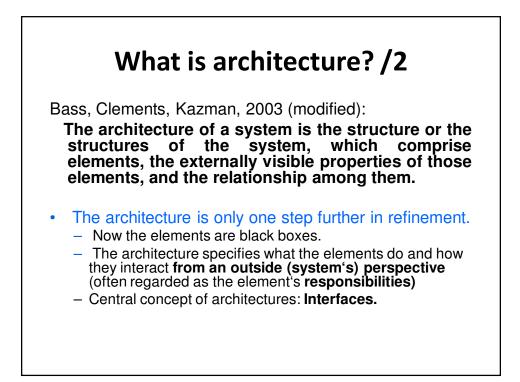
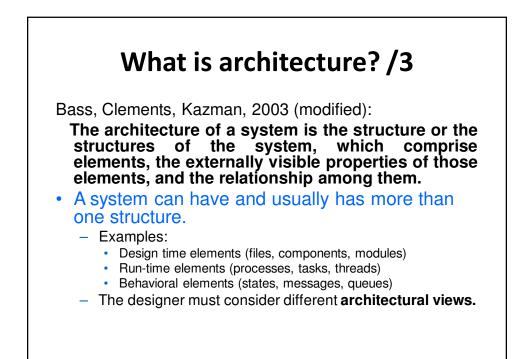
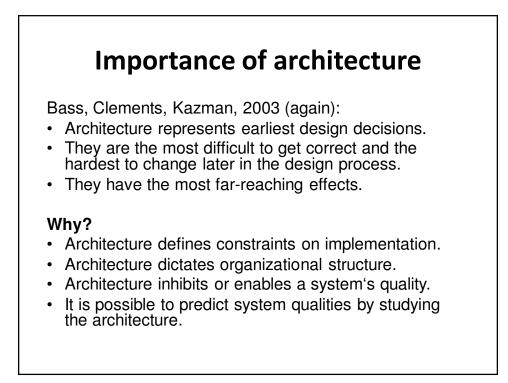

What are embedded systems doing?

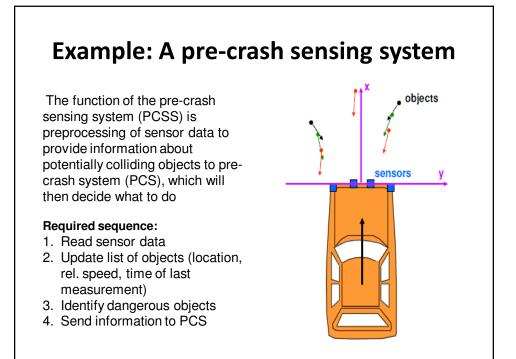
Typical functionalities

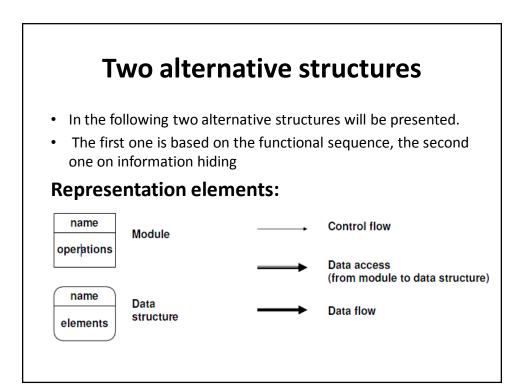
Measuring physical variables (sensing) Storing data Processing sensor signals and data Influencing physical variables (actuating) Monitoring Supervising Enable manual and automatic operation In one word: **Control**

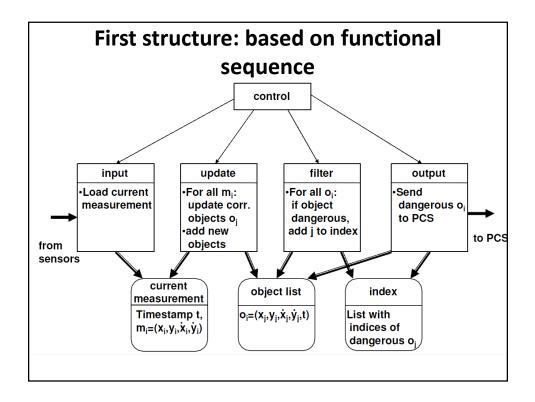


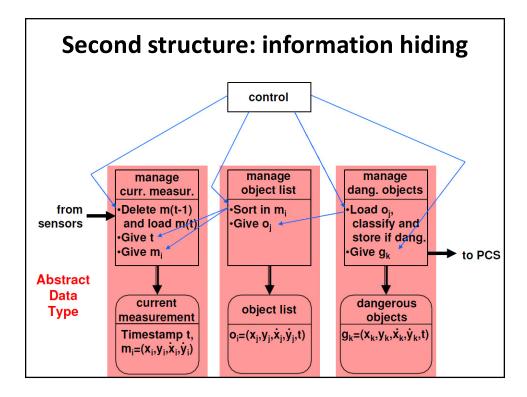



Bass, Clements, Kazman, 2003 (modified):

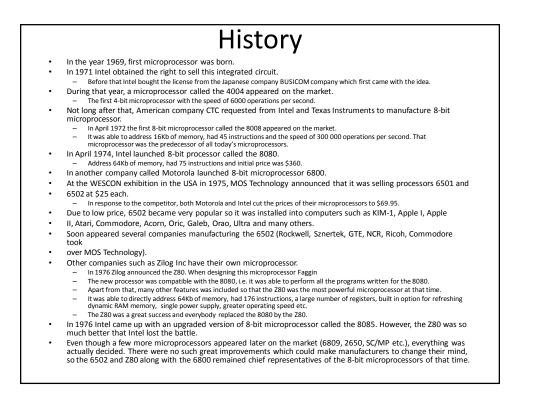

The architecture of a system is the structure or the structures of the system, which comprise elements, the externally visible properties of those elements, and the relationship among them.

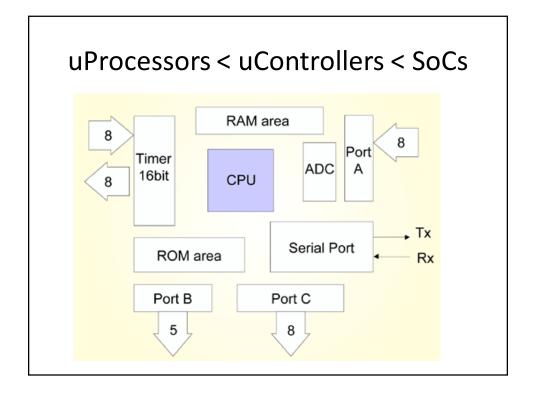

- The architecture defines elements of the system.
 Architecture design is the first phase in which the system is no longer a black box.
 - The designer begins to structure the system into parts.
 - Architecture manifests the earliest design decisions.
 - Architecture is the blueprint for system integration.

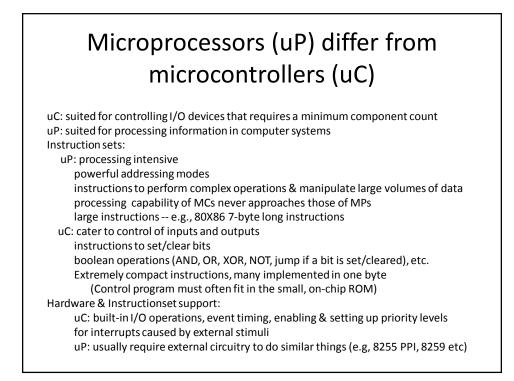


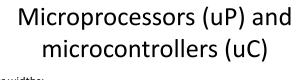


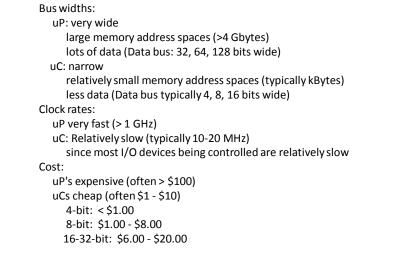
7

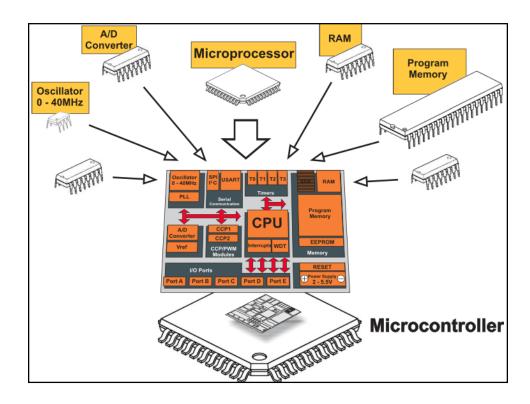

Which is the better structure?

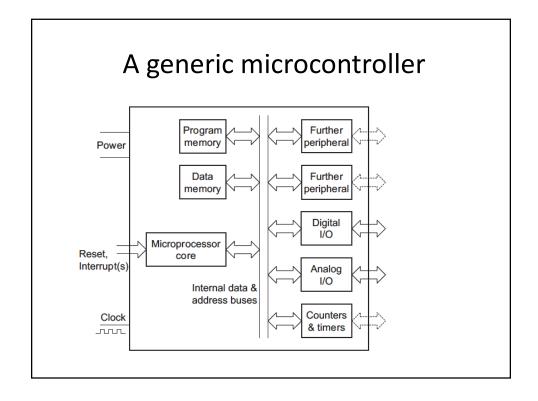

- Depends on criteria.
- Parnas, 1972:
 - Best criterion for modularization is maintainability/modifiability, i.e. the support of changes.
 - Changes mostly affect data structures
- Example:
 - Objects shall be stored in polar coordinates instead of Cartesian coordinates.
 - Changes in first structure: 3 Modules
 - Changes in second structure: 1 Module

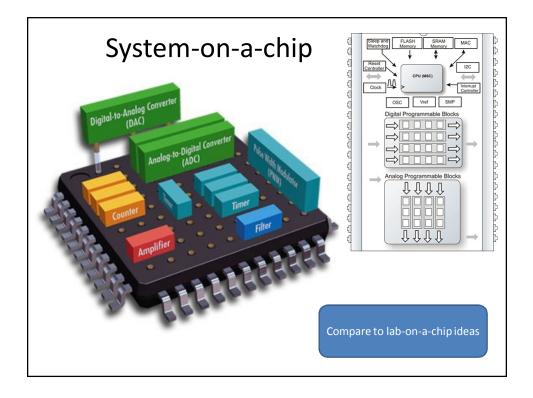


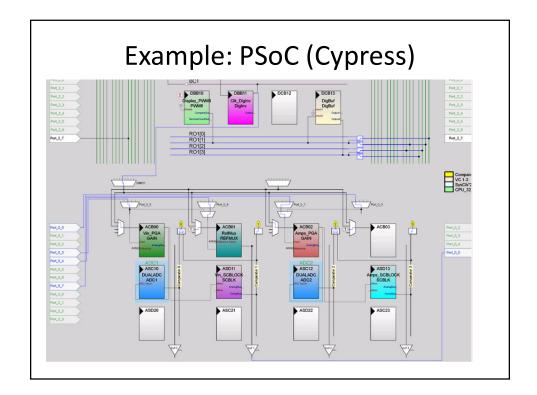

overview

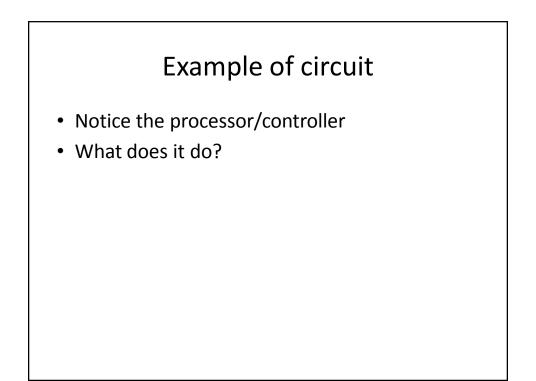

 Microcontroller architecture. Address modes and instruction sets. Subroutines and interrupts. Handling software tools including IDE, editor, assembler, simulator and C compiler. Interface techniques including parallel, serial, timer, and analogue peripheral interface.

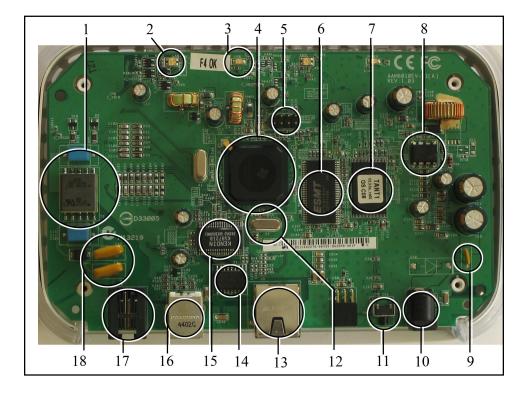


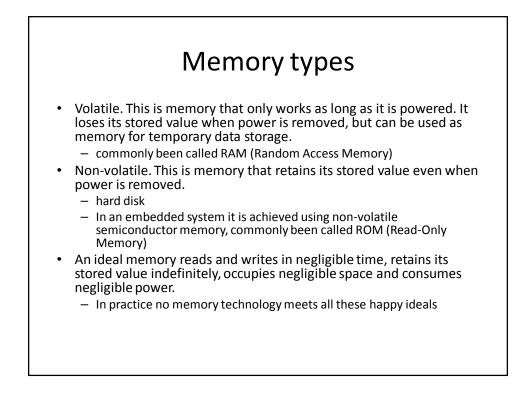


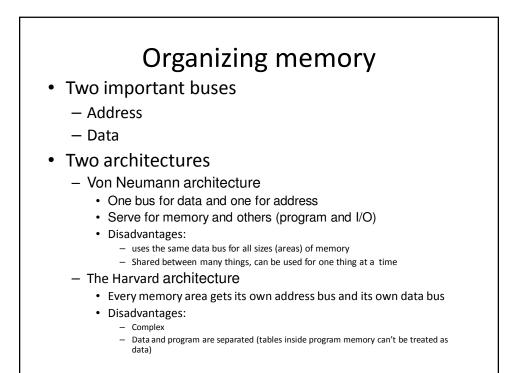


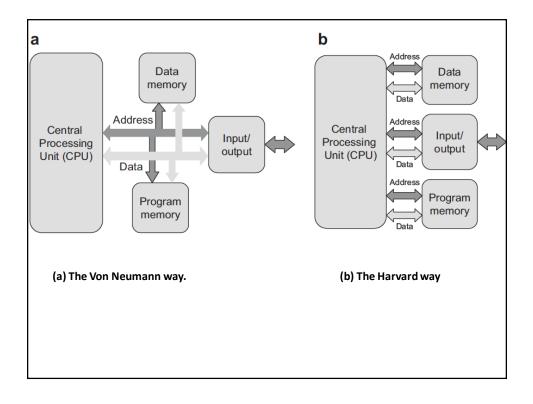


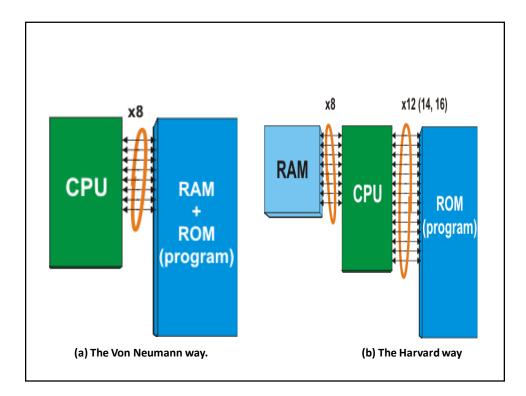


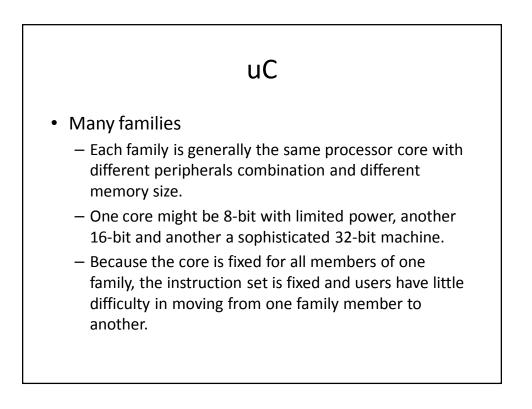




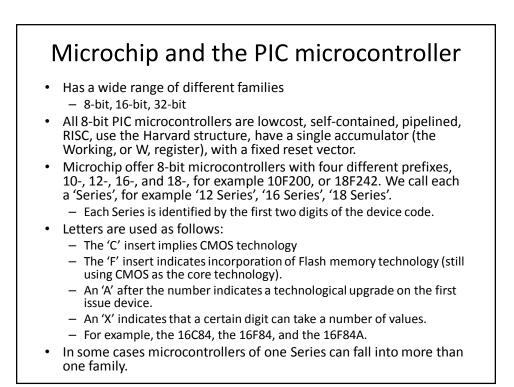


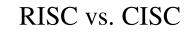


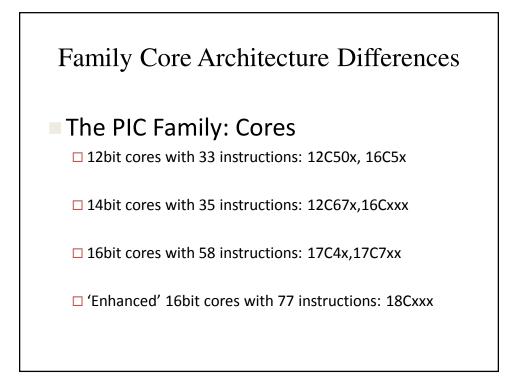

Memory – cont.

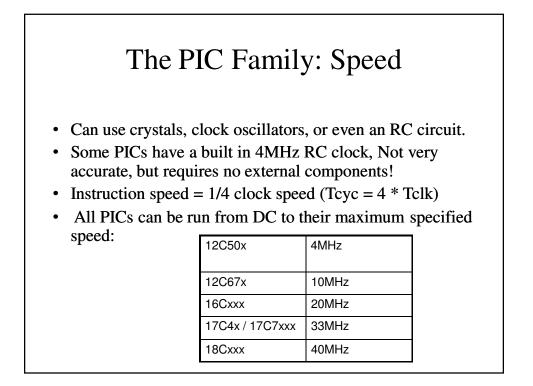

- Static RAM (SRAM)
 - Each memory cell is designed as a simple flip-flop.
 - Data is held only as long as power is supplied (volatile).
 - Consume very little power, and can retain its data down to a low voltage (around 2 V).
 - Each cell taking six transistors, SRAM is not a high-density technology.
 - EPROM (Erasable Programmable Read-Only Memory)
 - erased by exposing it to intense ultraviolet light.
 - each memory cell is made of a single MOS transistor (very high density and robust)
 - Within the transistor there is embedded a 'floating gate'. Using a technique known as hot electron injection (HEI), the floating gate can be charged. When it is not charged, the transistor behaves normally and the cell output takes one logic state when activated. When it is charged, the transistor no longer works properly and it no longer responds when it is activated. The charge placed on the floating gate is totally trapped by the surrounding insulator. Hence EPROM technology is non-volatile.
 - Requires quartz window and ceramic packaging.
 - As a technology, EPROM has now almost completely given way to Flash

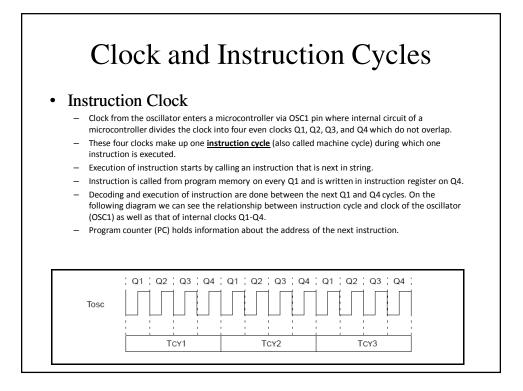
Memory – cont.					
 EEPROM (Electrically Erasable Programmable Read- Only Memory) 					
 Uses floating gate technology. This is known as Nordheim–Fowler tunnelling (NFT). With NFT, it is possible to electrically erase the memory cell as well as write to it. 					
 To allow this to happen, a number of switching transistors need to be included around the memory element itself, so the high density of EPROM is lost. 					
 EEPROM is non-volatile Because the charge on the floating gate is totally trapped by the surrounding insulator Write and erase byte by byte. 					
• Flash					
 A further evolution of floating-gate technology. can only erase in blocks. Non-volatile 					

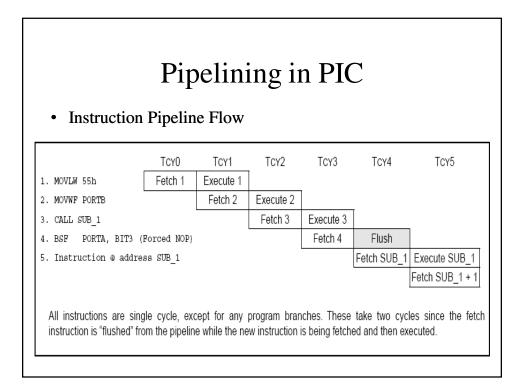


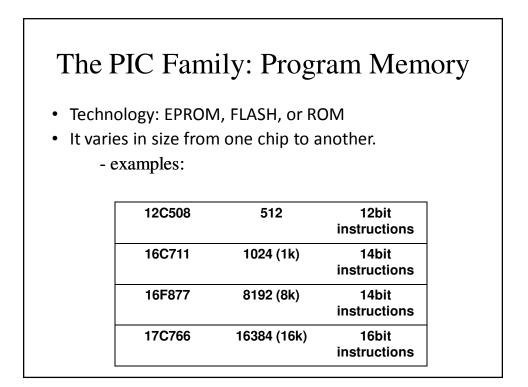






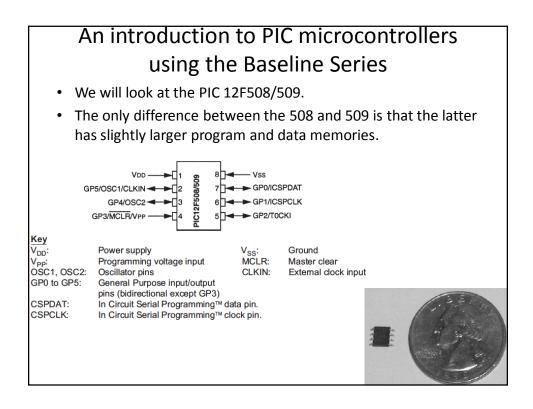


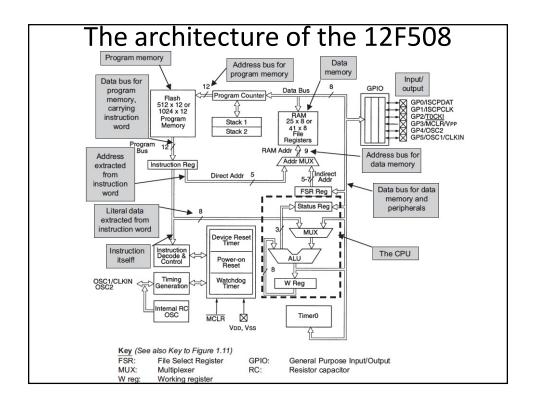



- Reduced Instruction Set Computer (RISC)
 - Used in: SPARC, ALPHA, Atmel AVR, etc.
 - Few instructions (usually < 50)
 - Only a few addressing modes
 - Executes 1 instruction in 1 internal clock cycle (Tcyc)
- Complex Instruction Set Computer (CISC)
 - Used in: 80X86, 8051, 68HC11, etc.
 - Many instructions (usually > 100)
 - Several addressing modes
 - Usually takes more than 1 internal clock cycle (Tcyc) to execute

The PIC Family: Data Memory

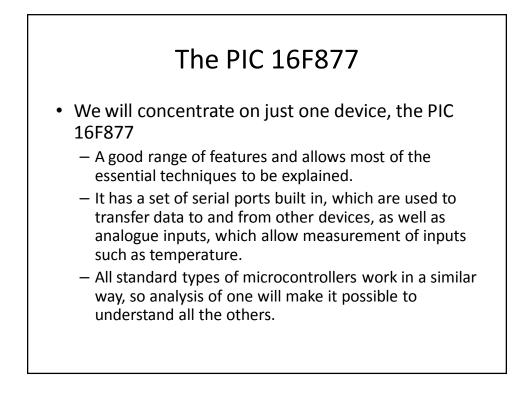
• PICs use general purpose "File registers" for RAM (each register is 8bits for all PICs)

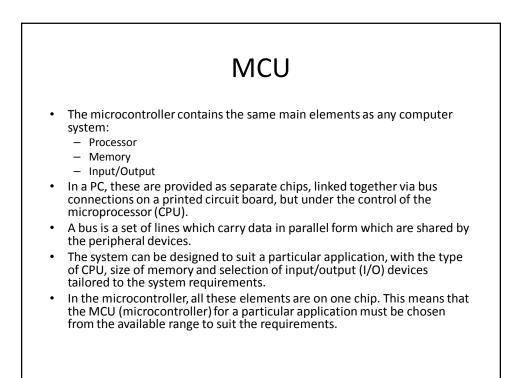

- examples:

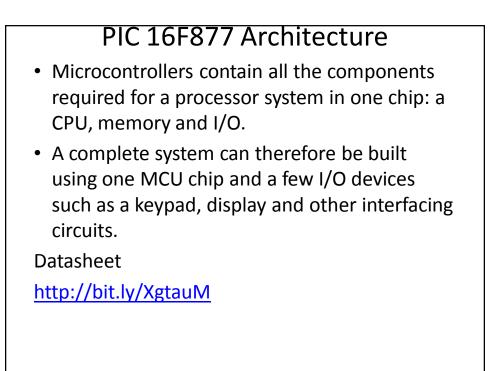

12C508	25B RAM
16C71C	36B RAM
16F877	368B RAM + 256B of nonvolatile EEPROM
17C766	902B RAM

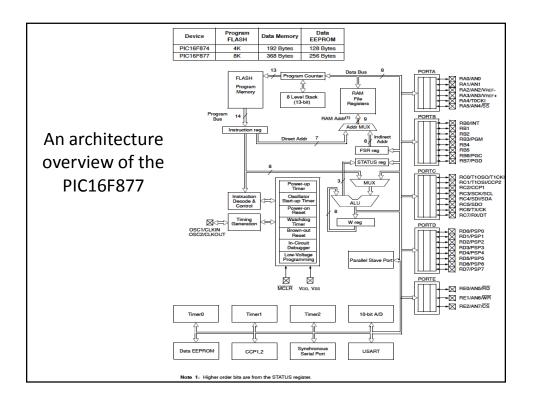
Comparison of 8-bit PIC families

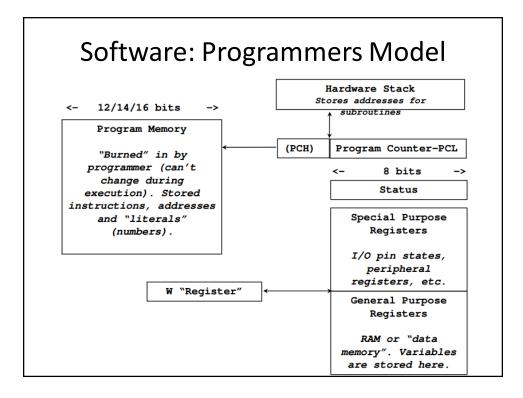
Family	Example devices	Instruction word size	Stack size (words)	Number of instructions	Interrupt vectors
Baseline	10F200, 12F508, 16F57	12 bit	2	33	None
Mid range	12F609, 16F84A, 16F631, 16F873A	14 bit	8	35	1
High Performance	18F242, 18F2420	16 bit	32	75, including hardware multiply	2 (prioritised)


- Every member of any one family shares the same core architecture and instruction set.
- The processing power is defined to some extent by the parameters quoted, for example the instruction word size, and the number of instructions.



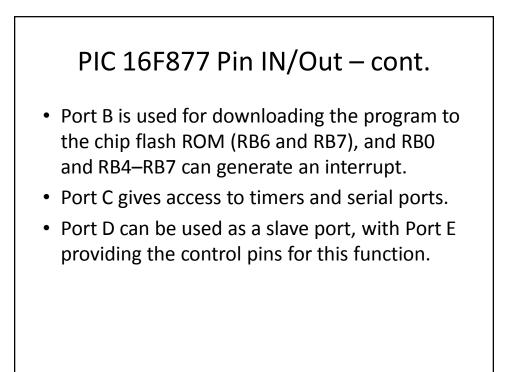


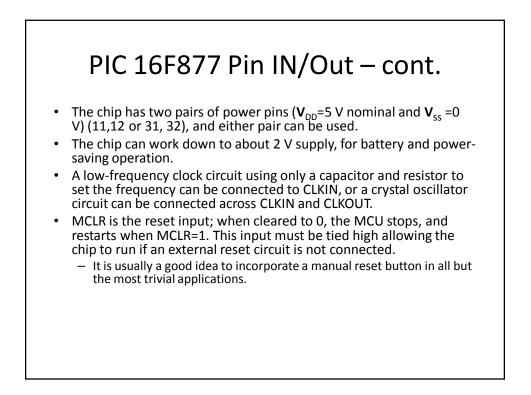

The architecture of the 12F508 – cont.

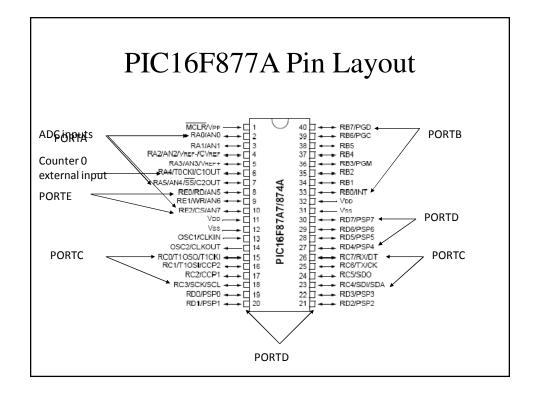

- As this microcontroller is a RISC computer, each instruction word must carry not only the instruction code itself, but also any address or data information needed.
- Depending on the instruction itself, five bits of the instruction word may carry address information and hence be sent down the 'Direct Addr' bus to the address multiplexer ('Addr MUX'). Eight bits of the instruction word may carry a data byte that is to be used as literal data for the execution of that instruction. This goes to the multiplexer ('MUX'), which feeds into the ALU. Finally, there is the instruction data itself, which feeds into the 'Instruction Decode and Control' unit.
- A 'Power-on Reset' function detects when power is applied and holds the microcontroller in a Reset condition while the power supply stabilizes.
- The MCLR input can be used to place the CPU in a Reset condition and to force the program to start again.
 - An internal clock oscillator ('Internal RC OSC') is provided so that no external pins whatsoever need be committed to this function.
 - External oscillator connections can, however, be made, using input/output pins GP4 and GP5. The oscillator signal is conditioned for use through the microcontroller in the 'Timing Generation' unit.
- The 'Watchdog Timer' is a safety feature, used to force a reset in the processor if it crashes.

PIC Programming Procedure

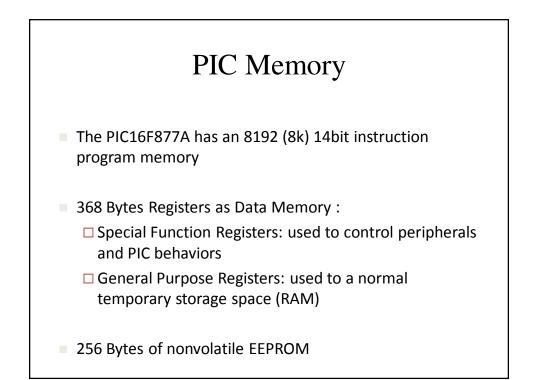
- For example: in programming an embedded PIC featuring electronically erasable programmable read-only memory (EEPROM). The essential steps are:
 - Step 1: On a PC, type the program, successfully compile it and then generate the HEX file.
 - Step 2: Using a PIC device programmer, upload the HEX file into the PIC. This step is often called "burning".
 - Step 3: Insert your PIC into your circuit, power up and verify the program works as expected. This step is often called "dropping" the chip. If it isn't, you must go to Step 1 and debug your program and repeat burning and dropping.

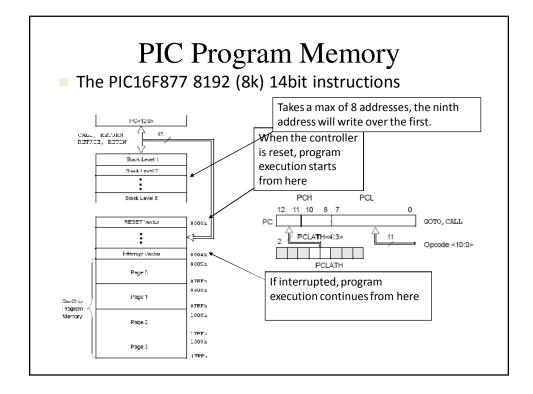


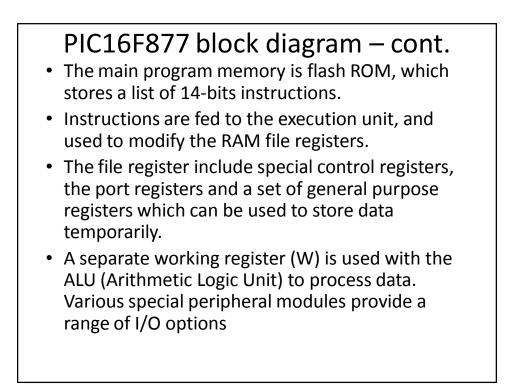

High Performance RISC CPU:

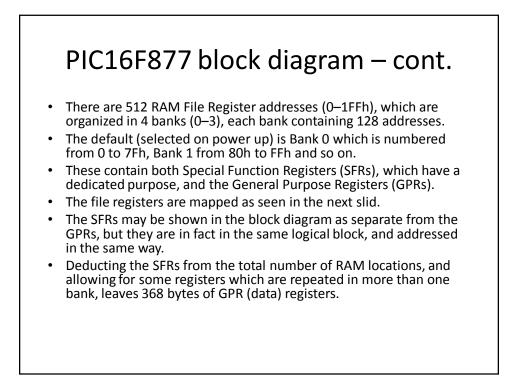

- Only 35 single word instructions to learn
- All single cycle instructions except for program branches, which are two-cycle
- Operating speed: DC 20 MHz clock input DC 200 ns instruction cycle

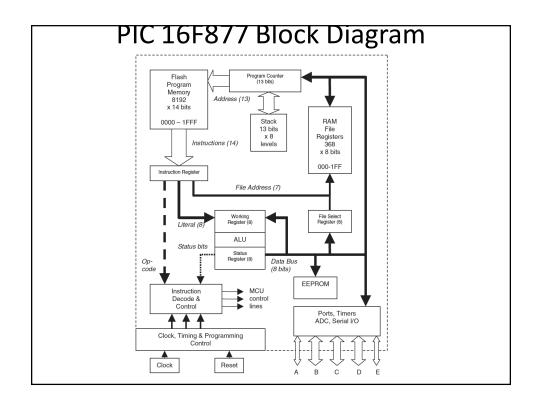
PIC 16F877 Pin IN/Out

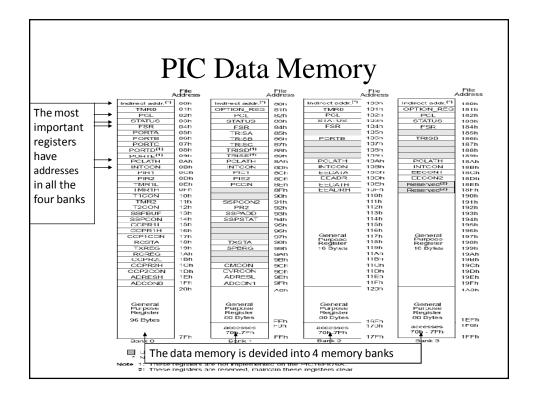

- The chip can be obtained in different packages, such as conventional 40-pin DIP (Dual In-Line Package), square surface mount or socket format.
- Most of the pins are for input and output, and arranged as 5 ports: port A (5 pins), port B(8), C(8), D(8) and E(3), giving a total of 32 I/O pins.
 - These can all operate as simple digital I/O pins, but most have more than one function.
 - The mode of operation of each is selected by initializing various control registers within the chip.
 - Note, in particular, that Ports A and E become ANALOGUE INPUTS by default (on power up or reset), so they have to set up for digital I/O if required.

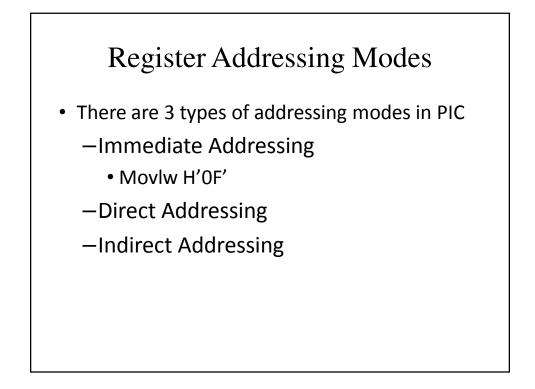


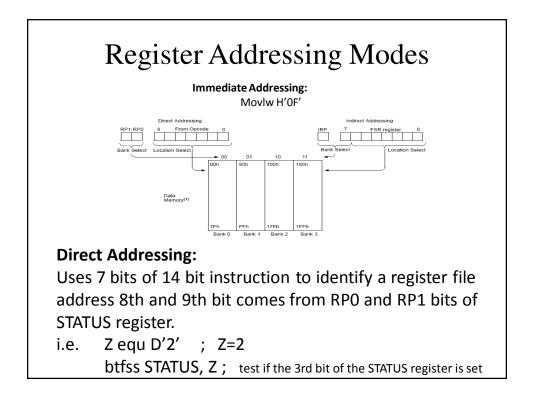


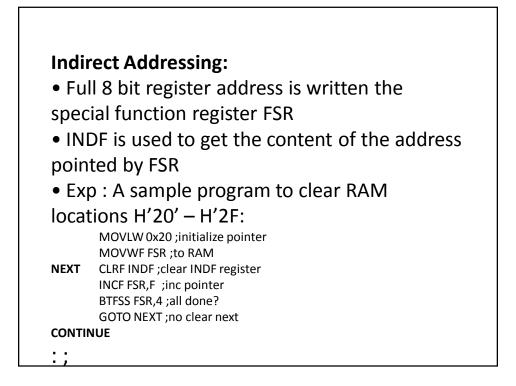


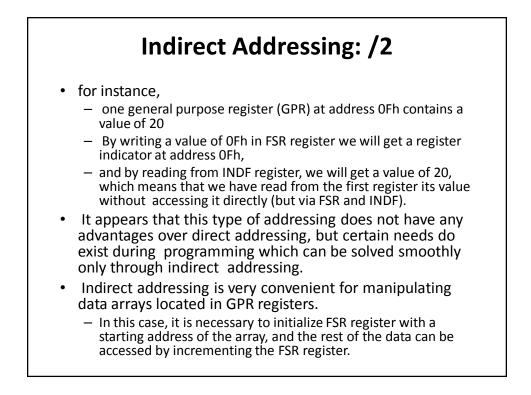

PIC 16F877 Pin IN/Out – cont.						
Reset = 0, Run = 1	MCLR	1	40	RB7	Port B, Bit 7 (Prog. Data, Interrupt)	
Port A, Bit 0 (Analogue AN0)	RA0	2	39	RB6	Port B, Bit 6 (Prog. Clock, Interrupt))	
Port A, Bit 1 (Analogue AN1)	RA1	3	38	RB5	Port B, Bit 5 (Interrupt)	
Port A, Bit 2 (Analogue AN2)	RA2	4	37	RB4	Port B, Bit 4 (Interrupt)	
Port A, Bit 3 (Analogue AN3)	RA3	5	36	RB3	Port B, Bit 3 (LV Program)	
Port A, Bit 4 (Timer 0)	RA4	6	35	RB2	Port B, Bit 2	
Port A, Bit 5 (Analogue AN4)	RA5	7	34	RB1	Port B, Bit 1	
Port E, Bit 0 (AN5, Slave control)	RE0	8	33	RB0	Port B, Bit 0 (Interrupt)	
Port E, Bit 1 (AN6, Slave control)	RE1	9	32	V _{DD}	+5V Power Supply	
Port E, Bit 2 (AN7, Slave control)	RE2	10	31	Vss	0V Power Supply	
+5V Power Supply	V _{DD}	11	30	RD7	Port D, Bit 7 (Slave Port)	
0V Power Supply	Vss	12	29	RD6	Port D, Bit 6 (Slave Port)	
(CR clock) XTAL circuit	CLKIN	13	28	RD5	Port D, Bit 5 (Slave Port)	
XTAL circuit	CLKOUT	14	27	RD4	Port D, Bit 4 (Slave Port)	
Port C, Bit 0 (Timer 1)	RC0	15	26	RC7	Port C, Bit 7 (Serial Ports)	
Port C, Bit 1 (Timer 1)	RC1	16	25	RC6	Port C, Bit 6 (Serial Ports)	
Port C, Bit 2 (Timer 1)	RC2	17	24	RC5	Port C, Bit 5 (Serial Ports)	
Port C, Bit 3 (Serial Clocks)	RC3	18	23	RC4	Port C, Bit 4 (Serial Ports)	
Port D, Bit 0 (Slave Port)	RD0	19	22	RD3	Port D, Bit 3 (Slave Port)	
Port D, Bit 1 (Slave Port)	RD1	20	21	RD2	Port D, Bit 2 (Slave Port)	

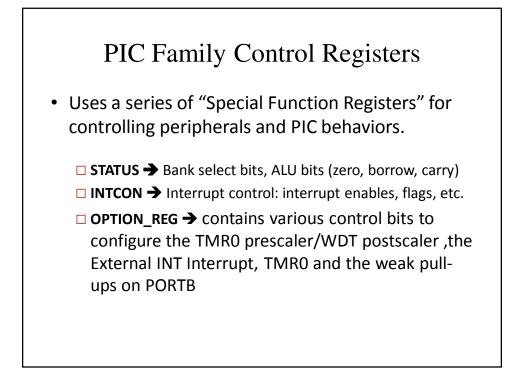


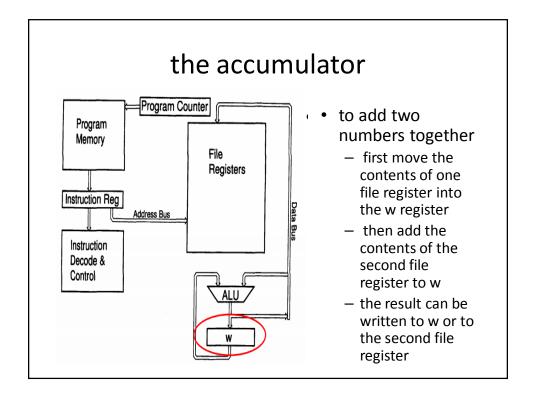


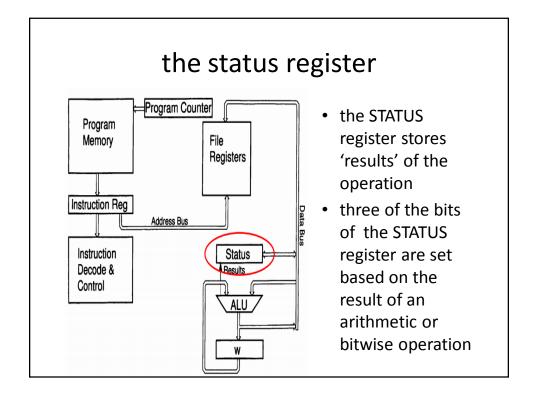


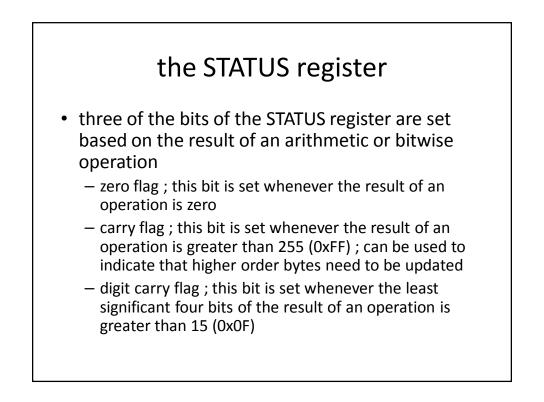



,	File Address	,	File Address		File Address		File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.	180h
TMBO	01h	OPTION REG	81h	TMB0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
POBTA	05h	TRISA	85h		105h	1311	185h
PORTB	06h	TRISA	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	1 OITE	107h		187h
POBTD ⁽¹⁾	08h	TBISD ⁽¹⁾	88h		108h		188h
POBTE(1)	09h	TRISE®	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	OBh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIB1	OCh	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	ODh	PIE2	8Dh	EEADR	10Dh	EECON2	180h
TMB1L	OEh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMB1H	OFh	FCON	8Fh	EEADBH	10Eh	Reserved ⁽²⁾	18Eh
TICON	10h		90h	EEADAH	110h	Reserved	190h
TMB2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUE	13h	SSPADD	92h 93h		113h		192h
SSPEOR	14h	SSPADD	93h 94h		114h		193h
CCPB1L	140 15h	SSPSTAL	94n 95h		115h		194h
CCPRIL	16h		95h 96h		116h		195h
CCP1CON	17h		96n 97h	General	117h	General	196h
BCSTA	18h	TXSTA	97h 98h	Purpose	118h	Purpose	198h
TXREG	19h	SPBRG		Register	119h	Register	199h
RCREG	1Ah	SPBRG	99h	16 Bytes	11Ah	16 Bytes	199h
	1Bh		9Ah		11Bh		19Bh
CCPR2L	1Ch		9Bh		11Ch		
CCPR2H	1Dh		9Ch		11Dh		19Ch
CCP2CON	1Eh	ADRESL	9Dh		11Eh		19Dh 19Eh
ADRESH	1Eh		9Eh		11Eh		
ADCON0		ADCON1	9Fh				19Fh
	20h		A0h		120h		1A0h
General		General		General		General	
Purpose Register		Purpose Register		Purpose Register		Purpose Register	
e e e e e e e e e e e e e e e e e e e		80 Bytes		80 Bytes		80 Bytes	100
96 Bytes			EFh		16Fh		1EFr
	7Eb	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1FOh
Bank 0		Bank 1		Bank 2		Bank 3	
 Unimplemented data memory locations, read as '0'. Not a physical register. Note 1: These registers are not implemented on the PIC16F876. 							
		re reserved, main					









	Special Function Register "STATUS Register"							
	R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x IRP RP1 RP0 TO PD Z DC C bit 7 bit 0							
bit 7	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) o = Bank 0, 1 (00h - FFh)							
bit 6-5								
bit 4	TO: Time-out bit 1 = After power-up, CLRWDT Instruction, or SLEEP Instruction 0 = A WDT time-out occurred							
bit 3	PD: Power-down bit 1 = After power-up or by the CLRWDT instruction o = By execution of the SLEEP instruction							
bit 2	 Z. Zero bit 1 - The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 							
bit 1								
bit 0	C: Cany/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred							
	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high, or low order bit of the source register.							
	Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

"INTCON Register"								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMROIE	INTE	RBIE	TMR0IF	INTE	RBIF
	bit 7							bit C
bit 7	GIE: Global	Interrupt E	nable bit					
	1 = Enables 0 = Disables			s				
bit 6	PEIE: Peripi			bit				
	1 = Enables 0 = Disables							
bit 5	TMROIE: TM	1R0 Overflo	ow Interrupt	Enable bit				
	1 = Enables 0 = Disables							
bit 4	INTE: RB0/I			nable bit				
	1 = Enables 0 = Disables							
bit 3	RBIE: RB P							
		1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt						
bit 2	TMR0IF: TM	IR0 Overfic	ow Interrupt	Flag bit				
	1 = TMR0 re o = TMR0 re				ared in soft	ware)		
bit 1	INTF: RB0/I							
	1 = The RB0 0 = The RB0					red in softwa	are)	
bit 0	RBIF: RB P	ort Change	Interrupt Fi	ag bit				
		Reading PC				match condit n and allow		

X14 Instruction set

- 35 instructions
 - -Byte Oriented Operations
 - -Bit Oriented Operations
 - -Literal and control Operations

Mnemonic,		Description	Cycles		14-Bit (Opcode	•	Status	Notes
Ope	rands	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCE	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	SZ f. d Increment f. Skip if 0		1(2)	00	1111	dfff	ffff		1.2.3
IORWF	f, d	Inclusive OR W with f	1 i	00	0100	dfff	ffff	z	1.2
MOVE	f, d	Move f	1	0.0	1000	dfff	ffff	7	1,2
MOVWE	f	Move W to f	i i	00		lfff		_	-,-
NOP	-	No Operation	1	0.0	0000	0xx0	0000		
BLE	f, d	Rotate Left f through Carry	l i	00		dfff		С	1.2
RRF	f, d	Rotate Right f through Carry	l i	00		dfff		č	1.2
SUBWE	f, d	Subtract W from f	l i	00		dfff		C.DC.Z	1,2
SWAPF	f, d	Swap nibbles in f	l i	00		dfff		0,00,2	1.2
XORWE	f, d	Exclusive OB W with f	i	00	0110	dfff		7	1.2
XORWE	1, 0					dill	1111	2	1,2
		BIT-ORIENTED FILE REGIST							
BCF	f, b	Bit Clear f	1	01		bfff			1,2
BSF	f, b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01		bfff			3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL							
ADDLW	k	Add literal and W	1	11		kkkk		C,DC,Z	
ANDLW	k	AND literal with W	1	11		kkkk		z	
CALL	k	Call subroutine	2	10		kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10		kkkk			
IORLW	k	Inclusive OR literal with W	1	11		kkkk		Z	
MOVLW	k	Move literal to W	1	11		kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	z	
Note 1:	When an I/	O register is modified as a function of itself (e.g.,	MOVF POP	RTB, :	1), the v	alue use	ed will b	e that value	present
	on the pins	themselves. For example, if the data latch is '1' for	or a pin co	onfigure	ed as inc	out and	is driver	low by an	external
		data will be written back with a '0'.							
2:	If this instru	uction is executed on the TMR0 register (and, whe	ere applica	able, d	= 1), the	e presca	der will l	be cleared if	F .
		o the Timer0 module.							
3:	If Program	Counter (PC) is modified, or a conditional test is t	rue, the in	structio	on requir	res two	cvcles	The second	cvcle is

- Data Movement
 - movf,movlw,movwf
- Arithmetic
 - addlw,addwf,sublw,subwf,incf,decf
- Logical
 - andlw,andwf,iorlw,iorwf,xorlw,xorwf,rrf,rlf,clrf,clrw,swapf,c omf
- Bit Operators
 - bsf,bcf
- Branching
 - goto,btfss,btfsc,decfsz,incfsz
- Subroutine
 - call,return,retlw,retfie
- Misc.
 - sleep,clrwdt,nop

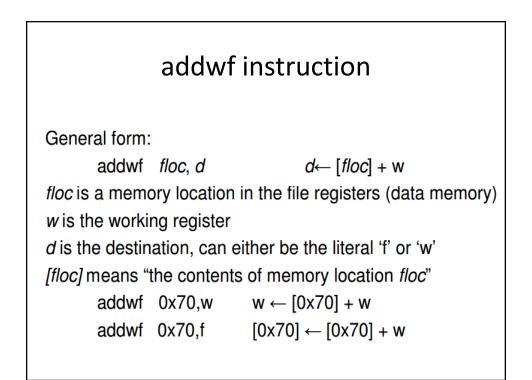
Mnemonic, Operands		Description	Cycles	14-Bit Opcode			•	Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	$0 \times \times 0$	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff	87 88	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction

Onoran	nic,	Description	Cycles		14-Bit	Opcod	e	Status	
Operands		Description		MSb			LSb	Affected	Notes
		BIT-ORIENTED FILE	REGISTER OPER	ATIO	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CO	NTROL OPERATI	ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
ORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
KORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	z	

Byte-oriented file register operations
OPCODE d f(FILE #)
d = 0 for destination W
d = 1 for destination f
f = 7-bit file register address
Bit-oriented file register operations
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register address
Literal and control operations
General
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
and and are interview and
CALL and GOTO instructions only 13 11 10 0
k = 11-bit immediate value


1. Copy value from/to file register or literal to/from w

Mnemonic	Description	Status	Function
movf fr, d	Move file register	Z	fr => d
movwf fr	Move W to file register		w => fr
movlw k	Move literal to W		k => W

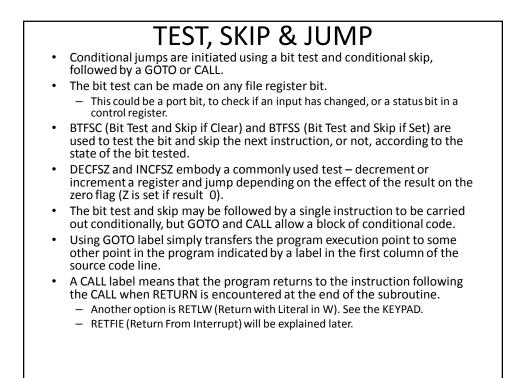
Move Commands:						
movlw 0xF2	: stores the number 0xF2 into the W register					
movwf 0x0C	: stores the W register contents into file H'0C'					
movf 0x0C,w	: loads the contents of file H'OC' into W register					
movf 0x0C,f	: loads the contents of file H'0C' into file H'0C'					

2. Logic / arithmetic instructions with a file register and w

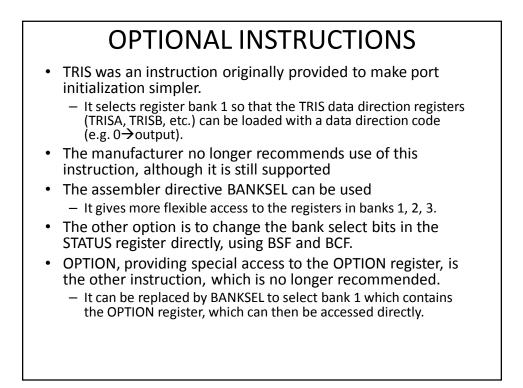
Mnemonic	Description	Status	Function
addwf fr,d	addition	Z, DC,C	fr + W => d
subwf fr,d	subtraction	Z, DC,C	fr - W => d
andwf fr,d	Logical and	Z	fr AND W => d
iorwf fr,d	Logical or	Z	fr OR W => d
xorwf fr,d	xor	Z	fr XOR W => d

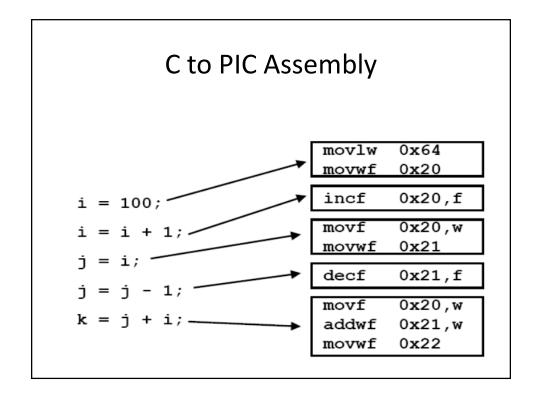
3. Logic / arithmetic instructions with
literal and w

Mnemonic	Description	Status	Function
addlw k	addition	Z, DC,C	W + k => W
sublw k	subtraction	Z, DC,C	W- k => W
andlw k	Logical and	Z	W AND k => W
iorlw k	Logical or	Z	W OR k => W
xorlw k	xor	Z	W XOR k => W

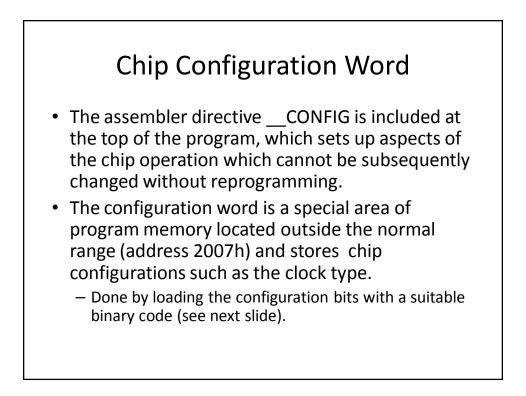

4.0	4.One operand logic / arithmetic							
	instructi	ons						
Mnemonic	Description	Status	Function					
clrw	Clear accumulator W	Z	0 => W					
clrf fr	Clear file register fr	Z	0 => fr					
decf fr,d	Decrement file register fr	Z	fr - 1 => d					
incf fr, d	Increment file register fr	Z	fr + 1 => d					
comf fr,d	1's complement file register fr	Z	not fr => d					
rlf fr, d	Rotate file register fr left thru C	С	C <= fr(7), fr(i) <= fr(i-1), fr(0) <= C					
rrf fr, d	Rotate file register fr right thru C	С	C => fr(7), fr(i) => fr(i-1), fr(0) => C					
bcf fr, b	Bit clear on file register fr		0 => fr(b)					
bsf fr, b	Bit set on file register fr		1 => fr(b)					
swapf fr,d	swap halves of fr		(fr(0:3) <=> fr(4:7)) => d					
nop	No operation							

Bit Set/Clear Commands

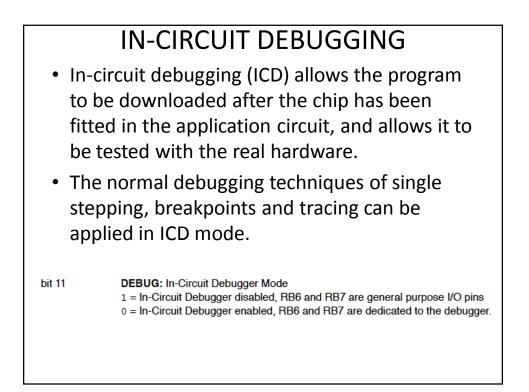

bcf 0x0C,0 bsf 0x0D,3	: clear the 0th bit of file H'0C' : set the 3rd bit of file H'0D'
btfsc 0x42,0	: test the 0th bit of the file H'42', if it is 0, then skip the next line of code.
btfss 0x43,1	: test the 1st bit of the file H'43', if it is 1, then skip the next line of code.

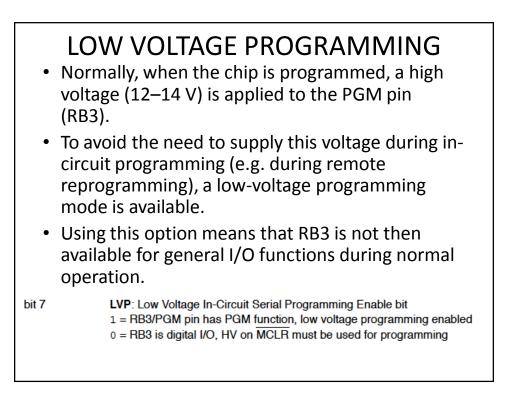

5. Branch, Skip and Call instructions

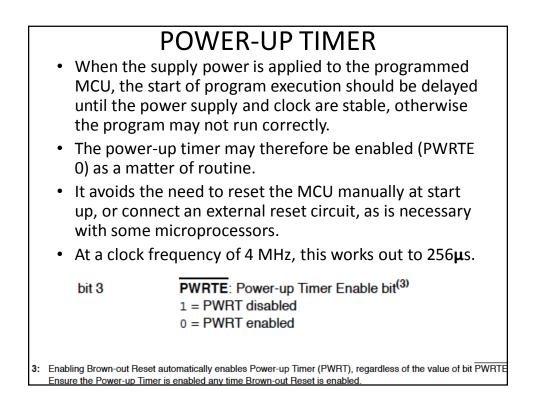
Mnemonic	Description	Status	Function
goto addr	branch to addr		addr => PC(0:10)
call addr	call routine at addr		PC => TOS addr => PC(0:10)
decfsz fr,d	Decrement fr, skip if zero		fr - 1 => d, skip if 0
incfsz fr,d	Increment fr, skip next instr if zero		fr + 1 => d, skip next instr if 0
btfsc fr,b	Bit test fr, skip if clear		skip next instr if fr(b) =0
btfss fr,b	Bit test fr, skip if set		skip next instr if fr(b)=1
return	return from subroutine		TOS => PC
retlw k	return with literal in w		k =>w, TOS => PC
retfie	return from interrupt		TOS => PC, 1 => GIE

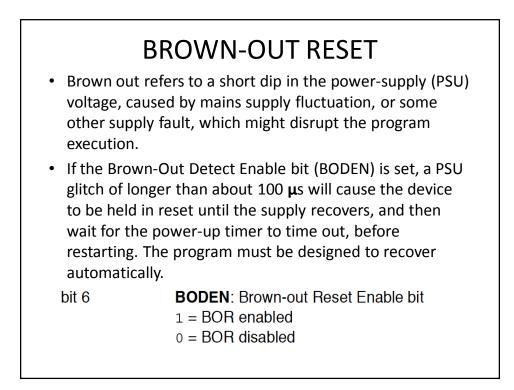


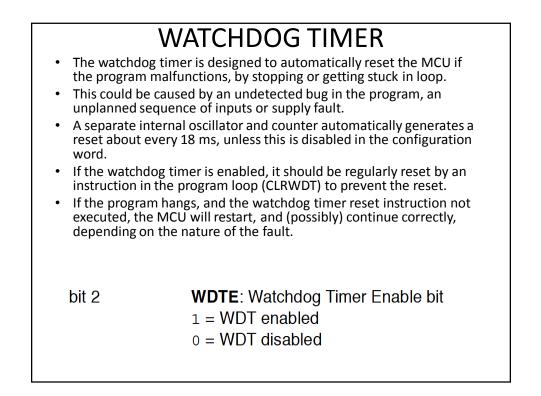
CONTROL
 NOP simply does nothing for one instruction cycle (four clock cycles).
 very useful for putting short delays in the program
 SLEEP stops the program, such that it can be restarted with an external interrupt.
 The unused locations contain the code 3FFF (all 1 s), which is a valid instruction (ADDLW FF).
 CLRWDT means clear the watchdog timer. If the program gets stuck in a loop or stops for any other reason, it will be restarted automatically by the watchdog timer.
 To stop this from happening, the watchdog timer must be reset at regular intervals of less than, say, 10 ms, within the program loop, using CLRWDT.

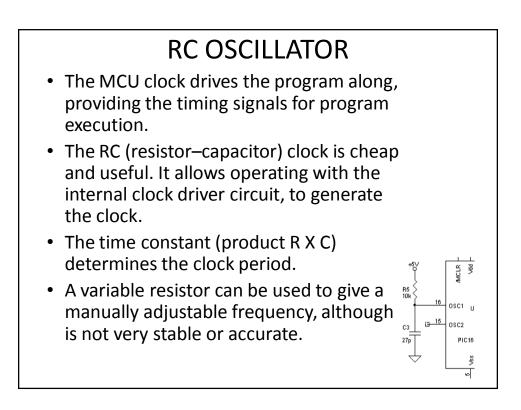

```
INCLUDE "p16f877.inc"
 ; Register Usage
                                  mptest.asm
CBLOCK 0x020 ;
 i, j,k ; reserve space
ENDC
myid equ D'100' ; define myid label
                                     This file can be
 org 0
                                     assembled by
 movlw myid ; w <- 100
                                     MPLAB into PIC
 movwf i ; i <- w;</pre>
                                     machine code and
 incf i,f ; i <- i + 1
                                     simulated.
 movf i,w ; w <- i
 movwf j
              ; j <- w
                                    Labels used for
                                    memory locations
 decf j,f ; j <- j - 1
                                    0x20 (i), 0x21(j),
                                    0x22(k) to increase
 movf i,w ; w <- I
                                    code clarity
 addwf j,w ; w <- w + j
 movwf k ; k <- w
here
 goto here
              ; loop forever
 end
```

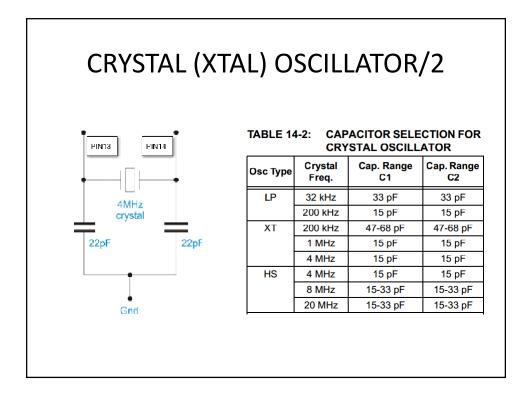



Chip Configuration Word

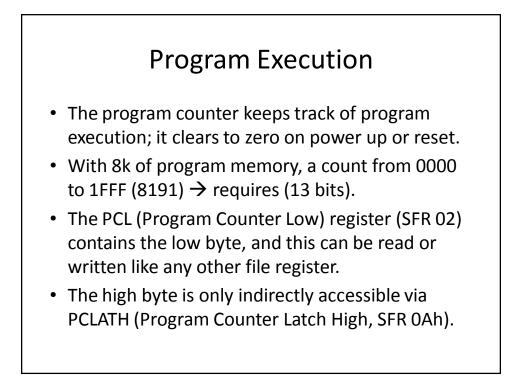

Bit	Label	Function	Default	Enabled	Typical
15	-	None	0	х	0
14	-	None	0	х	0
13	CP1	Code protection	1	0	1
12	CP0	(4 levels)	1	0	1
11	DEBUG	In-circuit debugging (ICD)	1	0	0
10	-	None	1	х	1
9	WRT	Program memory write enable	1	1	1
8	CPD	EEPROM data memory write protect	1	0	1
7	LVP	Low-voltage programming enable	1	1	0
6	BODEN	Brown-out reset (BoR) enable	1	1	0
5	CP1	Code protection (CP)	1	0	1
4	CP0	(repeats)	1	0	1
3	PWRTE	Power-up timer (PuT) enable	1	0	0
2	WDTE	Watchdog timer (WdT) enable	1	1	0
1	FOSC1	Oscillator type select	1	x	0
0	FOSC0	RC = 11, HS = 10, XT = 01, LP = 00	1	х	1
Defau	ılt = 3FFF (RC c	lock, PuT disabled, WdT enabled).			
		F3 (RC clock, ICD disabled, PuT enabled, WdT dis	abled).		
Typica	al XT clock = 37	31 (XT clock, ICD enabled, PuT enabled, WdT disa	bled).		


	CODE PROTECTION
•	Normally, the program machine code can be read back to the programming host computer, be disassembled and the original source program recovered.
•	This can be prevented if commercial or security considerations require it. The code protection bits (CP1:CP0) disable reads from selected program areas.
•	Program memory may also be written from within the program itself, disabled via the WRT bit.
•	Data EEPROM may also be protected from external reads in the same way via the CPD bit, while internal read and write operations are still allowed, regardless of the state-of-the code protection bits.
•	bit 13-12, bit 5-4
•	CP1:CP0: FLASH Program Memory Code Protection bit, All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
•	11 = Code protection off
•	10 = 1F00h to 1FFFh code protected
•	01 = 1000h to 1FFFh code protected
•	00 = 0000h to 1FFFh code protected

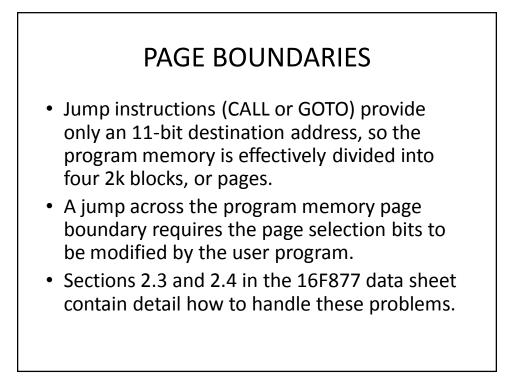


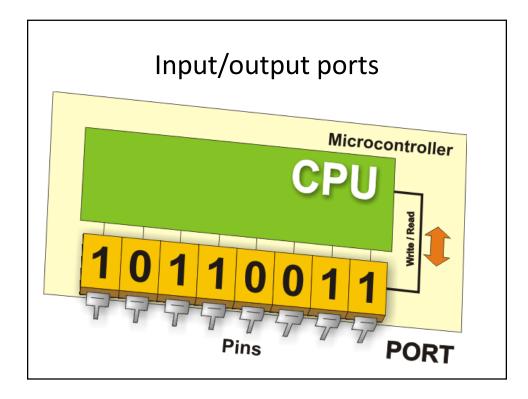


CRYSTAL (XTAL) OSCILLATOR

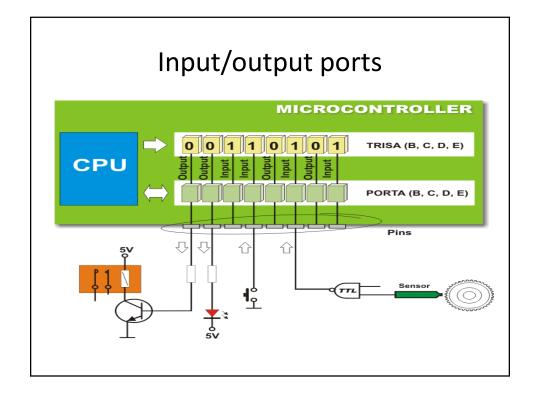

- Used for greater precision
 - uses the hardware timers to make accurate measurements
 - generate precise output signals
- Normally, it is connected across the clock pins with a pair of small capacitors (15 pF) to stabilize the frequency.
- The crystal acts as a self-contained resonant circuit, where the quartz or ceramic crystal vibrates at a precise frequency when subject to electrical stimulation.
- A convenient value (used in our examples later) is 4 MHz; this gives an instruction cycle time of 1 μs
 - This is the maximum frequency allowed for the XT configuration setting.
- Operating at higher frequency requires the selection of the HS configuration option.
- Each instruction takes four clock cycles

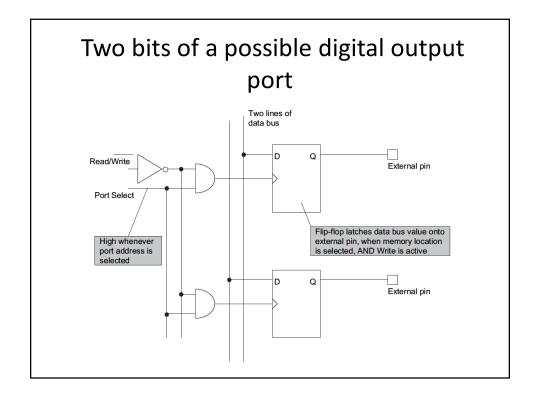
CONFIGURATION SETTINGS

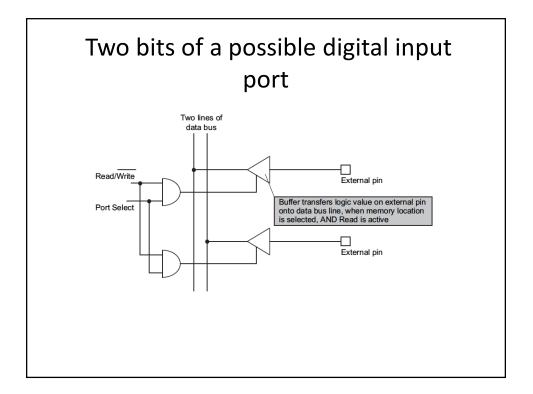

- The default setting for the configuration bits is 3FFF, which means
 - The code protection is off
 - In-circuit debugging disabled
 - Program write enabled
 - Low-voltage programming enabled
 - Brown-out reset enabled
 - Power-up timer disabled
 - Watchdog timer enabled
 - RC oscillator selected.
- A typical setting for basic development work would enable in-circuit debugging, enable the power-up timer

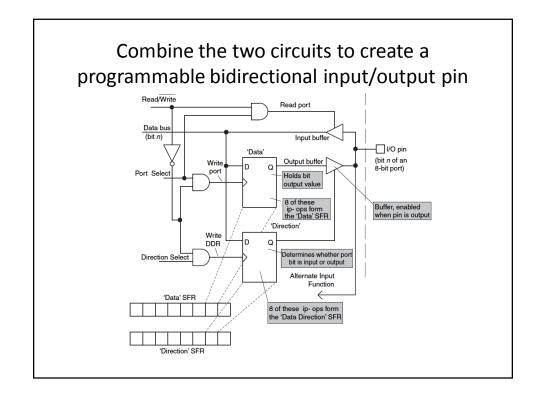

 This would minimize the possibility of a faulty start-up.
- For reliable starting, disable the watchdog timer and use the XT oscillator type.
 - By default, the watchdog timer is enabled.

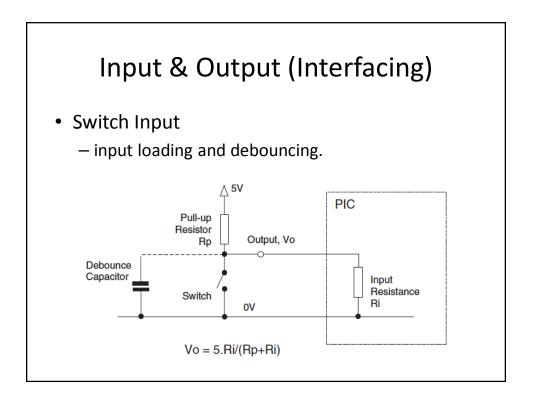
SUBROUTINES

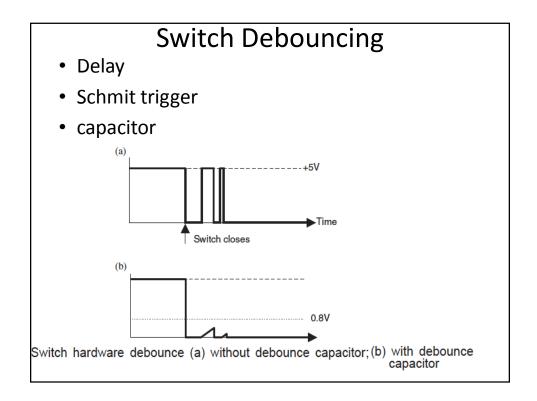

- A label is used at the start of the subroutine
 - When a subroutine is called (Using the CALL instruction),
 - the destination address is copied into the program counter
 - the return address (the one following the CALL) is pushed onto the stack
- In the PIC, there are 8 stack address storage levels, which are used in turn.
- The subroutine is terminated with a RETURN instruction
 - causes the program to go back to the original position and continue.
 - achieved by popping the address from the top of the stack and replacing it in the program counter.
- CALL and RETURN must always be used in sequence to avoid a stack error, and a possible program crash.
- In the PIC, the stack is not directly accessible

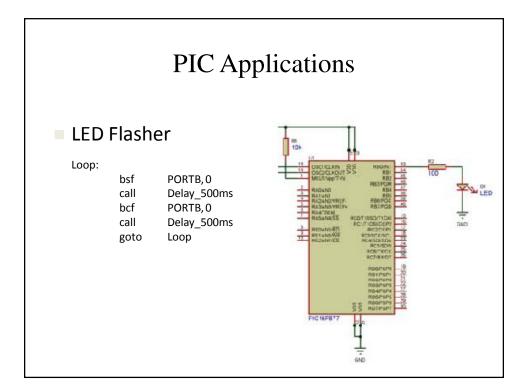


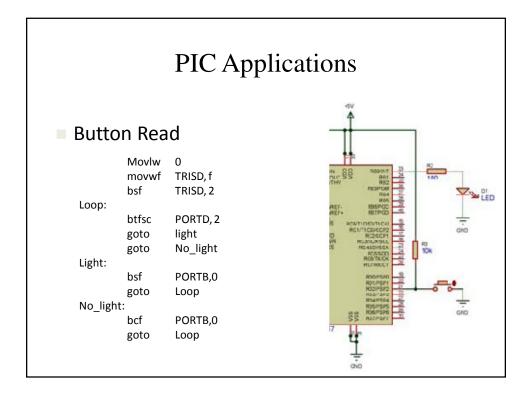

Input/output ports There are five parallel ports in the PIC 16F877, labelled A-E. All pins can be used as bit- or byte-oriented digital input or output with Some having alternate functions depending on the initialization of the relevant control registers. The TRIS (data direction) register bits in bank 1, default to 1, setting the ports B, C and D as inputs. Ports A and E are set to ANALOGUE INPUT by default, because the analogue control register ADCON1 in bank 1 defaults to 0 - - 0000. To set up these ports for digital I/O, this register must be loaded with the code x - - 011x (x don't care) e g

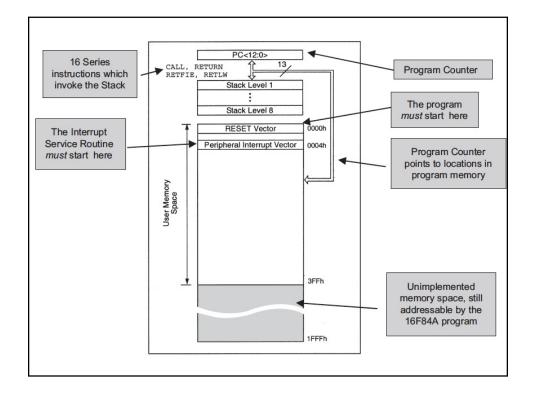

- be loaded with the code x - 011x (x don't care),e.g. 06h.
- ADCON1 can be initialized with bit codes that give a mixture of analogue and digital I/O on Ports A and E.
- ADCON1 is in bank 1 so BANKSEL is needed to access it.

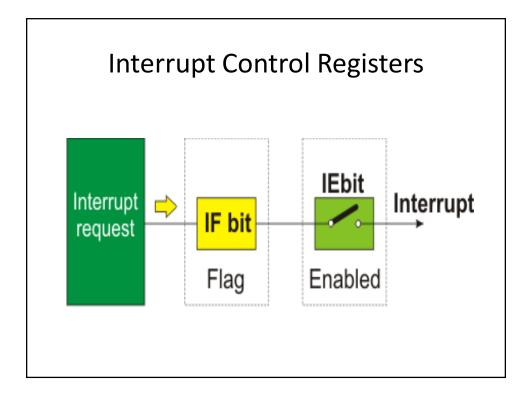


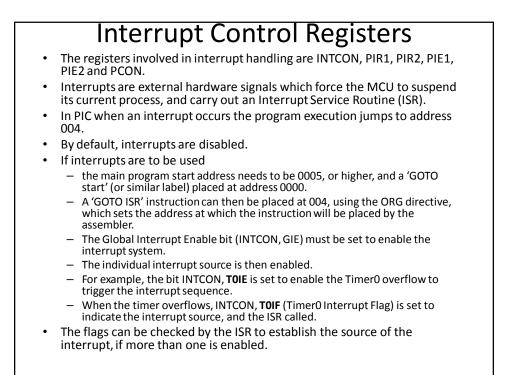

		F	Port functions		
	Bits	Pins	Alternate function/s	Bit	Default
Port A	6	RA0-RA5	Analogue inputs Timer0 clock input Serial port slave select input	0,1,2,3,5 4 5	Analogue Input
Port B	8	RB0-RB7	External interrupt Low-voltage programming input Serial programming In-circuit debugging	0 3 6,7 6,7	Digital I/O
Port C	8	RC0-RC7	Timer1 clock input/output Capture/Compare/PWM SPI, I ² C synchronous clock/data USART asynchronous clock/data	0,1 1,2 3,4,5 6,7	Digital I/O
Port D	8	RD0-RD7	Parallel slave port data I/O	0–7	Digital I/O
Port E	3	RE0-RE2	Analogue inputs Parallel slave port control bits	0,1,2 0,1,2	Analogue Input

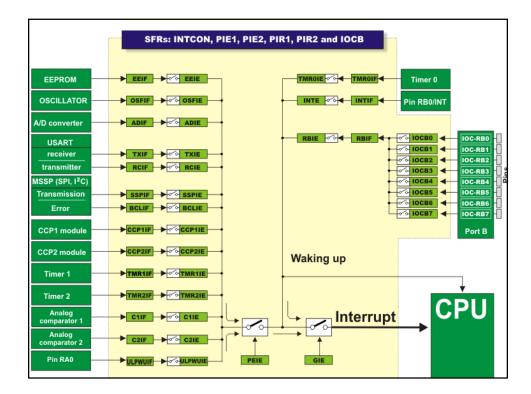


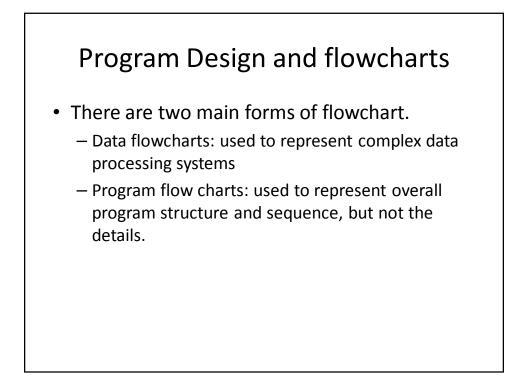


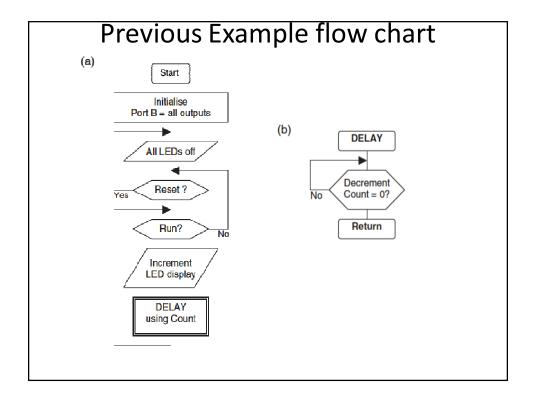




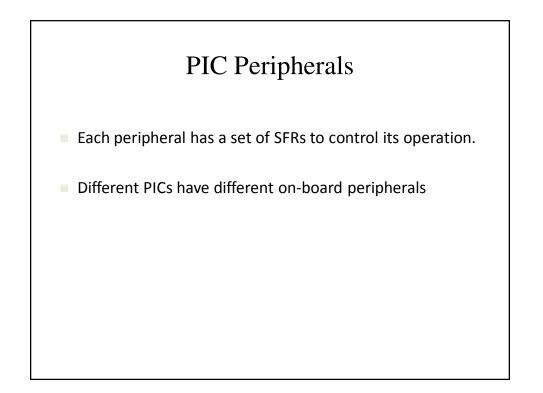



INTERRUPTS
 The stack is used when an interrupt is processed.
 An interrupt is effectively a call and return which is initiated by an external hardware signal
 Forces the processor to jump to a dedicated instruction sequence, an Interrupt Service Routine (ISR).
 For example, the MCU can be set up so that when a hardware timer times out (finishes its count), the process required at that time is called via a timer interrupt.
When an interrupt signal is received,
 the current instruction is completed and
 the address of the next instruction (the return address) is pushed into the first available stack location.
 The ISR is called
 The ISR is terminated with the instruction RETFIE (return from interrupt), which causes the return address to be pulled from the stack.
 Program execution then restarts at the original location.
 If necessary, the registers must be saved at the beginning of the ISR, and restored at the end, in spare set of file registers.

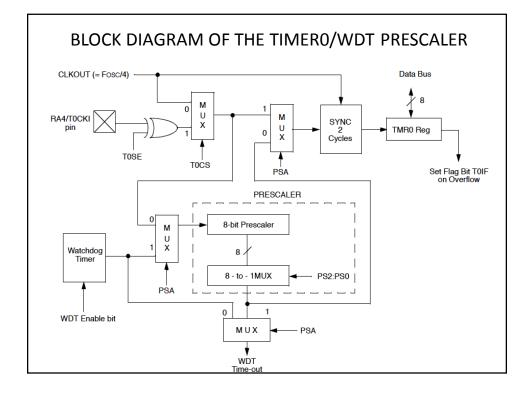

Inte	rrupt so	ources	and control bits
Source	Enable Bit Set	Flag Bit Set	Interrupt Trigger Event
TMR0 RB0 RB4-7	INTCON,5 INTCON,4 INTCON,3	INTCON,2 INTCON,1 INTCON,0	Timer0 count overflowed RB0 input changed (also uses INTEDG) Port B high nibble input changed
Peripherals	INTCON,6		
TMR1 TMR2 CCP1 SSP	PIE1,0 PIE1,1 PIE1,2 PIE1,3	PIR1,0 PIR1,1 PIR1,2 PIR1,3	Timer1 count overflowed Timer2 count matched period register PR2 Timer1 count captured in or matched CCPR1 Data transmitted or received in Synchronous Serial Port
ТХ	PIE1,4	PIR1,4	Transmit buffer empty in Asynchronous Serial Port
RC	PIE1,5	PIR1,5	Receive buffer full in Asynchronous Serial Port
AD	PIE1,6	PIR1,6	Analogue to Digital Conversion completed
PSP	PIE1,7	PIR1,7	A read or write has occurred in the Parallel Slave Port
CCP2	PIE2,0	PIR2,0 CCPR2	Timer2 count captured in or matched
BCL EE	PIE2,3 PIE2,4	PIR2,3 PIR2,4	Bus collision detected in SSP (I ² C mode) Write to EEPROM memory completed

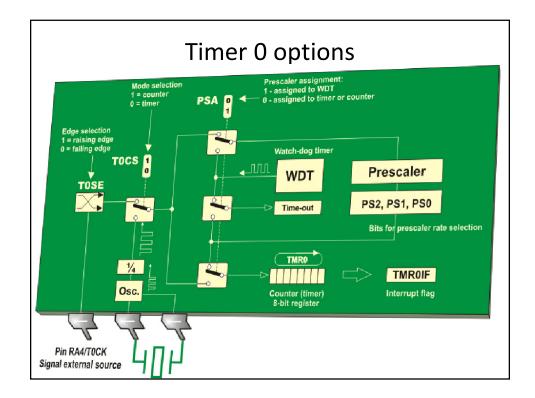


Macros, Special Instructions, Assembler Directives Another structured


• Supplementary instructions

S. Inst	ruction	Assemb	Assembler Code		
BZ	addlab	Branch to destination (address label) if	BTFSC	STATUS, Z	
		result of previous operation zero	GOTO	addlab	
BNZ	addlab	Branch to destination (address label) if	BTFSS	STATUS,Z	
		result of previous operation not zero	GOTO	addlab	
BC	addlab	Branch to destination (address label)	BTFSC	STATUS, C	
		if carry set	GOTO	addlab	
BNC	addlab	Branch to destination (address label)	BTFSS	STATUS, C	
		if carry not set	GOTO	addlab	
NEG	num1	Negate (2s complement) a file register	COMF	num1	
		(labelled num1)	INCF	num1	
TSTF	num1	Test a file register (labelled num1)	MOVF	num1	
		to modify status bits			


F	lowchart imp	lemer	ntation
Operation	Symbol	Implemen	tation
Start End	Sart		de file/project name in start box. eeded if program loops endlessly
Process Sequence	Initialise Port B = all outputs	BANKSEL NOVLW NOVWF	TRISB B'00000000' FORTB
Input or Output	All LEDs off	CLRF	PORTB
Branch Selection	Reset ?	BTFSS GOTO	PORTD,Inres reset
Subroutine Procedure or Function	DELAY using Count	MOVLW CALL	0FF delay


Timers

- The PIC 16F877 has three hardware timers.
 - Used to carry out timing operations simultaneously with the program.
 - Ex.: Generating a pulse every second at an output.
- Timer0 uses an 8-bit register
 - TMR0, file register address 01.
 - The register counts from 0 to 255, and then rolls over to 00 again.
 - When the register goes from FF to 00, an overflow flag, TOIF, bit
 2 in the Interrupt Control Register INTCON, address 0B, is set.
- The timer register is incremented via a clock input from either the MCU oscillator (f_{osc}) or an external pulse train at RA4.
- If the internal clock is used, the register acts as a timer.
- The timers are driven from the instruction clock (f_{osc}/4).
- If the chip is driven from a crystal of 4 MHz, the instruction clock will be 1 MHz, and the timer will update every 1us.

Dimens – cont. A timer can work as a counter. Counts external pulses timers can also be used as counters. TimerO, can be controlled by a pre-scaler, see next slide. The pre-scaler is a divide by N register, where N 2, 4, 8, 16, 32, 64, 128 or 256, meaning that the output count rate is reduced by this factor. This extends the count period or total count by the same ratio, giving a greater range to the measurement. The watchdog timer interval can also be extended, if this is selected as the clock source. The pre-scale select bits, and other control bits for TimerO are found in OPTION_REG.

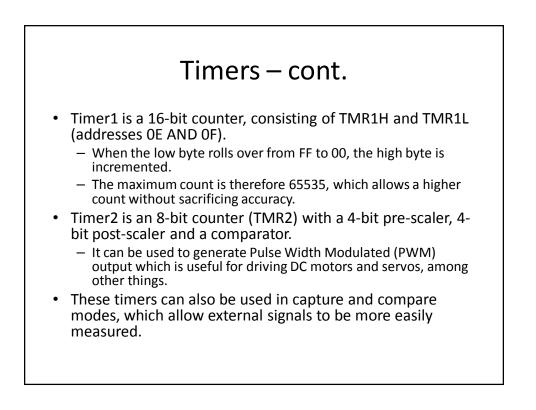
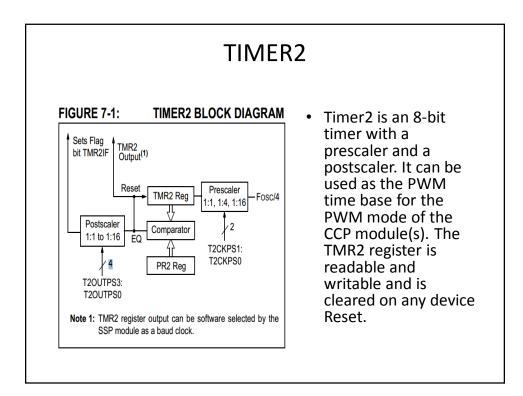
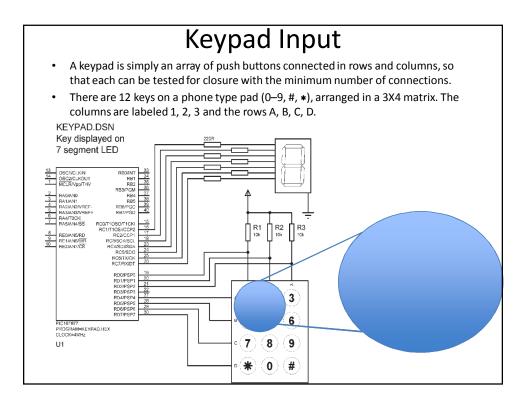
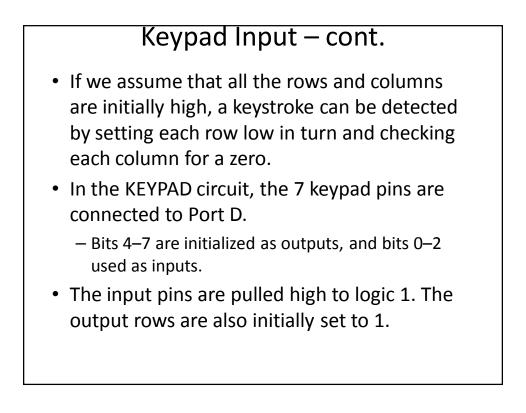

	OPTION REG REGISTER
	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0
	bit 7 bit 0
bit 7	RBPU — Each of the PORTB pins has a weak
bit 6	INTEDG internal pull-up. A single control bit can
bit 5	TOCS: TMR0 Clock Source Select bit turn on all the pull-ups. This is performed 1 = Transition on TOCKI pin by clearing bit RBPU (OPTION_REG<7>). 0 = Internal instruction cycle clock (CLKOUT) The weak pull-up is automatically turned
bit 4	TOSE : TMR0 Source Edge Select bit off when the port pin is configured as an 1 = Increment on high-to-low transition on TOCKI pin output. The pull-ups are disabled on a 0 = Increment on low-to-high transition on TOCKI pin Power-on Reset.
bit 3	 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module RB0/INT is an external interrupt input pin
bit 2-0	PS2:PS0: Prescaler Rate Select bits and is configured using the INTEDG bit
	Bit Value TMR0 Rate WDT Rate (OPTION_REG<6>).
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128
	Legend:
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
	- n = Value at POR $'1'$ = Bit is set $'0'$ = Bit is cleared x = Bit is unknown

TABLE 5-	1: REGIS	TERS A	SSOCIA		н тім	ER0					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
01h,101h	TMR0	Timer0 N	Iodule Reg	ister						xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

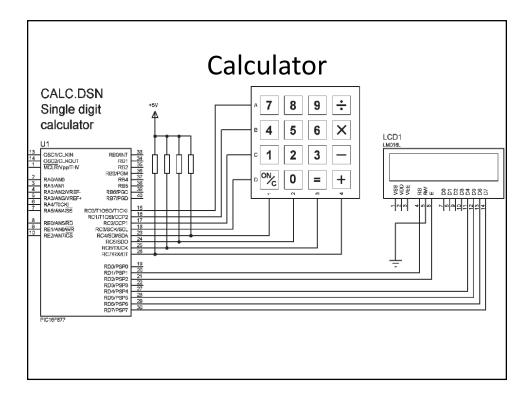

Typical configurations for Timer0

OPTION_REG	Configuration	Effect	Applications
11010000 Active bits in bold	Internal clock (f _{osc} /4) No pre-scale	Timer mode using instruction clock	1. Preload Timer0 with initial value, and count up to 256 2. Clear Timer0 initially and read count later to measure time elapsed
11 010011	Internal clock (f _{OSC} /4) Pre-scale = 16	Timer mode using instruction clock with pre-scale	Extend the count period \times 16 for applications 1 and 2
11 110111	External clock T0CKI pin	Counter mode Pre-scale = 256	Count one pulse in 256 at RA4
1111 1110	Watchdog timer selected pre-scale = 64	Extend watchdog reset period to $18 \times 64 = 1152$ ms	Watchdog timer checks program every second
	(LED1H design and ardware timer and	•	




	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N		
	bit 7							bit 0		
-6	Unimplem	ented: Rea	ad as '0'							
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits									
	11 = 1:8 prescale value									
	10 = 1:4 prescale value									
	01 = 1:2 prescale value 00 = 1:1 prescale value									
,	TIOSCEN: Timer1 Oscillator Enable Control bit									
bit 3	1 = Oscillator is enabled									
	 Oscillator is enabled Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain) 									
bit 2	TISYNC: Timer1 External Clock Input Synchronization Control bit									
	When TMR1CS = 1:									
	1 = Do not synchronize external clock input									
	0 = Synchronize external clock input									
	When TMR1CS = 0:									
	This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.									
it 1	TMR1CS: Timer1 Clock Source Select bit									
	1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)									
	0 = Internal clock (Fosc/4)									
)		Timer1 On	bit							
	1 = Enables Timer1									

						su			'		
TABLE 6-	TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

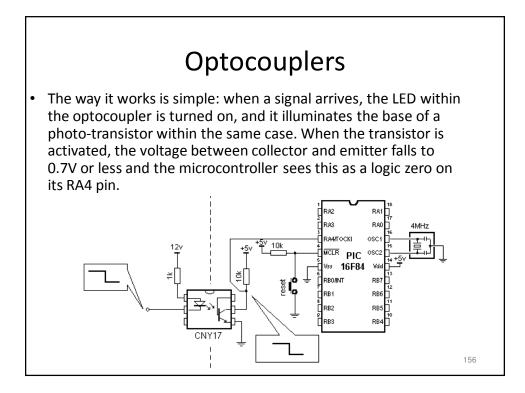

	1: F					TIMER2	43 A 11		UNIER		1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 000
11h	TMR2	Timer2 M	odule's Re	gister						0000 0000	0000 000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 000
92h	PR2	Timer2 P	eriod Regis	ter						1111 1111	1111 111

Keypad operation

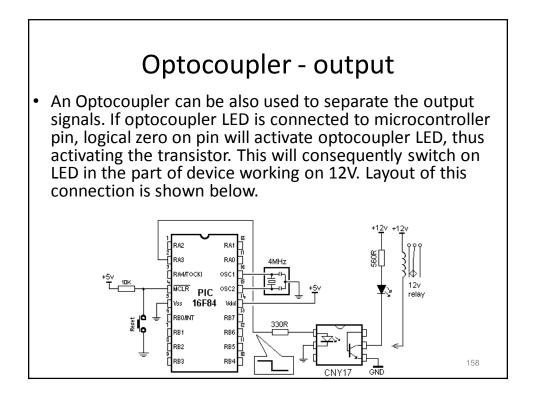
- If a 0 is now output on row A, there is no effect on the inputs unless a button in row A is pressed. If these are checked in turn for a 0, a button in this row which is pressed can be identified as a specific combination of output and input bits.
- A simple way to achieve this result is to increment a count of keys tested when each is checked, so that when a button is detected, the scan of the keyboard is terminated with current key number in the counter.
- This works because the (non-zero) numbers on the keypad arranged in order:
 - Row A 1, 2, 3
 - Row B 4, 5, 6
 - Row C 7, 8, 9
 - Row D *, 0, #
- Following this system, the star symbol is represented by a count of 10 (0Ah), zero by 11(0Bh) and hash by 12 (0C).
- Show Keypad design and code.

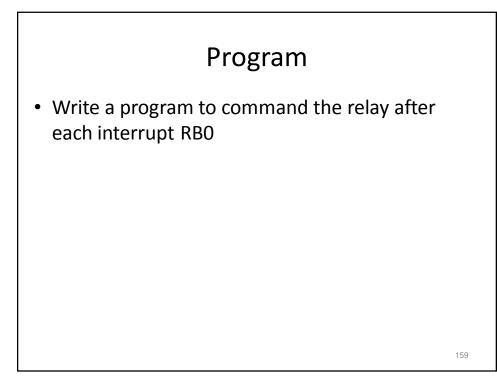
- To perform a calculation, press a number key, then an operation key, then another number and then equals.
- The calculation and result are displayed. For the divide operation, the result is displayed as result and remainder.

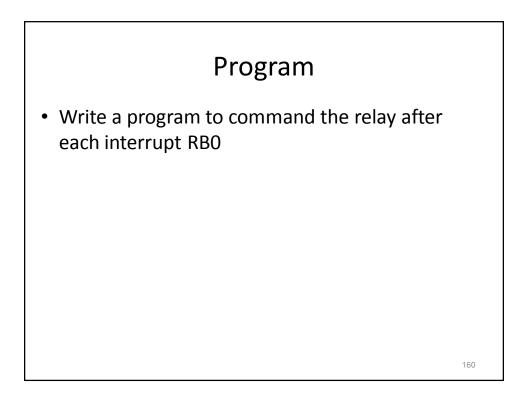
Pseudo code for the calculator
CALC
 Single digit calculator produces two digit results.
 Hardware: x12 keypad, 2x16 LCD, P16F887 MCU
MAIN
Initialise
– PortC = keypad
RC0 – RC3 = output rows
RC4 – RC7 = input columns
– PortD = LCD
 RD1, RD2 = control bits
• RD4– RD7 = data bits
 CALL Initialise display
Scan Keypad
- REPEAT
CALL Keypad input, Delay 50ms for debounce
CALL Keypad input, Check key released
 IF first key, load Num1, Display character and restart loop
 IF second key, load sign, Display character and restart loop
IF third key, load Num2 Display character and restart loop
IFfourth key, CALL Calculate result
IF fifth key, Clear display
– ALWAYS

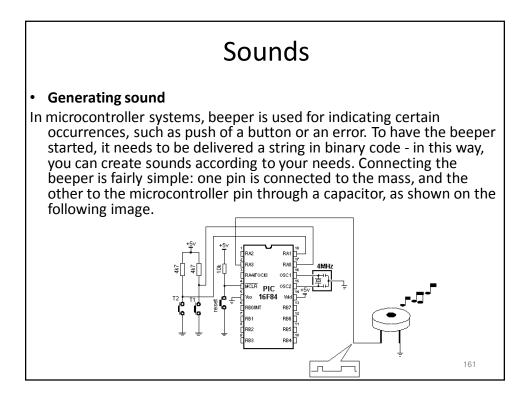

Subroutines

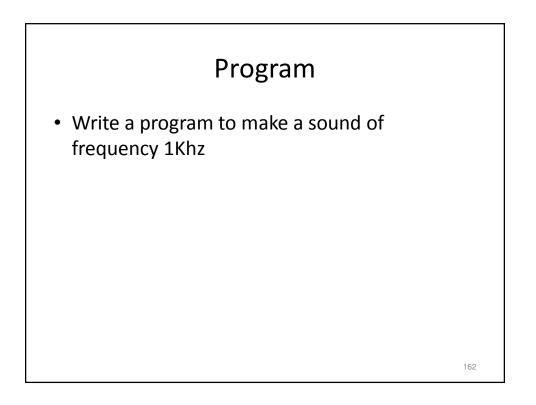
- Included LCD driver routines
 - Initialise display
 - Display character
 - Keypad Input
 - Check row A, IF key pressed, load ASCII code
 - Check row B, IF key pressed, load ASCII code
 - Check row C, IF key pressed, load ASCII code
 - Check row D, IF key pressed, load ASCII code
 - ELSE load zero code
- Calculate result
 - IF key = '+', Add
 - IF key = '-', Subtract
 - IF key = 'x', Multiply
 - IF key = '/', Divide
 - Add Add Num1 + Num2
 - Load result, CALL Two digits
 - Subtract Subtract Num1 Num2
 - IF result negative, load minus sign, CALL Display character
 - Load result, CALL Display character

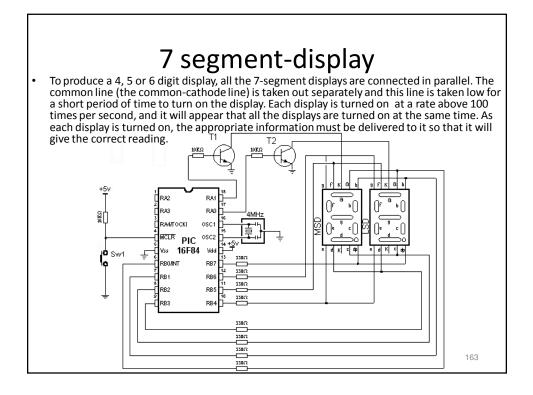

Subroutines – cont.

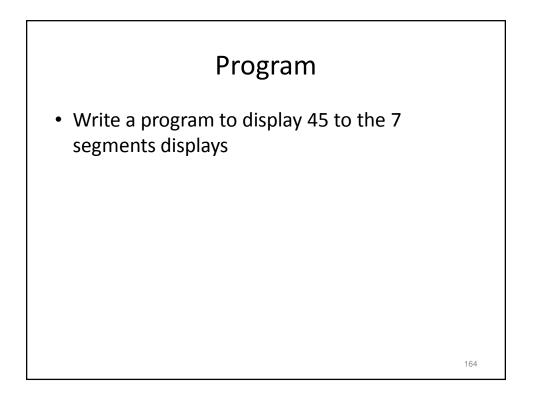

- Multiply
 - REPEAT
 - Add Num1 to Result
 - Decrement Num2
 - UNTIL Num2= 0
 - Load result, CALL Two digits
- Divide
 - REPEAT
 - Subtract Num2 from Num1
 - Increment Result
 - UNTIL Num1 negative
 - Add Num2 back onto Num1 for Remainder
 - Load Result, CALL Display character
 - Load Remainder, CALL Display character
- Two digits
 - Divide result by 10, load MSD, CALL Display character
 - Load LSD, CALL Display character

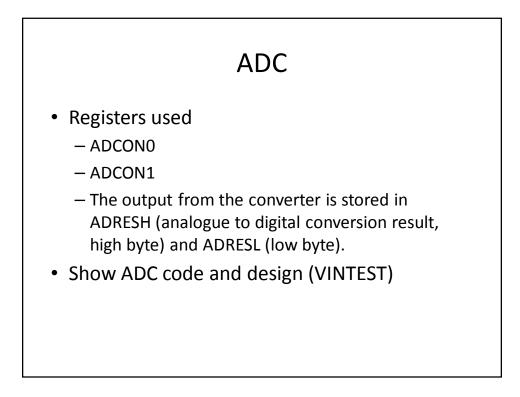


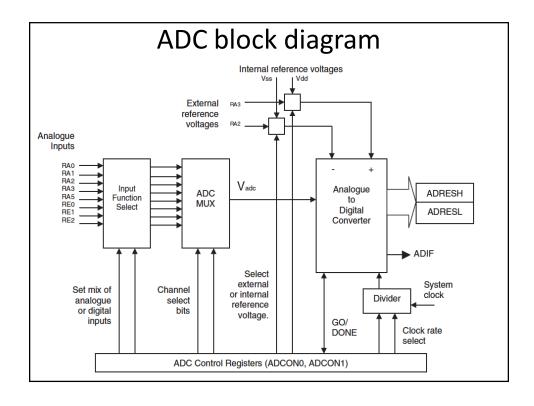


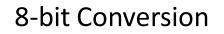

	11			Hakro:	OPT OIN . A SM	
				Hakro:	OPTOIN.ASM	
;****	* Decla	ring and conf	iguring a microcontroller ****	*		
		SSOR 16f84 2de "pl6f84.in	c"			
	CONI	FIG _CP_OFF «	_WDT_OFF & _PWRTE_ON & _XT_OSC	;		
;****	* Struc	ture of progr	an memory *****			
	ORG goto	0x00 Main	Reset vector;			
	ORG goto	0x04 Main	;Interrupt vector ;no interrupt routine			
Main		1 000741	;Main program			
	movlw	el TRISA Oxef TRISA	;Initialization of port A ;TRISA <- 0xff			
	movwf	0x00 TRISB	;Initialization of port B ;TRISB <- 0x00			
	banks e	b'00110000' el OPTION OPTION REG	<pre>;RA4 -> TMR0, PS=1:2 ;Increment TMR0 upon falling</pre>	- 4		
		PORTB	;increment inko upon failing	euge		
	clrf clrf	PORTB TMRO	;PORTB <- 0 ;TMRO <- 0			
Loop	movf movwf qoto	PORTB	;Send value of the counter ;to PORTB ;Remain at this line			
	End	F	;End of program			157

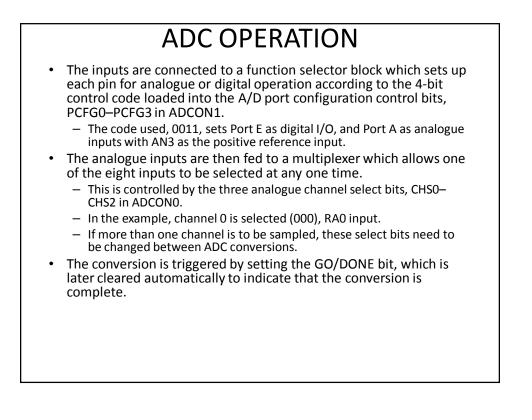


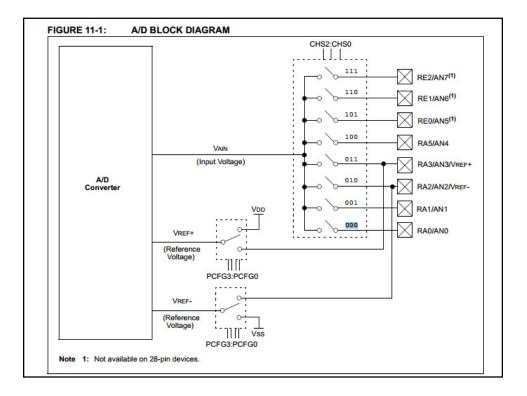






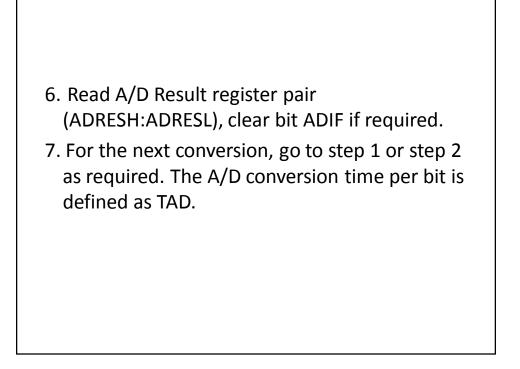


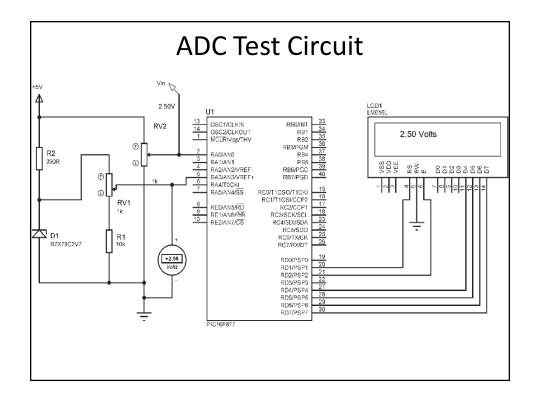


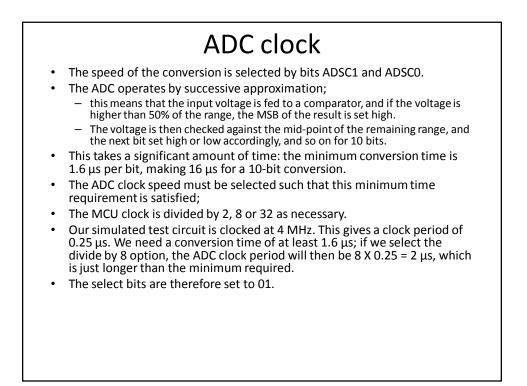


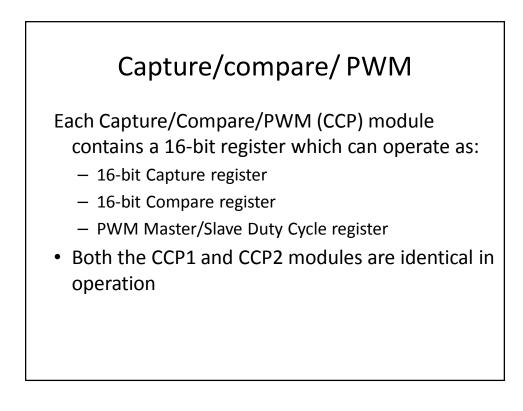
- The 16F877 MCU has eight analogue inputs available, at RAO, RA1, RA2, RA3, RA5, RE0, RE1 and RE2.
- RA2 and RA3 may be used as reference voltage inputs, setting the minimum and maximum values for the measured voltage range.
- These inputs default to analogue operation, so the register ADCON1 has to be initialized explicitly to use these pins for digital input or output.
- The ADC converts an analogue input voltage (e.g. 0 2.56V) to 10-bit binary, but only the upper 8 bits of the result are used, giving a resolution of 10 mV per bit ((1/256) X 2.56 V).

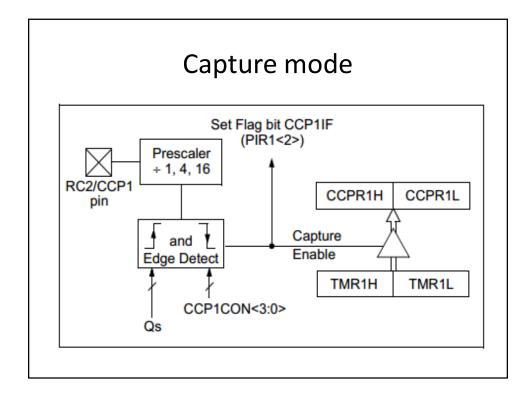
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
	bit 7				ò			bit 0
bit 7-6	ADCS1:AD ADCON1 <adcs2></adcs2>	ADCS0: A/D C	0N0	Clock Selec		ON0 bits in bo	d)	
	0	00	F	osc/2				
	0	01	F	osc/8				
	0	10		osc/32				
	0	11		RC (clock deriv	ved from the	internal A/D RC	oscillator)	
	1	00	F	osc/4				
	1	01	-	osc/16				
	1	10		osc/64				
	1	11	F	RC (clock deriv	ved from the	internal A/D RC	oscillator)	
	011 = Cha 100 = Cha 101 = Cha 110 = Cha	nnel 2 (AN2 nnel 3 (AN3 nnel 4 (AN4 nnel 5 (AN5 nnel 6 (AN6 nnel 7 (AN7)))					
	Note:		nted sele	ctions are r		nent A/D chann Do not select		
bit 2	GO/DONE	: A/D Conve	rsion Statu	us bit				
	cleared	nversion in	re when th	e A/D conver		VD conversion plete)	which is a	utomatically
		ented: Rea						
bit 1	Unimpien	enteu. nea						
bit 1 bit 0	ADON: A/E		443 0					

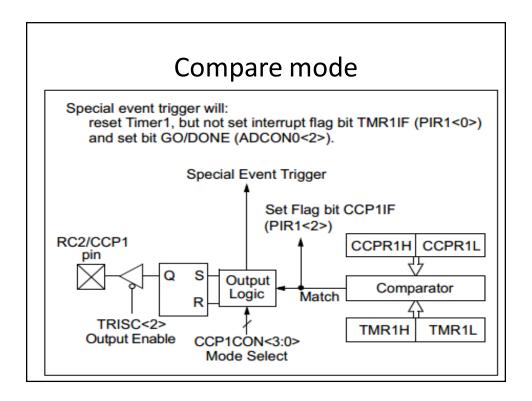

	R/W-0		GISTE	` U-		U-0	R/W-	0	R/W-0	R/W	-0 F	R/W-0		
	ADFM		DCS2	_		_	PCFG	3 F	PCFG2	PCFC	G1 P	CFG0		
	bit 7											bit 0		
it 7		t justifi	ed. Six	(6) Mos	t Signif	icant bits								
bit 6			-	-		t bit (ADC					bold)			
	ADCO <adcs< td=""><td>N1</td><td>ADCS1:</td><td>ONO</td><td></td><td></td><td></td><td></td><td>onvers</td><td></td><td>,</td><td></td></adcs<>	N1	ADCS1:	ONO					onvers		,			
	0		0	0	Fos									
	0		0		Fos				_			_		
	0		10 Fosc/32 11 FRC (clock derived from the internal A/D RC oscilla											
	0		1				erived fro	m the i	nternal	A/D RC C	scillator)		
	1 00 Fosc/4													
	1		1	-		Fosc/64								
	1				_		and the set from	and the second						
it 5-4	_	emente	1 od: Rea	-		CIOCK de	enved fro	minei	nternal	A/D RC C	scillator)		
	Unimple		ed: Rea	d as 'o'		ion Contro AN3		AN1	ANO	VREF+	VREF-) C/R		
	Unimple PCFG3:	PCFG	ed: Rea 0: A/D P	d as 'o' fort Cor	nfigurat	ion Contro	ol bits	1	1					
it 5-4 it 3-0	Unimple PCFG3: PCFG <3:0>	AN7	ad: Rea 0: A/D P AN6	d as 'o' Port Cor AN5	AN4	ion Contro AN3	AN2	AN1	ANO	VREF+	VREF-	C/R		
	Unimple PCFG3: PCFG <3:0>	AN7	ed: Read D: A/D P AN6 A	d as 'o' Port Cor AN5 A	AN4 A	ion Contro AN3 A	AN2	AN1 A	AN0	VREF+	VREF-	C/R 8/0		
	Unimple PCFG3: PCFG <3:0> 0000 0001	AN7	AN6 AN6 A A A A D D D	d as '0' Port Cor AN5 A A D D	AN4 A A A A A	AN3 A VREF+	AN2 A A A	AN1 A A	AN0 A A	VREF+ VDD AN3	VREF- VSS VSS	C/R 8/0 7/1		
	Unimple PCFG3: PCFG <3:0> 0000 0001 0010	AN7 A A D D D	AN6 AN6 A A A A A A A D D D D	d as '0' Port Cor AN5 A A D D D	AN4 A A A A A D	AN3 A VREF+ A VREF+ A	AN2 A A A A A A D	AN1 A A A A A	AN0 A A A A A	VREF+ VDD AN3 VDD AN3 VDD	VREF- VSS VSS VSS VSS VSS	C/R 8/0 7/1 5/0 4/1 3/0		
	Unimple PCFG3: 0000 0001 0010 0011 0100 0101	AN7 A A D D D D	AN6 AN6 AN6 A A A A A D D D D D	AN5 AN5 A A A D D D D	AN4 A A A A A A D D	AN3 A VREF+ A VREF+ A VREF+	AN2 A A A A A D D	AN1 A A A A A A A A A A A A A A A A A A A	AN0 A A A A A A A A A A A A A A A A A A A	VREF+ VDD AN3 VDD AN3	VREF- VSS VSS VSS VSS	C/R 8/0 7/1 5/0 4/1 3/0 2/1		
	Unimple PCFG3: PCFG3: 0000 0001 0010 0011 0100 0101	AN7 A A D D D D D D	ANG ANG ANG ANG D D D D D D D D	AN5 AN5 A A A A D D D D D D	AN4 A A A A A D D D D	AN3 A VREF+ A VREF+ A VREF+ D	AN2 A A A A A D D D D	AN1 A A A A A A A A D	AN0 A A A A A A A A D	VREF+ VDD AN3 VDD AN3 VDD AN3 	VREF- VSS VSS VSS VSS VSS VSS VSS	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0		
	Unimple PCFG3: PCFG3: 0000 0001 0010 0010 0100 0101 011x 1000	AN7 A A D D D D D A	And And A A A D D D D D D D A A A A A A A A A A A A A A A A	Ans 'o' Ans A A D D D D A	AN4 A A A A A D D D A	AN3 A VREF+ A VREF+ A VREF+ D VREF+	AN2 A A A A A A D D D VREF-	AN1 A A A A A D A	AN0 A A A A A A D A	VREF+ VDD AN3 VDD AN3 VDD AN3 - AN3	VREF- VSS VSS VSS VSS VSS VSS VSS - AN2	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2		
	Unimple PCFG3: PCFG <3:0> 0000 0001 0010 0101 0100 0101 0100 1001	AN7 A A D D D D D A D A D	ANG ANG ANG ANG ANG D D D D D A A D D D D D D D D D D D D	d as '0' rort Cor AN5 A D D D D D D A A	AN4 A A A A A D D D A A	AN3 A VREF+ A VREF+ A VREF+ D VREF+ A	AN2 A A A A A A D D D VREF- A	AN1 A A A A A D A A	AN0 A A A A A D A A	VREF+ VDD AN3 VDD AN3 VDD AN3 - AN3 VDD	VREF- VSS VSS VSS VSS VSS VSS VSS VSS VSS VS	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2 6/0		
	Unimple PCFG3: PCFG <3:0> 0000 0011 0010 0010 0101 0100 0101 011x 1000 1001	AN7 A A D D D D A A D D D D D D D D D	ANG ANG ANG ANG ANG ANG A A D D D D A A D D D D D D D D D D D	Ans 'o' ort Cor ANS A A D D D D D A A A A	AN4 A A A A A D D D A A A A	AN3 A VREF+ A VREF+ D VREF+ D VREF+ A VREF+	AN2 A A A A A D D D VREF- A A	AN1 A A A A A A A A A A A	AN0 A A A A A A A A A A A	VREF+ VDD AN3 VDD AN3 VDD AN3 VDD AN3	VREF- VSS VSS VSS VSS VSS VSS VSS VSS VSS	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2 6/0 5/1		
	Unimple PCFG3: PCFG <3:0> 0000 0011 0010 0101 0101 1000 1001 1001	AN7 A A D D D D A A D D D D D D D D D D D	ANG ANG ANG ANG ANG ANG D D D D D D D D D D D D D D D D D D D	d as 'o' ort Cor AN5 A A D D D D D D D A A A A	AN4 A A A A A D D D A A A A A	AN3 A VREF+ A VREF+ D VREF+ D VREF+ VREF+ VREF+	AN2 A A A A A D D VREF- A A VREF-	AN1 A A A A A D A A A A	AN0 A A A A A A A A A A A	VREF+ VDD AN3 VDD AN3 VDD AN3 AN3 VDD AN3 AN3	VREF- VSS VSS VSS VSS VSS VSS AN2	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2 6/0 5/1 4/2		
	Unimple PCFG3: PCFG3: 0000 0001 0010 0101 0100 0101 1000 1001 1001 1010	AN7 A A D D D D A D C D C D C D C D C C C C	ANG ANG ANG ANG ANG A A D D D D D D A D D D D D D D D D D	d as 'o' ort Cor AN5 A A D D D D D D A A A A A A A D	figurati AN4 A A A A D D D A A A A A A A	AN3 A VREF+ A VREF+ A VREF+ A VREF+ A VREF+ VREF+ VREF+	AN2 AA A A A A D D D VREF- A A A VREF- VREF-	AN1 A A A A A A A A A A A A A	AN0 A A A A A A A A A A A A A A A A A A A	VREF+ VDD AN3 VDD AN3 VDD AN3 VDD AN3 VDD AN3 AN3	VREF- VSS VSS VSS VSS VSS VSS VSS - AN2 VSS VSS AN2 AN2	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2 6/0 5/1 4/2 3/2		
	Unimple PCFG3: PCFG <3:0> 0000 0011 0010 0101 0101 1000 1001 1001	AN7 A A D D D D A A D D D D D D D D D D D	ANG ANG ANG ANG ANG ANG D D D D D D D D D D D D D D D D D D D	d as 'o' ort Cor AN5 A A D D D D D D D A A A A	AN4 A A A A A D D D A A A A A	AN3 A VREF+ A VREF+ D VREF+ D VREF+ VREF+ VREF+	AN2 A A A A A D D VREF- A A VREF-	AN1 A A A A A D A A A A	AN0 A A A A A A A A A A A	VREF+ VDD AN3 VDD AN3 VDD AN3 AN3 VDD AN3 AN3	VREF- VSS VSS VSS VSS VSS VSS AN2	C/R 8/0 7/1 5/0 4/1 3/0 2/1 0/0 6/2 6/0 5/1 4/2		

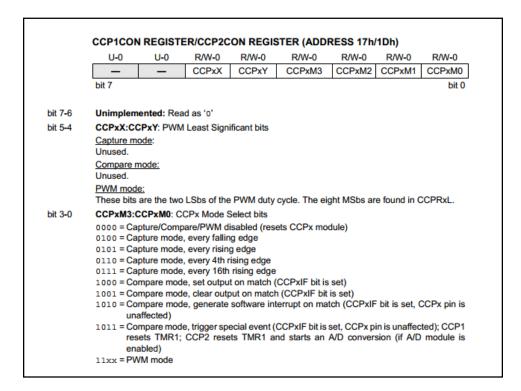

Register	Setting	Flags		Function		
ADRESH	XXXX XXXX			ADC resul	t high byte	
ADRESL				ADC resul		
ADCON0	0100 0X01	ADCS1,0 GO/DONE, AI	ADCS1,0 GO/DONE, ADON		ADC enable	
ADCON1	0000 0011	ADFM, PCFG	3-0	Result just	ify, ADC input mode control	
INTCON	1100 0000	GIE,PEIE	GIE,PEIE		Peripheral interrupt enable	
PIE1	0100 0000	ADIE			rupt enable	
PIR1	0100 0000	ADIF		ADC interrupt flag		
c) ADFM = 1 Rig	obt justified 0	ADRESH		RESL]	
ADFM = 0 Le		RRR RRRR		0 0000]	
		R = Res	sult b	oits		

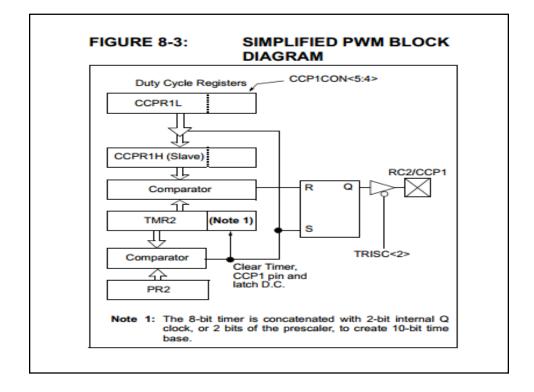

To do an A/D Conversion, follow these steps:

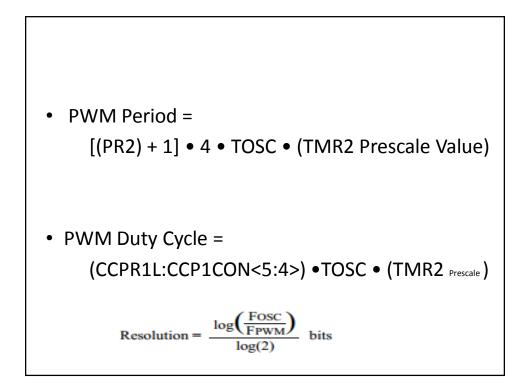

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and
 - digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

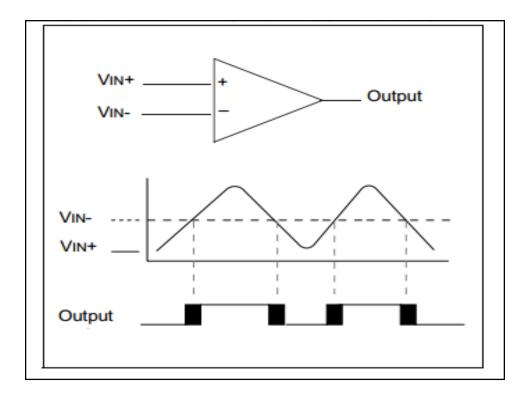

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit
- 3. Wait the required acquisition time
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled); OR Waiting for the A/D interrupt










Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		Valu all c Res	
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMROIE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	0001
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	-	-	-	-	-	-	-	CCP2IF		0		(
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	-	-	-	-	-	-	-	CCP2IE		0		(
87h	TRISC	PORTC	Data Directio	n Register						1111	1111	1111	1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Peri	od Register	0					1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/0	Compare/PV	VM Registe	r 1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/0	Compare/PV	VM Registe	r 1 (MSB)			3 7		xxxx	хххх	uuuu	uuuu
17h	CCP1CON	-	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/0	Compare/PV	VM Registe	r 2 (LSB)					xxxx	xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/0	Compare/PV	VM Registe	r 2 (MSB)					xxxx	xxxx	uuuu	uuu
1Dh	CCP2CON	-	-	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

SETUP FOR PWM OPERATION

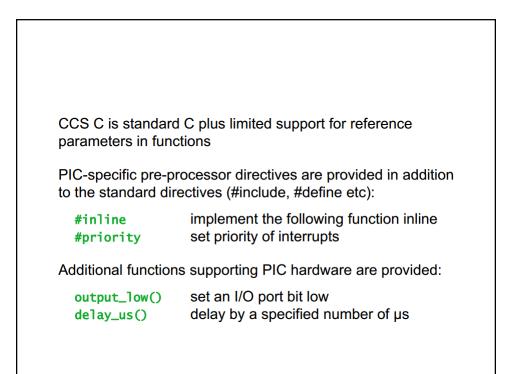
- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation

COMPARATOR MODULE

 The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with I/O port pins RAO through RA3, while the outputs are multiplexed to pins RA4 and RA5. The on-chip voltage reference can also be an input to the comparators.

	CMCON R	EGISTER								
	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1		
	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0		
	bit 7							bit		
bit 7	C2OUT: Co	mparator 2	Output bit							
	When C2IN									
	1 = C2 VIN- 0 = C2 VIN-	+ > C2 VIN								
	When C2IN									
	1 = C2 VIN	+ < C2 VIN-								
	0 = C2 VIN	+ > C2 VIN-								
bit 6		mparator 1	Output bit							
	$\frac{\text{When C1INV} = 0}{1 - C1 \text{ (INV)}}$									
	1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN-									
	When C1IN	V = 1:								
	1 = C1 VIN-									
		+ > C1 VIN-								
bit 5		mparator 2 (out inverted	Jutput Inver	sion bit						
		out not inverted	ted							
bit 4		mparator 1 (sion bit						
		out inverted								
	0 = C1 out	out not inver	ted							
bit 3		arator Input								
		:CM0 = 110								
		- connects t								
		- connects t								
	C2 VIN	- connects t	o RA1/AN1							
bit 2	CM2·CM0·	Comparato	Mode bits							

Comparators Reset CM2:CM0 = 000	Comparators Off (POR Default Value) CM2:CM0 = 111
RAQ/ANO A Ver RA3/AN3 A Ver C1 Off (Read as '0')	RA0/AN0 D Ve+ C1 Off (Read as '0')
RA1/AN1 <u>A Ve+</u> RA2/AN2 <u>A Ve+</u> +C2 Off (Read as '0')	RA1/AN1 D RA2/AN2 D T C2 Off (Read as '0')
Two Independent Comparators CM2:CM0 = 010 RA0/AN0 A Vm+ RA3/AN3 A Vm+ RA1/AN1 A Vm+ RA1/AN1 A Vm+ RA2/AN2 A Vm+ C1 C10UT C10UT	Two Independent Comparators with Outputs CM2:CM0 = 0.11 RA0/ANO A VIN- C1 C1OUT RA1/AN1 A VIN- C1OUT RA1/AN1 A VIN- C2OUT RA1/AN1 A VIN- C2OUT RA1/AN1 A VIN- C2OUT RA5/AN4/BSJ/C2OUT
Two Common Reference Comparators CM2:CM0 = 100 RA0/AN0 A Ve+ RA3/AN3 A Ve+ RA1/AN1 A Ve+ RA1/AN1 A Ve+ RA2/AN2 D Ve+ C2 C2OUT	Two Common Reference Comparators with Outputs CM2:CM0 = 101 RA0/AN0 A Vex RA3/AN3 A Vex RA4/TOCKI/C10UT C1 C10UT RA1/AN1 A Vex RA2/AN2 D Vex+ RA2/AN2 D Vex+ RA5/AN4/55/C20UT C20UT
One Independent Comparator with Output CM2:CM0 = 001 RA0/AN0 A View RA3/AN3 A View RA4/TOCK/VC10UT RA4/TOCK/VC10UT RA1/AN1 D View RA2/AN2 D View C2 Off (Read as '0')	Four Inputs Multiplexed to Two Comparators CM2:CM0 = 110 RA0/AN0 $\stackrel{A_{-0}}{\longrightarrow}$ CIS = 0 RA3/AN3 $\stackrel{A_{-0}}{\longrightarrow}$ CIS = 1 RA1/AN1 $\stackrel{A_{-0}}{\longrightarrow}$ CIS = 0 RA2/AN2 $\stackrel{A_{-0}}{\longrightarrow}$ CIS = 1 VIN+ C1 C1 C1 C2 C2 C2 VIN+ C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

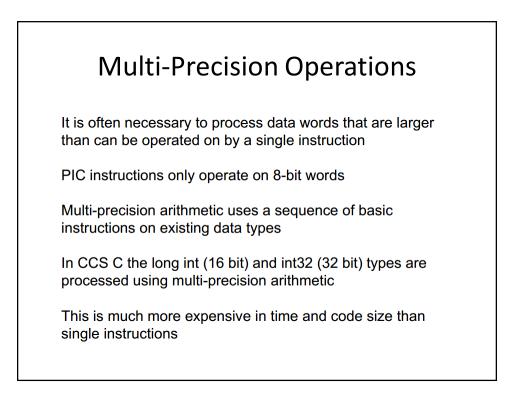

PIC CCS Compiler

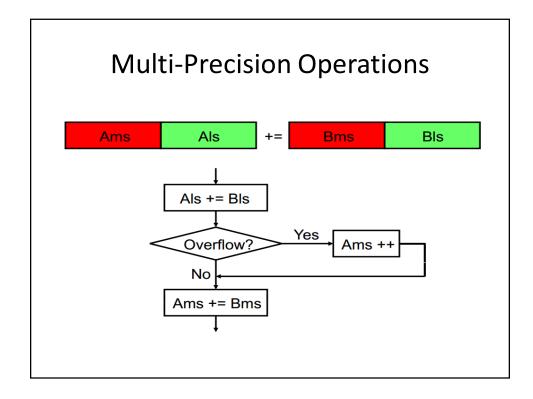
A compiler converts a high-level language program to machine instructions for the target processor

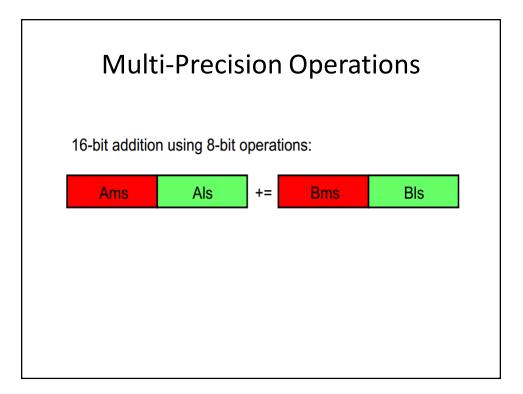
A cross-compiler is a compiler that runs on a processor (usually a PC) that is different from the target processor

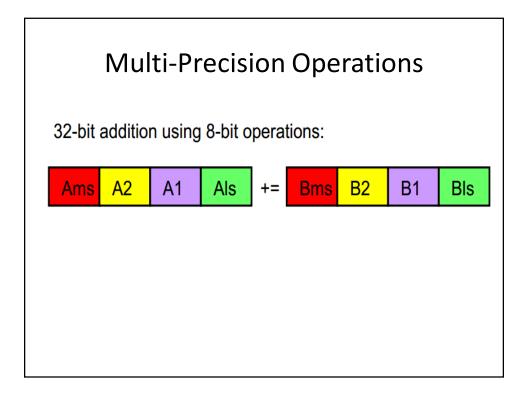
Most embedded systems are now programmed using the C/C++ language

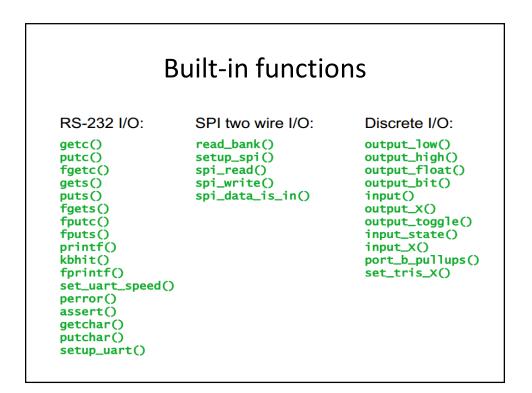
Several C compilers are available that target Microchip PICs, for example HiTech, Microchip and CCS

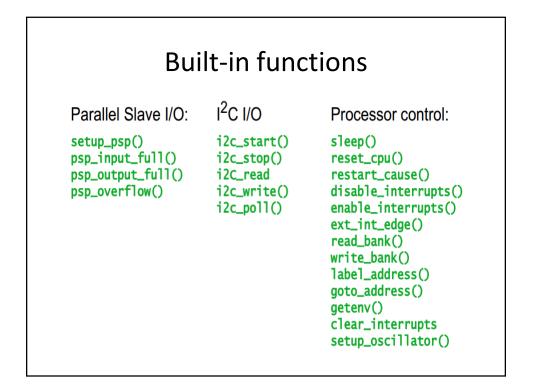


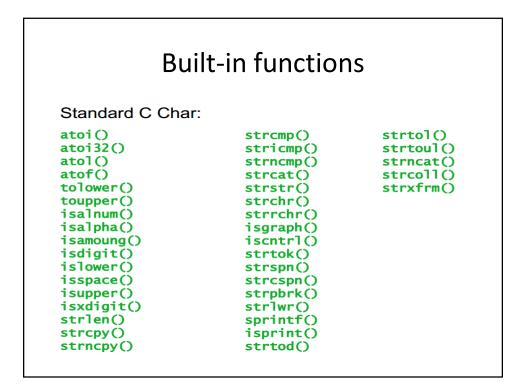

Data types

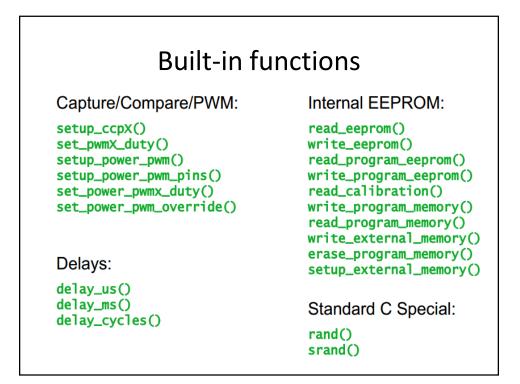

PICs are optimised for processing single bits or 8-bit words, and this is reflected the CCS compiler word sizes:

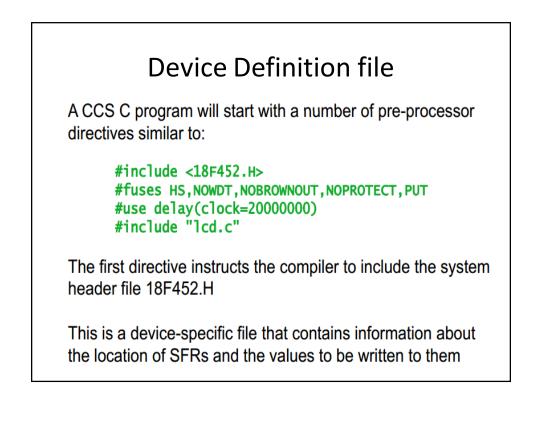

short int (or int1)	1 bit	0 or 1
int (or int8)	8 bit	0 to 255
long int (or int16)	16 bit	0 to 65535
int32	32 bit	0 to 4294967295
char	8 bit	0 to 255
float	32 bit	$\pm 3 \times 10^{-38}$ to $\pm 3 \times 10^{+38}$


Contrary to the C standard, CCS C integers are by default unsigned







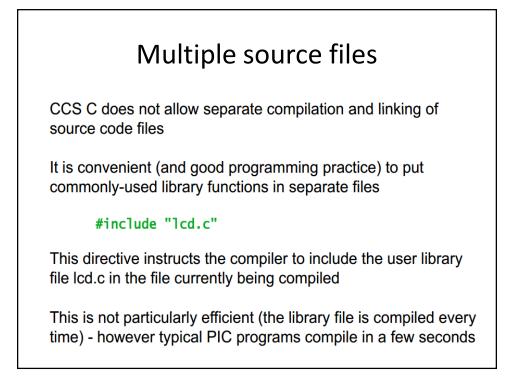


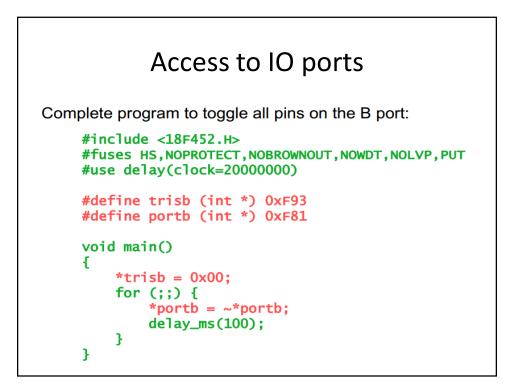
Built-in	functions	
<pre>Bit/Byte Manipulation: shift_right() shift_left() rotate_right() rotate_left() bit_clear() bit_set() bit_test() swap() make8() make16() make32()</pre>	Standard C Ma abs() acos() asin() atan() ceil() cos() exp() floor() labs() sinh() log() log10() pow() sin() cosh() tanh()	ath: fabs() fmod() atan2() frexp() ldexp() modf() sqrt() tan() div() ldiv()

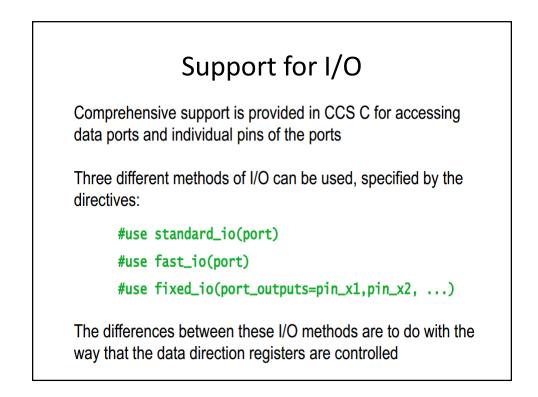
Timers:	Standard C memory
<pre>setup_timer_X()</pre>	memset()
	memcpy()
•	offsetof() offsetofbit()
	malloc()
restart_wdt()	calloc()
	free()
	realloc()
	memmove()
	<pre>setup_timer_X() set_timer_X() get_timer_X() setup_counters() setup_wdt()</pre>

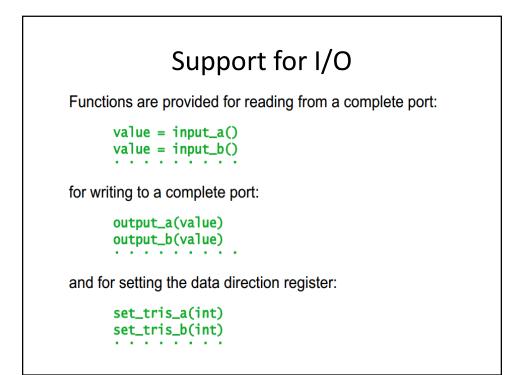
Delay

CCS C provides functions for generating delays:

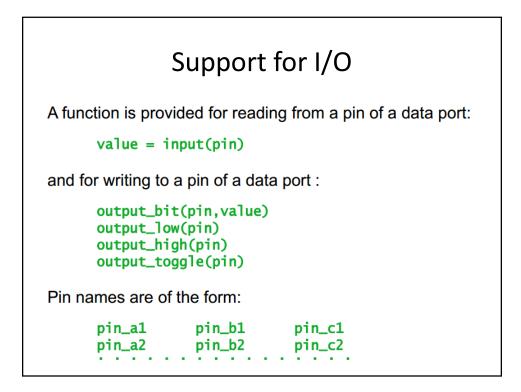

delay_us() delay_ms()

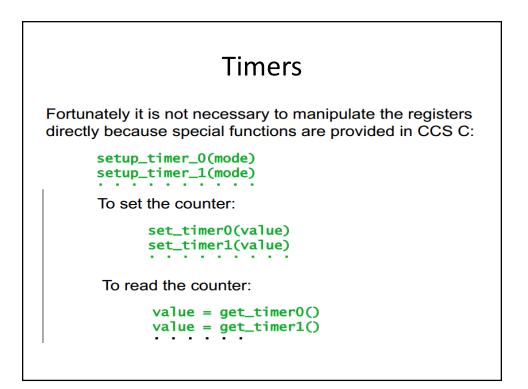

These delay functions actually delay by a number of machine cycles

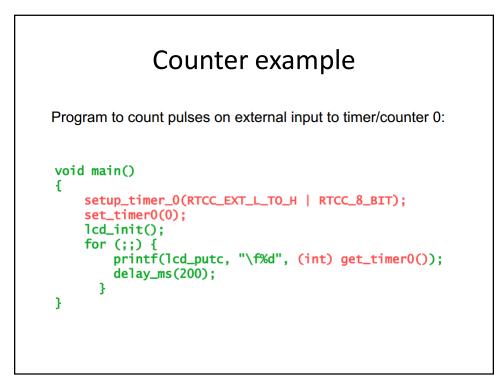

The compiler needs to know the clock frequency in order to calculate the required number of machine cycles

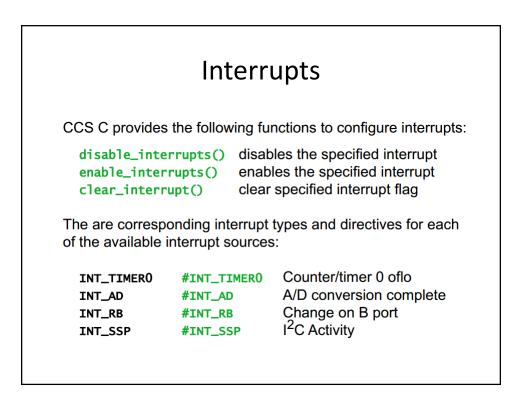

#use delay(clock=20000000)

This use-delay directive specifies that the clock frequency of the PIC is 20 $\ensuremath{\text{MHz}}$

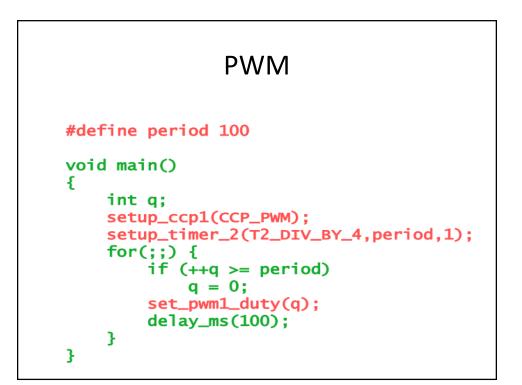


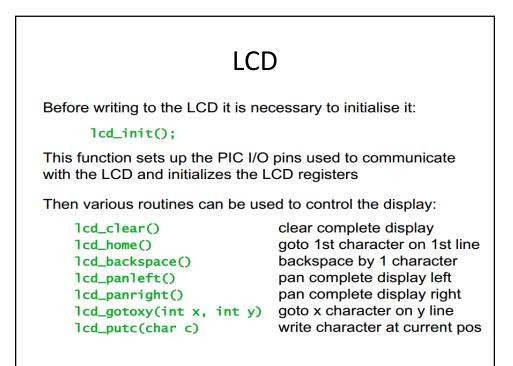


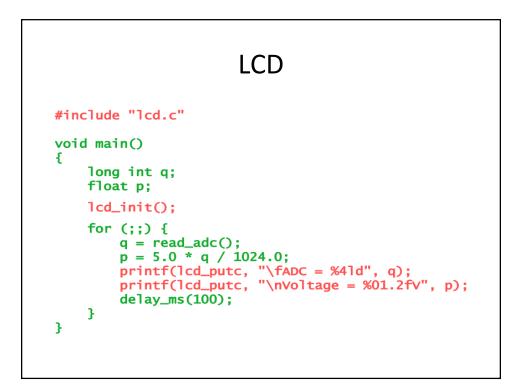


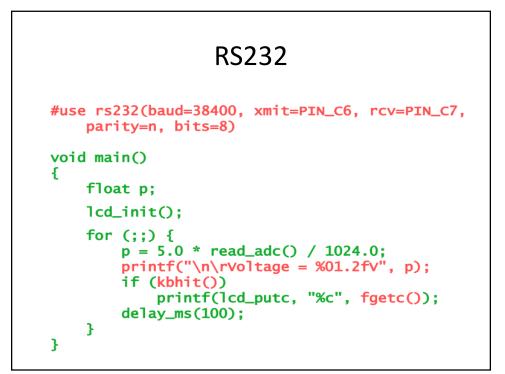


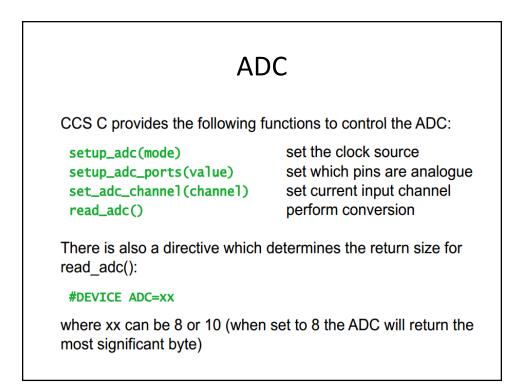

```
#use fast_io(b)
void main()
{
    int q;
    set_tris_b(0b11111010);
    for (q = 0b00000001;; q ^= 0b000000101) {
        output_b(q);
        delay_ms(100);
    }
}
```








```
#INT_TIMER0
void timer_irq()
{
    output_toggle(pin_b1);
}
void main()
{
    setup_timer_0(RTCC_INTERNAL | RTCC_DIV_16);
    enable_interrupts(INT_TIMER0);
    enable_interrupts(GLOBAL);
    for (;;) {
    }
}
```

