is one-to-one.

(b) Suggest a “padded Rabin” encryption scheme that encrypts mes-
sages of length n. (All algorithms of your scheme should run in
polynomial time, and the scheme should have correct decryption.
Although a proof of security is unlikely, your scheme should not be
susceptible to any obvious attacks.)

Solution:

(a) Since |QRN × {−1,+1} × {0, 1}| = |Z∗N |, we prove f is one-to-one
by showing that it is onto; that is, that for every z ∈ QRN ×
{−1,+1} × {0, 1} there is an x ∈ Z∗N with f(x) = z.

Fix z = ⟨y, b1, b2⟩ ∈ QRN × {−1,+1} × {0, 1} where y ∈ QRN ,
b1 ∈ {−1,+1}, and b2 ∈ {0, 1}. Let

(xp, xq), (−xp, xq), (xp,−xq), (−xp,−xq)

be the four square roots of y in the Chinese remaindering repre-
sentation (where p and q are the prime factors of N). Since N is
a Blum integer, Jp(−1) = −1 (see Exercise 11.7(a)) and so one
of the square roots of y, call it x, has Jacobi symbol b1. (E.g.,
if JN ((xp, xq)) = −b1, then JN ((−xp, xq)) = b1.) Furthermore,
JN (−x) = JN (x) (using now the fact that Jq(−1) = −1 also) and
either halfN (x) or halfN ([−x mod N ]) is equal to b2.

(b) An answer is completely analogous to the padded RSA encryption
scheme of Section 11.5.2.



Appendix B

Basic Algorithmic Number Theory –
Solutions

B.1 Prove correctness of the extended Euclidean algorithm.

Solution: We prove correctness by induction on the second input b.
When b = 1 then b always divides a and Algorithm B.10 returns (b, 0, 1).
This is correct, since b = gcd(a, b) and 0 · a+ 1 · b = b.

Assume correctness of Algorithm B.10 for all (positive) values of b up to
some bound B; we prove that correctness holds for b = B+1. Consider
an execution of eGCD(a, b). If b | a then the algorithm returns (b, 0, 1)
and this is a correct solution (as above). Otherwise, the algorithm makes
a recursive call to eGCD(b, r) with r = [a mod b]. Note that 0 < r < b.
By our inductive assumption, we know that eGCD(b, r) outputs (d,X, Y )
with d = gcd(b, r) and Xb+Y r = d; the final output of the algorithm is
(d, Y,X−Y q) where q is such that a−r = qb. We can verify correctness
of this output as follows:

• Proposition B.6 shows that d = gcd(a, b).

• We have

Y a+(X−Y q)b = Y a+Xb−Y qb = Xb+Y (a−qb) = Xb+Y r = d,

as required.

B.2 Prove that the extended Euclidean algorithm runs in time polynomial
in the lengths of its inputs.

Solution: For any given input (a, b), the inputs used in the recursive
calls to eGCD in an execution of Algorithm B.10 are exactly the same
as the inputs used in the recursive calls to GCD in an execution of
Algorithm B.7. So the number of recursive calls is identical in each case.
Since each recursive step (and, in particular, division-with-remainder)
can be done in polynomial time, it follows from Corollary B.9 that the
entire algorithm runs in polynomial time.

151
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B.3 Show how to determine that an n-bit string is in Z∗N in polynomial time.

Solution: See Algorithm B.1-S.

ALGORITHM B.1-S
Determining membership in Z∗

N

Input: Modulus N ; integer x
Output: Determine whether x ∈ Z∗

N

if x > N or x = 0, return “no”
if gcd(x,N) ̸= 1 return “no”
return “yes”


