
Group theory, 

Diffie-Hellman key exchange



Ideal solution: secure channels

2

Internet
Alice

Bob

M

Adversary
Security goals:

• Data privacy: adversary should not be able to read message M       

• Data integrity: adversary should not be able to modify message M  

• Data authenticity: message M really originated from Alice 

How to build?



Creating secure channels: encryption schemes

3

Internet
Alice

Bob

Adversary

𝓔 : encryption algorithm (public)

𝓓 : decryption algorithm (public)

K K

ℰ
C

𝒟M

M / ⊥

K : encryption key (secret)/ decryption



Symmetric key distribution problem

• One user needs to store 𝑁 symmetric keys 

when communicating with 𝑁 other users

•
𝑁 𝑁−1

2
= 𝒪 𝑁2 keys in total

• Difficult to store and manage so many

keys securely

• Partial solution: key distribution centers

• One central authority hands out temporary keys

• 𝒪(𝑁) (long-term) keys needed (to the KDC)

• Might be a feasible solution in a single organization

• Single point of failure

• What about the internet?

4



The public-key revolution

5



Diffie-Hellman key exchange 

• Discovered in the 1970's 

• Allows two parties to establish a shared secret 

without ever having met

• Diffie & Hellman paper also introduced:

• Public-key encryption

• Digital signatures

6

Whitfield Diffie

Martin Hellman

Ralph Merkle



Basic goals of cryptography

7

Message privacy
Message integrity / 

authentication

Symmetric keys Symmetric encryption
Message authentication 

codes (MAC)

Asymmetric keys 

Asymmetric encryption 

(a.k.a. public-key 

encryption)

Digital signatures



Diffie-Hellman key exchange – idea

8



Diffie-Hellman key exchange – idea 

9

𝐾

𝐾



Diffie-Hellman key exchange + authenticated encryption 

10

𝐾

𝐾



Public-key encryption

11



Constructing asymmetric cryptography:  

group theory + number theory

12

𝒁10

𝒁5 𝒁2

𝟎



A different kind of primitives

• Symmetric crypto boils down to the security of a few primitives 

• Block ciphers, PRFs, hash functions

• Good candidates: AES-256, SHA2-256

• Why are these considered secure? 

• Answer: lots and lots of cryptanalysis  

• However, they are artificial and man-made

• Want asymmetric crypto to be based on a few well-studied primitives too

• Candidates now come from a different place: 

• hard mathematical problems

• Good candidates: discrete logarithm problem, factoring

• Much more algebraic structure 

13

𝒁𝑛
∗ ≃ 𝒁𝑝1

∗ × 𝒁𝑝2
∗ ×⋯× 𝒁𝑝𝑡

∗



Preliminaries 

14

𝒁 = … ,−2,−1, 0, 1, 2, 3, …(integers) 

𝑹 = the real numbers

𝒁𝑛 = 0, 1, 2, … , 𝑛 − 1

𝒁𝑝 = 0, 1, 2, … , 𝑝 − 1

𝑹∗ = 𝑹 ∖ {0}

𝒁𝑝
∗ = 𝒁𝑝 ∖ 0

(reals) 

(integers “mod 𝑛”) 

(integers “mod 𝑝”) 

Examples:

𝒁11 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

𝒁11
∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Group – definition 

15

Definition: A group 𝐺,∘ is a set 𝐺 together with a binary operation ∘ satisfying the following 

axioms.

G1: 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐 for all 𝑎, 𝑏, 𝑐, ∈ 𝐺 (associativity)

G2:      ∃𝑒 ∈ 𝐺 such that 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 for all 𝑎 ∈ 𝐺 (identity)

G3:      ∀𝑎 ∈ 𝐺 there exists  𝑎−1 ∈ 𝐺 such that 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒 (inverse)

A group is abelian/commutative if: 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺

The order of a group is the number of elements in 𝐺, denoted 𝐺



Groups – examples 

16

𝒁,+

𝑹,+

𝒁𝑛, +𝑛

𝑹∗,⋅

𝒁𝑝
∗ , ⋅𝑝

𝒁,−𝒁,⋅

𝑹,⋅

𝒁𝑛, ⋅𝑛

Groups Not groups

⋆ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

∘ e a b

e e a b

a a b e

b b e a

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

𝒁3, +3 ∘ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

𝒁4, +4
𝑮,∘

𝑮,∘ 𝑮,⋆

1 − 2 − 3 ≠ 1 − (2 − 3)2−1 = ?

0 ⋅ 𝑥 = 1?

2𝑥 = 1 mod4 ?

𝒁𝑝, ⋅𝑝

Definition: A group 𝐺,∘ …

G1: 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐 (associativity)

G2:  ∃𝑒 ∈ 𝐺: 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 (identity)

G3:  ∃𝑎−1 ∈ 𝐺: 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒 (inverse)

𝑒 = 0 "3−1" = −3

𝑒 = 0 " 9/7 −1" = −9/7 𝑒 = 1 9/7 −1 = 7/9

𝑒 = 0 "3−1" = 𝑥: 3 + 𝑥 ≡ 0 mod𝑛

𝑒 = 1

"3−1" = 𝑥: 3 ⋅ 𝑥 ≡ 1 mod𝑝



= 𝑔 ∘ ⋯∘ 𝑔 ∘ 𝑔 ∘ ⋯∘ 𝑔

Group arithmetic 

17

𝑔0 =
def
𝑒

𝑔𝑛 =
def
𝑔 ∘ 𝑔 ∘ ⋯∘ 𝑔

𝑛

𝑔−𝑛 =
def

𝑔−1 𝑛

𝑔𝑛𝑔𝑚
𝑛 𝑚

𝑛 +𝑚

= 𝑔𝑛+𝑚Fact:

𝒁,+ : "315" = 3 + 3 + 3 +⋯+ 3 = 15 ⋅ 3

15

Fact: 𝑔𝑛 𝑚 = 𝑔𝑛𝑚 = 𝑔𝑚 𝑛



Cyclic groups

18

Definition: A group 𝐺,∘ is cyclic if there exists 𝑔 ∈ 𝐺 such that

𝐺 = 𝑔𝑖 𝑖 ∈ 𝒁

Element 𝑔 is called a generator for 𝐺 and we write 𝐺,∘ = 𝑔

= … , 𝑔−2, 𝑔−1, 𝑔0, 𝑔1, 𝑔2, 𝑔3, …

𝒁,+ = 1

𝒁𝑛, +𝑛 = 1

Examples: Not cyclic groups:

𝑹,+ 𝑹∗,⋅

⋆ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

𝑮,⋆

𝒁𝑝
∗ ,⋅ = 𝑎

𝒁7
∗ ,⋅ = 3 = 30, 31, 32, 33, 34, 35 = 1, 3, 2, 6, 4, 5

= 50, 51, 52, 53, 54, 55 = 1, 5, 4, 6, 2, 3= 5

≠ 2 = 20, 21, 22, 23, 24, 25 = 1, 2, 4, 1, 2, 4 = 1, 2, 4



Subgroups

19

Definition: A set 𝐻 ⊆ 𝐺 is a subgroup, written 𝐻 < 𝐺, if

∀𝑎, 𝑏 ∈ 𝐻: 𝑎 ∘ 𝑏 ∈ 𝐻

Fact: a subgroup 𝐻 is a group

Examples:

𝑒 < 𝐺 (for all groups)

𝐺 < 𝐺 (for all groups)

2𝒁 = … ,−2, 0, 2, 4, 6, … < 𝒁,+

3𝒁 = … ,−3, 0, 3, 6, 9, … < 𝒁,+

1,−1 < 𝑹∗,⋅

𝑹+ < 𝑹∗,⋅

20 < 10 < 5 < 𝒁40, +
5 = 0, 5, 10, … , 35

positive real numbers

𝐺

𝐻

𝑒
𝑥

𝑥−1

𝑦

𝑥 ∘ 𝑦

10 = 0, 10, 20, 30

20 = 0, 20



Cyclic groups

20

𝑔1𝑒 𝑔2 𝑔3 𝑔𝑛⋯ ⋯

𝑔𝑛 = 𝑔3 ⟹ 𝑔𝑛−3= 𝑒 ⟹ 𝑔𝑗= 𝑒 𝑗 < 𝑛

Proof (finite cyclic groups):

𝐺 = 𝑔 = 𝑛

𝑔𝑛−1

contradiction!

𝐺

Theorem: if 𝐺,∘ is a finite group, then for all 𝑔 ∈ 𝐺: 

𝑔 𝐺 = 𝑒

𝑔𝑛+1 𝑔𝑛+2

Corollary I: 𝑔𝑖 = 𝑔𝑖 mod 𝑛 = 𝑔𝑖 mod 𝐺

Corollary II (Lagrange's theorem): if 𝐻 < 𝐺 then the order of 𝐻 divides the order of 𝐺 (i.e 𝐻 | 𝐺 )



Groups of prime order

Fact: any prime-order group is cyclic

Fact: any non-trivial element (≠ 𝑒) in a prime-order group is a generator

Warning: 𝒁𝑝
∗ ,⋅ is not a prime-order group!   𝒁𝑝

∗ = 𝑝 − 1

Suppose 𝑝 = 2𝑞 + 1, with 𝑞 being prime; what are the possible sub-groups of 𝒁𝑝
∗ ,⋅ ?

21

Corollary II (Lagrange's theorem): if 𝐻 < 𝐺 then the order of 𝐻 divides the order of 𝐺

𝒁𝑝
∗ =

{1},

{1, −1},

𝐻, 𝐻 = 𝑞
𝒁𝑝
∗

𝒁𝑝
∗ = 𝑝 − 1 = 2𝑞

𝒁11
∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

11 = 2 ⋅ 5 + 1

1 < 𝒁11
∗

1,−1 = {1,10} < 𝒁11
∗

𝒁11
∗ < 𝒁11

∗

𝐻 = 3 = 4 = 5 = 9 = {1, 3, 4, 5, 9} < 𝒁11
∗

Example:



Diffie-Hellman

22

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎 
$
1,… , 𝐺

𝑏 
$
1,… , 𝐺

𝑍  𝐵𝑎 𝑍′  𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

𝐺 = 〈𝑔〉
public

Claim: 𝑍 = 𝑍′



Diffie-Hellman – example 

23

570  2493 mod1019 72  2901 mod 1019

493 
$
1, … , 1018 901 

$
1, … , 1018

𝑍  72493mod1019 𝑍′  570901mod1019 ≡ 𝟓𝟑𝟏

𝒁1019
∗ = 〈2〉

≡ 𝟓𝟑𝟏

570

72



Diffie-Hellman

Security:

• Must be hard to compute 𝑍  𝑔𝑎𝑏 given 𝑔, 𝐴, 𝐵 (DH assumption)

• Must be hard to find 𝑎 (or 𝑏) given 𝑔, 𝐴, 𝐵 (DLOG assumption)

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎 
$
1,… , 𝐺

𝑏 
$
1,… , 𝐺

𝑍  𝐵𝑎 𝑍′  𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

𝐺 = 〈𝑔〉

24

public

Doesn't work: 𝐴 ∘ 𝐵 = 𝑔𝑎 ∘ 𝑔𝑏 = 𝑔𝑎+𝑏 ≠ 𝑔𝑎𝑏



Discrete logarithm (DLOG) problem

25

𝐄𝐱𝐩𝐺,𝑔
dl 𝐴

1. 𝑥 
$
1,2,… , 𝐺

2. 𝑋  𝑔𝑥

3. 𝑥′  𝐴 𝑋

4. return 𝑥 =
?
𝑥

Challenger  

𝑥 
$
1,2, … , 𝐺

𝑋  𝑔𝑥
𝑋

𝑥′

Adversary wins if 𝑥′ = 𝑥

Public: 𝐺 = 𝑔

Definition: The DLOG-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
dlog

𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔
dlog

𝐴 ⇒ true

In other words: 𝑥′ = DLog𝑔 𝑋



Diffie-Hellman problem

26

𝐄𝐱𝐩𝐺,𝑔
dh 𝐴

1. 𝑥, 𝑦 
$
1,2,… , 𝐺

2. 𝑋  𝑔𝑥

3. 𝑌  𝑔𝑦

4. 𝑧  𝐴 𝑋, 𝑌

5. return 𝑔𝑧 =
?
𝑔𝑥𝑦

Definition: The DH-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
dh 𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔

dh 𝐴 ⇒ true

Challenger  

𝑥, 𝑦 
$
1,2, … , 𝐺

𝑋  𝑔𝑥
𝑋, 𝑌

𝑧

Adversary wins if 𝑔𝑧 = 𝑔𝑥𝑦

Public: 𝐺 = 𝑔

𝑌  𝑔𝑦



DLOG vs. DH

27

𝐄𝐱𝐩𝐺,𝑔
dlog

𝐴

1. 𝑥 
$
1,2,… , 𝐺

2. 𝑋  𝑔𝑥

3. 𝑥′  𝐴 𝑋

4. return 𝑥 =
?
𝑥

𝐄𝐱𝐩𝐺,𝑔
dh 𝐴

1. 𝑥, 𝑦 
$
1,2,… , 𝐺

2. 𝑋  𝑔𝑥

3. 𝑌  𝑔𝑦

4. 𝑧  𝐴 𝑋, 𝑌

5. return 𝑔𝑧 =
?
𝑔𝑥𝑦

DLOG security ⟸ DH security

DLOG security ⟹
?

DH security



Algorithms for solving DLOG

• Generic algorithms; works for all (cyclic) groups

• Brute-force

1. Given 𝑔 and 𝑋 ∈ 𝐺

2. for 𝑖 = 1, 2, … , 𝐺 check if 𝑔𝑖 = 𝑋

• Are there better algorithms?

• Group-specific algorithms; exploits algebraic features of given group

28

running time: 𝒪 𝐺 ≈ 𝒪 2𝑛 ,  given 𝐺 ≈ 2𝑛



𝑥 = 𝑛𝑗 + 𝑖

Solving DLOG: the baby-step giant-step algorithm

29

𝑋  𝑔𝑥

𝑋0  𝑋𝑔
−0

𝑋1  𝑋𝑔
−1

𝑋2  𝑋𝑔
−2

𝑋3  𝑋𝑔
−3

𝑋𝑛  𝑋𝑔
−𝑛

⋮

𝑌0

𝑌  𝑔𝑛

𝑌1

𝑌2

𝑌3

𝑌𝑛

⋮

𝑋𝑖  𝑋𝑔
−𝑖

⋮

𝑌𝑗

⋮

𝑋𝑖 = 𝑌
𝑗

𝑋𝑔−𝑖 = 𝑔𝑛𝑗

𝑋 = 𝑔𝑛𝑗+𝑖

DLog 𝑋 = DLog 𝑔𝑛𝑗+𝑖

𝑛  𝐺

⋅ 𝑔𝑖 ⋅ 𝑔𝑖

Find “collision”:

𝒪 𝐺 𝒪 𝐺

𝒪 𝐺 ⋅ log 𝐺 ≈ 𝒪 𝐺

Given:

Time + memory:  𝒪 𝐺

Find: 𝑥



Generic algorithms for solving DLOG

• Baby-step, giant-step:    time 𝒪 𝐺 memory 𝒪 𝐺

• Pollard's rho: time 𝒪 𝐺 memory 𝒪 1

• Pohlig-Hellman: time max
𝑝
𝒪 𝑝 memory 𝒪 1 𝐺 = 𝑝1

𝑒1𝑝2
𝑒2⋯𝑝𝑡

𝑒𝑡

• Nechaev '94 & Shoup '97: Solving DLog requires time Ω 𝐺 in generic groups

• Consequence: 𝐺 must be large enough

• 𝐺 ≈ 2128 only gives 2128 = 264 security

• 𝐺 ≈ 2256 only gives 2256 = 2128 security

• 𝐺 ≈ 2512 only gives 2512 = 2256 security

• etc...

30



Non-generic algorithms for DLOG

• Unfortunately, 𝒁𝑝
∗ ,⋅ is not a generic group!

• Much faster specific algorithms exist for solving DLOG in 𝒁𝑝
∗

• Index-calculus

• Elliptic-curve method

• Special number-field sieve (SNFS)

• General number-field sieve (GNFS)

• Current DLOG-solving record: 𝒁𝑝
∗ ≈ 2795 using GNFS (Heninger et al. '19)

• Previous records: https://en.wikipedia.org/wiki/Discrete_logarithm_records

• 𝒁𝑝
∗ ≥ 22048 typically required as a minimum today

31

exceptionally complicated algorithms, requiring very 

advanced mathematics!

https://en.wikipedia.org/wiki/Discrete_logarithm_records


Better alternatives to 𝒁𝑝
∗?

32



Elliptic curves

33

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

34

𝑃

𝑄

𝑃 + 𝑄

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

35

𝑃
𝑄

𝑃 + 𝑄

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

36

𝑃

𝑄 𝑃 + 𝑄

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

37

𝑃

𝑄

𝑃 + 𝑄

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

38

𝑃

𝑄
𝑃 + 𝑄

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

39

𝑃

𝑄

𝑃 + 𝑄 = 𝒪

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹

Identity element



Elliptic curves

40

𝑃

𝑃 + 𝑃

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

41

𝑦2 = 𝑥3 + 𝑎′𝑥 + 𝑏′

𝑎′, 𝑏′, 𝑥, 𝑦 ∈ 𝑹



Elliptic curves

42

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑹

𝑥3 =
𝑥1𝑥2 − 2𝑎 𝑥1𝑥2 − 4𝑏 𝑥1 + 𝑥2 + 𝑎

2

𝑥1𝑥2 + 𝑎 𝑥1 + 𝑥2 + 2𝑦1𝑦2 + 2𝑏

𝑦3 =
𝑥1𝑥2 𝑥1 + 𝑥2 − 𝑥3 𝑥1 + 𝑥2

2 − 𝑥1𝑥2 + 𝑎 − 𝑦1𝑦2 − 𝑏

𝑦1 + 𝑦2

𝑃 + 𝑄 = 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥3, 𝑦3𝑃

𝑄

𝑃 + 𝑄Notation: 𝐸 𝑹 ,+ = an elliptic 

curve group defined over the 

reals

Theorem: the points on an elliptic curve, together with 𝒪, 

is an abelian group under "geometric point addition"



Elliptic curves

43

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝒁𝑝

𝑥3 =
𝑥1𝑥2 − 2𝑎 𝑥1𝑥2 − 4𝑏 𝑥1 + 𝑥2 + 𝑎

2

𝑥1𝑥2 + 𝑎 𝑥1 + 𝑥2 + 2𝑦1𝑦2 + 2𝑏

𝑦3 =
𝑥1𝑥2 𝑥1 + 𝑥2 − 𝑥3 𝑥1 + 𝑥2

2 − 𝑥1𝑥2 + 𝑎 − 𝑦1𝑦2 − 𝑏

𝑦1 + 𝑦2

𝑃 + 𝑄 = 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥3, 𝑦3𝑃

𝑄

𝑃 + 𝑄

Still valid!



Elliptic curves

44

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝒁𝑝

𝑥3 =
𝑥1𝑥2 − 2𝑎 𝑥1𝑥2 − 4𝑏 𝑥1 + 𝑥2 + 𝑎

2

𝑥1𝑥2 + 𝑎 𝑥1 + 𝑥2 + 2𝑦1𝑦2 + 2𝑏

𝑦3 =
𝑥1𝑥2 𝑥1 + 𝑥2 − 𝑥3 𝑥1 + 𝑥2

2 − 𝑥1𝑥2 + 𝑎 − 𝑦1𝑦2 − 𝑏

𝑦1 + 𝑦2

𝑃 + 𝑄 = 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥3, 𝑦3

Theorem: the points on an elliptic curve, together with 𝒪, 

is an abelian group under "geometric point addition"

Notation: 𝐸 𝒁𝑝 , + = an elliptic 

curve group defined over 𝒁𝑝

𝐸 𝒁88 , +

∈ 𝒁88



𝑬 𝒁𝑝 – properties 

• Recall: 𝒁𝑝
∗ ,⋅ is not a generic group

• Specialized attacks (GNFS) exploit algebraic structure ⟹ parameters must be bigger to compensate 

• 𝒁𝑝
∗ ≥ 22048 required for security today

• Bigger parameters ⟹ slower systems

• Currently no attacks that manage to exploit the algebraic structure of 𝐸 𝒁𝑝
∗ , +

• Best-know attacks are generic attacks:

• Baby-step giant-step

• Pollard-rho

• etc…

• Nechaev '94 & Shoup '97: Generic algorithms for solving DLog requires time Ω 𝐺

• Consequently: elliptic curve crypto can use much smaller parameters

• 𝐸 𝒁𝑝 = 2256, 2384, 2512 common in practice

• Much faster than 𝒁𝑝
∗ -based crypto

45



Cryptographic groups in practice

• 𝒁𝑝
∗ ,⋅ groups:

• TLS 1.3: five specific groups allowed 

• size ≈ 22048, 23072 , 24096, 26144, 28192 (RFC 7919)

• IKEv2 (IPsec key exchange protocol): MODP groups 

• size ≈ 2768, 21024, 21536, 22048, 23072 , 24096, 26144, 28192 (RFC 7296 and RFC 3526)

• all 𝑝’s are safe primes (i.e., of the form 𝑝 = 2𝑞 + 1 where 𝑞 is prime)

• 𝐸 𝒁𝑝
∗ , + groups 

• NIST groups: P-224, P-256, P-384, P-521

• Curve25519 (𝐸 ∶ 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥 and  𝑝 = 2255 − 19) (Daniel J. Bernstein)

• Curve448 (𝐸 ∶ 𝑦2 + 𝑥2 = 1 − 39081𝑥2𝑦2 and 𝑝 = 2448 − 2224 − 1) (Mike Hamburg)

46



𝑵-party Diffie-Hellman

• 𝑁-party Diffie-Hellman possible in 𝑁 − 1 rounds

• 1-round 𝑁-party Diffie-Hellman:

• 𝑁 = 2 – normal Diffie-Hellman

• 𝑁 = 3 – Diffie-Hellman with bilinear pairings (Joux ’00)

• 𝑁 ≥ 4 – open problem

• Possible with multilinear maps (very advanced)

• But we don’t know any secure multilinear maps 

47

𝑔𝒂

𝑔𝒃
𝑔𝒂 𝑔𝒃

𝑔𝒂𝒃 𝑔𝒂𝒃

𝑔𝒂
𝑔𝒃

𝑔𝒄

𝑔𝒂𝒄

𝑔𝒂𝒃

𝑔𝒃𝒄

𝑔𝒂𝒄
𝑔𝒂𝒃

𝑔𝒃𝒄

𝑔𝒂𝒃𝒄

𝑔𝒂𝒃𝒄

𝑔𝒂𝒃𝒄

Round 1Round 2



Summary

• Group theory

• Group definition (associativity, identity, inverses)

• Subgroups

• Cyclic (subgroups) 

• Diffie-Hellman key exchange protocol described in a generic group
• Discrete logarithm (DLOG) problem and Diffie-Hellman (DH) problem must be hard in the concrete group used

• Two main groups used in cryptography (where DLOG and DH problems are believed to be hard): 

• 𝒁𝑝
∗ ,⋅ the group of non-zero integers modulo a prime 𝑝

• Best algorithm to solve DLOG is the General Number Field Sieve (GNFS) which exploits the algrabraic structure of 𝒁𝑝

• 𝐸 𝒁𝑝 , + elliptic curve groups 

• Elements are points satisfying 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 where 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝒁𝑝 (additionally, we need an identity element, which we 

artificially define to be the element 𝒪. Note that 𝒪 does not lay on the curve) 

• Group operation is "addition of points on curve" where the operation is motivated by the geometric idea

• GNFS does not apply; best-known DLOG algorithms are generic: baby-step, giant-step, Pollard-rho, Pohlig-Hellman

• Can use much smaller parameters ⟹ much faster than 𝒁𝑝
∗ ,⋅ -based DH

48


