
12/12/2012

1

Introduction to embedded

systems

What is an embedded system

Embedded System =

A computer system which is integrated into another system,

the embedding system. The requirements for the embedded

system must be derived from the requirements for the

embedding system.

Examples?

12/12/2012

2

Examples of embedding systems

Two different main application areas

Embedding system =
product
Examples:

•Automotive Electronics

• Avionics

• Health Care Systems

Embedding system =
production system
Examples:

• Manufacturing Control

• Chemical Process Control
• Logistics

12/12/2012

3

What are embedded systems doing?

Typical functionalities
Measuring physical variables (sensing)

Storing data

Processing sensor signals and data

Influencing physical variables (actuating)

Monitoring

Supervising

Enable manual and automatic operation

In one word:
Control

Differences to “desktop“ computing?

• Interaction with physical environment
• Closed loop
• Malfunction may lead to damage
• No or very restricted human/computer interface
• No or very restricted maintenance possibilities
• Part of competitively priced products (high volumes)
• Tight resource constraints
• Often special hardware
• Part of engineering product
• High product generation frequency
• Often many variants
⇒ Implications for SW engineering?

12/12/2012

4

V Model

Architecture design needs

functional spec and driving qualities

12/12/2012

5

What is architecture?

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

• The architecture defines elements of the system.
– Architecture design is the first phase in which the system

is no longer a black box.
– The designer begins to structure the system into parts.
– Architecture manifests the earliest design decisions.
– Architecture is the blueprint for system integration.

What is architecture? /2

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

• The architecture is only one step further in refinement.
– Now the elements are black boxes.
– The architecture specifies what the elements do and how

they interact from an outside (system‘s) perspective
(often regarded as the element‘s responsibilities)

– Central concept of architectures: Interfaces.

12/12/2012

6

What is architecture? /3

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

• A system can have and usually has more than
one structure.
– Examples:

• Design time elements (files, components, modules)
• Run-time elements (processes, tasks, threads)

• Behavioral elements (states, messages, queues)

– The designer must consider different architectural views.

Importance of architecture

Bass, Clements, Kazman, 2003 (again):

• Architecture represents earliest design decisions.
• They are the most difficult to get correct and the

hardest to change later in the design process.

• They have the most far-reaching effects.

Why?
• Architecture defines constraints on implementation.

• Architecture dictates organizational structure.
• Architecture inhibits or enables a system‘s quality.

• It is possible to predict system qualities by studying
the architecture.

12/12/2012

7

Example: A pre-crash sensing system

The function of the pre-crash
sensing system (PCSS) is
preprocessing of sensor data to
provide information about
potentially colliding objects to pre-
crash system (PCS), which will
then decide what to do

Required sequence:

1. Read sensor data
2. Update list of objects (location,

rel. speed, time of last
measurement)

3. Identify dangerous objects
4. Send information to PCS

Two alternative structures

• In the following two alternative structures will be presented.

• The first one is based on the functional sequence, the second

one on information hiding

Representation elements:

12/12/2012

8

First structure: based on functional

sequence

Second structure: information hiding

12/12/2012

9

Which is the better structure?

• Depends on criteria.
• Parnas, 1972:

– Best criterion for modularization is
maintainability/modifiability, i.e. the support of
changes.

– Changes mostly affect data structures

• Example:
– Objects shall be stored in polar coordinates

instead of Cartesian coordinates.

– Changes in first structure: 3 Modules
– Changes in second structure: 1 Module

Microcontrollers

12/12/2012

10

overview

• Microcontroller architecture. Address modes

and instruction sets. Subroutines and

interrupts. Handling software tools including

IDE, editor, assembler, simulator and C

compiler. Interface techniques including

parallel, serial, timer, and analogue peripheral

interface.

History
• In the year 1969, first microprocessor was born.

• In 1971 Intel obtained the right to sell this integrated circuit.
– Before that Intel bought the license from the Japanese company BUSICOM company which first came with the idea.

• During that year, a microprocessor called the 4004 appeared on the market.
– The first 4-bit microprocessor with the speed of 6000 operations per second.

• Not long after that, American company CTC requested from Intel and Texas Instruments to manufacture 8-bit
microprocessor.

– In April 1972 the first 8-bit microprocessor called the 8008 appeared on the market.

– It was able to address 16Kb of memory, had 45 instructions and the speed of 300 000 operations per second. That
microprocessor was the predecessor of all today’s microprocessors.

• In April 1974, Intel launched 8-bit processor called the 8080.
– Address 64Kb of memory, had 75 instructions and initial price was $360.

• In another company called Motorola launched 8-bit microprocessor 6800.

• At the WESCON exhibition in the USA in 1975, MOS Technology announced that it was selling processors 6501 and

• 6502 at $25 each.
– In response to the competitor, both Motorola and Intel cut the prices of their microprocessors to $69.95.

• Due to low price, 6502 became very popular so it was installed into computers such as KIM-1, Apple I, Apple

• II, Atari, Commodore, Acorn, Oric, Galeb, Orao, Ultra and many others.

• Soon appeared several companies manufacturing the 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, Commodore
took

• over MOS Technology).

• Other companies such as Zilog Inc have their own microprocessor.
– In 1976 Zilog announced the Z80. When designing this microprocessor Faggin

– The new processor was compatible with the 8080, i.e. it was able to perform all the programs written for the 8080.

– Apart from that, many other features was included so that the Z80 was the most powerful microprocessor at that time.

– It was able to directly address 64Kb of memory, had 176 instructions, a large number of registers, built in option for refreshing
dynamic RAM memory, single power supply, greater operating speed etc.

– The Z80 was a great success and everybody replaced the 8080 by the Z80.

• In 1976 Intel came up with an upgraded version of 8-bit microprocessor called the 8085. However, the Z80 was so
much better that Intel lost the battle.

• Even though a few more microprocessors appeared later on the market (6809, 2650, SC/MP etc.), everything was
actually decided. There were no such great improvements which could make manufacturers to change their mind,
so the 6502 and Z80 along with the 6800 remained chief representatives of the 8-bit microprocessors of that time.

12/12/2012

11

uProcessors < uControllers < SoCs

Microprocessors (uP) differ from

microcontrollers (uC)

uC: suited for controlling I/O devices that requires a minimum component count

uP: suited for processing information in computer systems

Instruction sets:

uP: processing intensive

powerful addressing modes

instructions to perform complex operations & manipulate large volumes of data

processing capability of MCs never approaches those of MPs

large instructions -- e.g., 80X86 7-byte long instructions

uC: cater to control of inputs and outputs

instructions to set/clear bits

boolean operations (AND, OR, XOR, NOT, jump if a bit is set/cleared), etc.

Extremely compact instructions, many implemented in one byte

(Control program must often fit in the small, on-chip ROM)

Hardware & Instructionset support:

uC: built-in I/O operations, event timing, enabling & setting up priority levels

for interrupts caused by external stimuli

uP: usually require external circuitry to do similar things (e.g, 8255 PPI, 8259 etc)

12/12/2012

12

Microprocessors (uP) and

microcontrollers (uC)
Bus widths:

uP: very wide

large memory address spaces (>4 Gbytes)

lots of data (Data bus: 32, 64, 128 bits wide)

uC: narrow

relatively small memory address spaces (typically kBytes)

less data (Data bus typically 4, 8, 16 bits wide)

Clock rates:

uP very fast (> 1 GHz)

uC: Relatively slow (typically 10-20 MHz)

since most I/O devices being controlled are relatively slow

Cost:

uP's expensive (often > $100)

uCs cheap (often $1 - $10)

4-bit: < $1.00

8-bit: $1.00 - $8.00

16-32-bit: $6.00 - $20.00

12/12/2012

13

A generic microcontroller

System-on-a-chip

Compare to lab-on-a-chip ideas

12/12/2012

14

Example: PSoC (Cypress)

Example of circuit

• Notice the processor/controller

• What does it do?

12/12/2012

15

Memory types

• Volatile. This is memory that only works as long as it is powered. It
loses its stored value when power is removed, but can be used as
memory for temporary data storage.
– commonly been called RAM (Random Access Memory)

• Non-volatile. This is memory that retains its stored value even when
power is removed.
– hard disk

– In an embedded system it is achieved using non-volatile
semiconductor memory, commonly been called ROM (Read-Only
Memory)

• An ideal memory reads and writes in negligible time, retains its
stored value indefinitely, occupies negligible space and consumes
negligible power.
– In practice no memory technology meets all these happy ideals

12/12/2012

16

Memory – cont.
• Static RAM (SRAM)

– Each memory cell is designed as a simple flip-flop.

– Data is held only as long as power is supplied (volatile).

– Consume very little power, and can retain its data down to a low
voltage (around 2 V).

– Each cell taking six transistors, SRAM is not a high-density technology.

• EPROM (Erasable Programmable Read-Only Memory)
– erased by exposing it to intense ultraviolet light.

– each memory cell is made of a single MOS transistor (very high density
and robust)

– Within the transistor there is embedded a ‘floating gate’. Using a
technique known as hot electron injection (HEI), the floating gate can
be charged. When it is not charged, the transistor behaves normally
and the cell output takes one logic state when activated. When it is
charged, the transistor no longer works properly and it no longer
responds when it is activated. The charge placed on the floating gate is
totally trapped by the surrounding insulator. Hence EPROM technology
is non-volatile.

– Requires quartz window and ceramic packaging.

– As a technology, EPROM has now almost completely given way to
Flash

Memory – cont.
• EEPROM (Electrically Erasable Programmable Read-

Only Memory)
– Uses floating gate technology.

• This is known as Nordheim–Fowler tunnelling (NFT).

• With NFT, it is possible to electrically erase the memory cell as well
as write to it.

• To allow this to happen, a number of switching transistors need to
be included around the memory element itself, so the high density
of EPROM is lost.

• EEPROM is non-volatile
– Because the charge on the floating gate is totally trapped by the

surrounding insulator

• Write and erase byte by byte.

• Flash
– A further evolution of floating-gate technology.

– can only erase in blocks.

– Non-volatile

12/12/2012

17

Organizing memory
• Two important buses

– Address

– Data

• Two architectures
– Von Neumann architecture

• One bus for data and one for address

• Serve for memory and others (program and I/O)

• Disadvantages:
– uses the same data bus for all sizes (areas) of memory

– Shared between many things, can be used for one thing at a time

– The Harvard architecture
• Every memory area gets its own address bus and its own data bus

• Disadvantages:
– Complex

– Data and program are separated (tables inside program memory can’t be treated as
data)

(a) The Von Neumann way. (b) The Harvard way

12/12/2012

18

(a) The Von Neumann way. (b) The Harvard way

uC

• Many families

– Each family is generally the same processor core with

different peripherals combination and different

memory size.

– One core might be 8-bit with limited power, another

16-bit and another a sophisticated 32-bit machine.

– Because the core is fixed for all members of one

family, the instruction set is fixed and users have little

difficulty in moving from one family member to

another.

12/12/2012

19

Microcontroller packaging and appearance
• Usually plastic or ceramic are used as the packaging material.

• Interconnection with the outside world is provided by the pins on the

package

• Dual-in-line package (DIP), with its pins arranged in two rows along the

longer sides of the IC, the pin spacing being 0.1 inches

• Other incudes: Pin grid array (PGA), leadless chip carrier (LCC) packages,

Small-outline integrated circuit (SOIC), Plastic leaded chip carrier (PLCC)

packages, plastic quad flat pack(PQFP), and thin small-outline packages

(TSOP)

– Used when number of pins is very large compared to IC size

A collection of microprocessors and microcontrollers – old and new. From left to right:

PIC 12F508, PIC 16F84A, PIC 16C72, Motorola 68HC705B16, PIC 16F877, Motorola 68000

Microchip and the PIC microcontroller

• Has a wide range of different families
– 8-bit, 16-bit, 32-bit

• All 8-bit PIC microcontrollers are lowcost, self-contained, pipelined,
RISC, use the Harvard structure, have a single accumulator (the
Working, or W, register), with a fixed reset vector.

• Microchip offer 8-bit microcontrollers with four different prefixes,
10-, 12-, 16-, and 18-, for example 10F200, or 18F242. We call each
a ‘Series’, for example ‘12 Series’, ‘16 Series’, ‘18 Series’.
– Each Series is identified by the first two digits of the device code.

• Letters are used as follows:
– The ‘C’ insert implies CMOS technology

– The ‘F’ insert indicates incorporation of Flash memory technology (still
using CMOS as the core technology).

– An ‘A’ after the number indicates a technological upgrade on the first
issue device.

– An ‘X’ indicates that a certain digit can take a number of values.

– For example, the 16C84, the 16F84, and the 16F84A.

• In some cases microcontrollers of one Series can fall into more than
one family.

12/12/2012

20

RISC vs. CISC

• Reduced Instruction Set

Computer (RISC)

– Used in: SPARC, ALPHA, Atmel

AVR, etc.

– Few instructions

(usually < 50)

– Only a few addressing modes

– Executes 1 instruction in 1

internal clock cycle (Tcyc)

• Complex Instruction Set

Computer (CISC)

– Used in: 80X86, 8051,

68HC11, etc.

– Many instructions

(usually > 100)

– Several addressing modes

– Usually takes more than 1

internal clock cycle (Tcyc) to

execute

Family Core Architecture Differences

�The PIC Family: Cores
� 12bit cores with 33 instructions: 12C50x, 16C5x

� 14bit cores with 35 instructions: 12C67x,16Cxxx

� 16bit cores with 58 instructions: 17C4x,17C7xx

� ‘Enhanced’ 16bit cores with 77 instructions: 18Cxxx

12/12/2012

21

The PIC Family: Speed

•• Can use crystals, clock oscillators, or even an RC circuit.Can use crystals, clock oscillators, or even an RC circuit.

•• Some PICs have a built in Some PICs have a built in 44MHz RC clock, Not very MHz RC clock, Not very
accurate, but requires no external components!accurate, but requires no external components!

•• Instruction speed = Instruction speed = 11//4 4 clock speed (Tcyc = clock speed (Tcyc = 4 4 * Tclk)* Tclk)

•• All PICs can be run from DC to their maximum specified All PICs can be run from DC to their maximum specified
speed:speed:

4MHz12C50x

10MHz12C67x

20MHz16Cxxx

33MHz17C4x / 17C7xxx

40MHz18Cxxx

Clock and Instruction Cycles

•• Instruction ClockInstruction Clock
– Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit of a

microcontroller divides the clock into four even clocks Q1, Q2, Q3, and Q4 which do not overlap.

– These four clocks make up one instruction cycle (also called machine cycle) during which one

instruction is executed.

– Execution of instruction starts by calling an instruction that is next in string.

– Instruction is called from program memory on every Q1 and is written in instruction register on Q4.

– Decoding and execution of instruction are done between the next Q1 and Q4 cycles. On the

following diagram we can see the relationship between instruction cycle and clock of the oscillator

(OSC1) as well as that of internal clocks Q1-Q4.

– Program counter (PC) holds information about the address of the next instruction.

12/12/2012

22

Pipelining in PIC

•• Instruction Pipeline FlowInstruction Pipeline Flow

The PIC Family: Program Memory

• Technology: EPROM, FLASH, or ROM

• It varies in size from one chip to another.

-- examples:examples:

12bit
instructions

51212C508

14bit
instructions

1024 (1k)16C711

14bit
instructions

8192 (8k)16F877

16bit
instructions

16384 (16k)17C766

12/12/2012

23

The PIC Family: Data Memory

•• PICs use general purpose “File registers” for RAM PICs use general purpose “File registers” for RAM

(each register is 8bits for all PICs)(each register is 8bits for all PICs)

-- examples:examples:

25B RAM12C508

36B RAM16C71C

368B RAM + 256B of
nonvolatile EEPROM

16F877

902B RAM17C766

Comparison of 8-bit PIC families

• Every member of any one family shares the same core architecture

and instruction set.

• The processing power is defined to some extent by the parameters

quoted, for example the instruction word size, and the number of

instructions.

12/12/2012

24

An introduction to PIC microcontrollers

using the Baseline Series
• We will look at the PIC 12F508/509.

• The only difference between the 508 and 509 is that the latter

has slightly larger program and data memories.

The architecture of the 12F508

12/12/2012

25

The architecture of the 12F508 – cont.
• As this microcontroller is a RISC computer, each instruction word must

carry not only the instruction code itself, but also any address or data
information needed.

• Depending on the instruction itself, five bits of the instruction word may
carry address information and hence be sent down the ‘Direct Addr’ bus
to the address multiplexer (‘Addr MUX’). Eight bits of the instruction word
may carry a data byte that is to be used as literal data for the execution of
that instruction. This goes to the multiplexer (‘MUX’), which feeds into the
ALU. Finally, there is the instruction data itself, which feeds into the
‘Instruction Decode and Control’ unit.

• A ‘Power-on Reset’ function detects when power is applied and holds the
microcontroller in a Reset condition while the power supply stabilizes.

• The MCLR input can be used to place the CPU in a Reset condition and to
force the program to start again.
– An internal clock oscillator (‘Internal RC OSC’) is provided so that no external

pins whatsoever need be committed to this function.

– External oscillator connections can, however, be made, using input/output
pins GP4 and GP5. The oscillator signal is conditioned for use through the
microcontroller in the ‘Timing Generation’ unit.

• The ‘Watchdog Timer’ is a safety feature, used to force a reset in the
processor if it crashes.

The PIC 16F877

• We will concentrate on just one device, the PIC
16F877

– A good range of features and allows most of the
essential techniques to be explained.

– It has a set of serial ports built in, which are used to
transfer data to and from other devices, as well as
analogue inputs, which allow measurement of inputs
such as temperature.

– All standard types of microcontrollers work in a similar
way, so analysis of one will make it possible to
understand all the others.

12/12/2012

26

MCU

• The microcontroller contains the same main elements as any computer
system:
– Processor

– Memory

– Input/Output

• In a PC, these are provided as separate chips, linked together via bus
connections on a printed circuit board, but under the control of the
microprocessor (CPU).

• A bus is a set of lines which carry data in parallel form which are shared by
the peripheral devices.

• The system can be designed to suit a particular application, with the type
of CPU, size of memory and selection of input/output (I/O) devices
tailored to the system requirements.

• In the microcontroller, all these elements are on one chip. This means that
the MCU (microcontroller) for a particular application must be chosen
from the available range to suit the requirements.

PIC 16F877 Architecture
• Microcontrollers contain all the components

required for a processor system in one chip: a

CPU, memory and I/O.

• A complete system can therefore be built

using one MCU chip and a few I/O devices

such as a keypad, display and other interfacing

circuits.

Datasheet

http://bit.ly/XgtauM

12/12/2012

27

An architecture

overview of the

PIC16F877

Software: Programmers Model

12/12/2012

28

PIC Programming Procedure

• For example: in programming an embedded PIC featuring electronically

erasable programmable read-only memory (EEPROM). The essential steps

are:

– Step 1: On a PC, type the program, successfully compile it and then generate

the HEX file.

– Step 2: Using a PIC device programmer, upload the HEX file into the PIC. This

step is often called "burning".

– Step 3: Insert your PIC into your circuit, power up and verify the program

works as expected. This step is often called "dropping" the chip. If it isn't, you

must go to Step 1 and debug your program and repeat burning and dropping.

PIC16F877A Features

High Performance RISC CPU:

• Only 35 single word instructions to learn

• All single cycle instructions except for program
branches, which are two-cycle

• Operating speed: DC - 20 MHz clock input DC - 200
ns instruction cycle

12/12/2012

29

PIC 16F877 Pin IN/Out
• The chip can be obtained in different packages,

such as conventional 40-pin DIP (Dual In-Line
Package), square surface mount or socket format.

• Most of the pins are for input and output, and
arranged as 5 ports: port A (5 pins), port B(8),
C(8), D(8) and E(3), giving a total of 32 I/O pins.
– These can all operate as simple digital I/O pins, but

most have more than one function.

– The mode of operation of each is selected by
initializing various control registers within the chip.

– Note, in particular, that Ports A and E become
ANALOGUE INPUTS by default (on power up or reset),
so they have to set up for digital I/O if required.

PIC 16F877 Pin IN/Out – cont.

• Port B is used for downloading the program to

the chip flash ROM (RB6 and RB7), and RB0

and RB4–RB7 can generate an interrupt.

• Port C gives access to timers and serial ports.

• Port D can be used as a slave port, with Port E

providing the control pins for this function.

12/12/2012

30

PIC 16F877 Pin IN/Out – cont.

• The chip has two pairs of power pins (VDD=5 V nominal and Vss =0
V) (11,12 or 31, 32), and either pair can be used.

• The chip can work down to about 2 V supply, for battery and power-
saving operation.

• A low-frequency clock circuit using only a capacitor and resistor to
set the frequency can be connected to CLKIN, or a crystal oscillator
circuit can be connected across CLKIN and CLKOUT.

• MCLR is the reset input; when cleared to 0, the MCU stops, and
restarts when MCLR=1. This input must be tied high allowing the
chip to run if an external reset circuit is not connected.
– It is usually a good idea to incorporate a manual reset button in all but

the most trivial applications.

PIC16F877A Pin Layout

PORTA PORTB

PORTE

PORTC PORTC

PORTD

PORTD

ADC inputs

Counter 0

external input

12/12/2012

31

PIC 16F877 Pin IN/Out – cont.

PIC Memory

� The PIC16F877A has an 8192 (8k) 14bit instruction

program memory

� 368 Bytes Registers as Data Memory :

� Special Function Registers: used to control peripherals

and PIC behaviors

� General Purpose Registers: used to a normal

temporary storage space (RAM)

� 256 Bytes of nonvolatile EEPROM

12/12/2012

32

PIC Program Memory
� The PIC16F877 8192 (8k) 14bit instructions

If interrupted, program

execution continues from here

When the controller

is reset, program

execution starts

from here

Takes a max of 8 addresses, the ninth

address will write over the first.

PIC16F877 block diagram – cont.
• The main program memory is flash ROM, which

stores a list of 14-bits instructions.

• Instructions are fed to the execution unit, and
used to modify the RAM file registers.

• The file register include special control registers,
the port registers and a set of general purpose
registers which can be used to store data
temporarily.

• A separate working register (W) is used with the
ALU (Arithmetic Logic Unit) to process data.
Various special peripheral modules provide a
range of I/O options

12/12/2012

33

PIC16F877 block diagram – cont.

• There are 512 RAM File Register addresses (0–1FFh), which are
organized in 4 banks (0–3), each bank containing 128 addresses.

• The default (selected on power up) is Bank 0 which is numbered
from 0 to 7Fh, Bank 1 from 80h to FFh and so on.

• These contain both Special Function Registers (SFRs), which have a
dedicated purpose, and the General Purpose Registers (GPRs).

• The file registers are mapped as seen in the next slid.

• The SFRs may be shown in the block diagram as separate from the
GPRs, but they are in fact in the same logical block, and addressed
in the same way.

• Deducting the SFRs from the total number of RAM locations, and
allowing for some registers which are repeated in more than one
bank, leaves 368 bytes of GPR (data) registers.

PIC 16F877 Block Diagram

12/12/2012

34

PIC Data Memory

The data memory is devided into 4 memory banks

The most

important

registers

have

addresses

in all the

four banks

12/12/2012

35

Register Addressing Modes

• There are 3 types of addressing modes in PIC

–Immediate Addressing

• Movlw H’0F’

–Direct Addressing

–Indirect Addressing

Register Addressing Modes
Immediate Addressing:

Movlw H’0F’

Direct Addressing:

Uses 7 bits of 14 bit instruction to identify a register file

address 8th and 9th bit comes from RP0 and RP1 bits of

STATUS register.

i.e. Z equ D’2’ ; Z=2

btfss STATUS, Z ; test if the 3rd bit of the STATUS register is set

12/12/2012

36

Indirect Addressing:

• Full 8 bit register address is written the

special function register FSR

• INDF is used to get the content of the address

pointed by FSR

• Exp : A sample program to clear RAM

locations H’20’ – H’2F:
MOVLW 0x20 ;initialize pointer

MOVWF FSR ;to RAM

NEXT CLRF INDF ;clear INDF register

INCF FSR,F ;inc pointer

BTFSS FSR,4 ;all done?

GOTO NEXT ;no clear next

CONTINUE

: ;

Indirect Addressing: /2

• for instance,
– one general purpose register (GPR) at address 0Fh contains a

value of 20

– By writing a value of 0Fh in FSR register we will get a register
indicator at address 0Fh,

– and by reading from INDF register, we will get a value of 20,
which means that we have read from the first register its value
without accessing it directly (but via FSR and INDF).

• It appears that this type of addressing does not have any
advantages over direct addressing, but certain needs do
exist during programming which can be solved smoothly
only through indirect addressing.

• Indirect addressing is very convenient for manipulating
data arrays located in GPR registers.
– In this case, it is necessary to initialize FSR register with a

starting address of the array, and the rest of the data can be
accessed by incrementing the FSR register.

12/12/2012

37

PIC Family Control Registers

• Uses a series of “Special Function Registers” for

controlling peripherals and PIC behaviors.

� STATUS ���� Bank select bits, ALU bits (zero, borrow, carry)

� INTCON � Interrupt control: interrupt enables, flags, etc.

� OPTION_REG � contains various control bits to

configure the TMR0 prescaler/WDT postscaler ,the

External INT Interrupt, TMR0 and the weak pull-

ups on PORTB

the accumulator

• to add two
numbers together

– first move the
contents of one
file register into
the w register

– then add the
contents of the
second file
register to w

– the result can be
written to w or to
the second file
register

12/12/2012

38

the status register

• the STATUS

register stores

‘results’ of the

operation

• three of the bits

of the STATUS

register are set

based on the

result of an

arithmetic or

bitwise operation

the STATUS register

• three of the bits of the STATUS register are set
based on the result of an arithmetic or bitwise
operation

– zero flag ; this bit is set whenever the result of an
operation is zero

– carry flag ; this bit is set whenever the result of an
operation is greater than 255 (0xFF) ; can be used to
indicate that higher order bytes need to be updated

– digit carry flag ; this bit is set whenever the least
significant four bits of the result of an operation is
greater than 15 (0x0F)

12/12/2012

39

Special Function Register

“STATUS Register”

Special Function Register

“INTCON Register”

12/12/2012

40

X14 Instruction set

• 35 instructions

–Byte Oriented Operations

–Bit Oriented Operations

–Literal and control Operations

12/12/2012

41

• Data Movement

– movf,movlw,movwf

• Arithmetic

– addlw,addwf,sublw,subwf,incf,decf

• Logical

– andlw,andwf,iorlw,iorwf,xorlw,xorwf,rrf,rlf,clrf,clrw,swapf,c

omf

• Bit Operators

– bsf,bcf

• Branching

– goto,btfss,btfsc,decfsz,incfsz

• Subroutine

– call,return,retlw,retfie

• Misc.

– sleep,clrwdt,nop

12/12/2012

42

12/12/2012

43

1. Copy value from/to file register or

literal to/from w

Mnemonic Description Status Function

movf fr, d Move file register Z fr => d

movwf fr
Move W to file

register
w => fr

movlw k Move literal to W k => W

Move Commands:

movlw 0xF2 : stores the number 0xF2 into the W register

movwf 0x0C : stores the W register contents into file H’0C’

movf 0x0C,w : loads the contents of file H’0C’ into W register

movf 0x0C,f : loads the contents of file H’0C’ into file H’0C’

12/12/2012

44

2. Logic / arithmetic instructions with

a file register and w

Mnemonic Description Status Function

addwf fr,d addition Z, DC,C fr + W => d

subwf fr,d subtraction Z, DC,C fr - W => d

andwf fr,d Logical and Z fr AND W => d

iorwf fr,d Logical or Z fr OR W => d

xorwf fr,d xor Z fr XOR W => d

addwf instruction

12/12/2012

45

3. Logic / arithmetic instructions with

literal and w

Mnemonic Description Status Function

addlw k addition Z, DC,C W + k => W

sublw k subtraction Z, DC,C W- k => W

andlw k Logical and Z W AND k => W

iorlw k Logical or Z W OR k => W

xorlw k xor Z W XOR k => W

4.One operand logic / arithmetic

instructions
Mnemonic Description Status Function

clrw Clear accumulator W Z 0 => W

clrf fr Clear file register fr Z 0 => fr

decf fr,d Decrement file register fr Z fr - 1 => d

incf fr, d Increment file register fr Z fr + 1 => d

comf fr,d 1's complement file register fr Z not fr => d

rlf fr, d Rotate file register fr left thru C C
C <= fr(7), fr(i) <= fr(i-1), fr(0) <=

C

rrf fr, d Rotate file register fr right thru C C
C => fr(7), fr(i) => fr(i-1), fr(0) =>

C

bcf fr, b Bit clear on file register fr 0 => fr(b)

bsf fr, b Bit set on file register fr 1 => fr(b)

swapf fr,d swap halves of fr (fr(0:3) <=> fr(4:7)) => d

nop No operation

12/12/2012

46

Bit Set/Clear Commands

5. Branch, Skip and Call instructions

Mnemonic Description Status Function

goto addr branch to addr addr => PC(0:10)

call addr call routine at addr
PC => TOS

addr => PC(0:10)

decfsz fr,d Decrement fr, skip if zero fr - 1 => d, skip if 0

incfsz fr,d Increment fr, skip next instr if zero fr + 1 => d, skip next instr if 0

btfsc fr,b Bit test fr, skip if clear skip next instr if fr(b) =0

btfss fr,b Bit test fr, skip if set skip next instr if fr(b)=1

return return from subroutine TOS => PC

retlw k return with literal in w k =>w, TOS => PC

retfie return from interrupt TOS => PC, 1 => GIE

12/12/2012

47

TEST, SKIP & JUMP
• Conditional jumps are initiated using a bit test and conditional skip,

followed by a GOTO or CALL.

• The bit test can be made on any file register bit.
– This could be a port bit, to check if an input has changed, or a status bit in a

control register.

• BTFSC (Bit Test and Skip if Clear) and BTFSS (Bit Test and Skip if Set) are
used to test the bit and skip the next instruction, or not, according to the
state of the bit tested.

• DECFSZ and INCFSZ embody a commonly used test – decrement or
increment a register and jump depending on the effect of the result on the
zero flag (Z is set if result 0).

• The bit test and skip may be followed by a single instruction to be carried
out conditionally, but GOTO and CALL allow a block of conditional code.

• Using GOTO label simply transfers the program execution point to some
other point in the program indicated by a label in the first column of the
source code line.

• A CALL label means that the program returns to the instruction following
the CALL when RETURN is encountered at the end of the subroutine.
– Another option is RETLW (Return with Literal in W). See the KEYPAD.

– RETFIE (Return From Interrupt) will be explained later.

CONTROL
• NOP simply does nothing for one instruction cycle

(four clock cycles).
– very useful for putting short delays in the program

• SLEEP stops the program, such that it can be
restarted with an external interrupt.

• The unused locations contain the code 3FFF (all 1
s), which is a valid instruction (ADDLW FF).

• CLRWDT means clear the watchdog timer. If the
program gets stuck in a loop or stops for any
other reason, it will be restarted automatically by
the watchdog timer.

• To stop this from happening, the watchdog timer
must be reset at regular intervals of less than,
say, 10 ms, within the program loop, using
CLRWDT.

12/12/2012

48

OPTIONAL INSTRUCTIONS
• TRIS was an instruction originally provided to make port

initialization simpler.
– It selects register bank 1 so that the TRIS data direction registers

(TRISA, TRISB, etc.) can be loaded with a data direction code
(e.g. 0�output).

• The manufacturer no longer recommends use of this
instruction, although it is still supported

• The assembler directive BANKSEL can be used
– It gives more flexible access to the registers in banks 1, 2, 3.

• The other option is to change the bank select bits in the
STATUS register directly, using BSF and BCF.

• OPTION, providing special access to the OPTION register, is
the other instruction, which is no longer recommended.
– It can be replaced by BANKSEL to select bank 1 which contains

the OPTION register, which can then be accessed directly.

C to PIC Assembly

12/12/2012

49

Chip Configuration Word

• The assembler directive __CONFIG is included at
the top of the program, which sets up aspects of
the chip operation which cannot be subsequently
changed without reprogramming.

• The configuration word is a special area of
program memory located outside the normal
range (address 2007h) and stores chip
configurations such as the clock type.

– Done by loading the configuration bits with a suitable
binary code (see next slide).

12/12/2012

50

Chip Configuration Word

CODE PROTECTION
• Normally, the program machine code can be read back to the programming host

computer, be disassembled and the original source program recovered.

• This can be prevented if commercial or security considerations require it. The code

protection bits (CP1:CP0) disable reads from selected program areas.

• Program memory may also be written from within the program itself, disabled via

the WRT bit.

• Data EEPROM may also be protected from external reads in the same way via the

CPD bit, while internal read and write operations are still allowed, regardless of the

state-of-the code protection bits.

• bit 13-12, bit 5-4

• CP1:CP0: FLASH Program Memory Code Protection bit, All of the CP1:CP0 pairs

have to be given the same value to enable the code protection scheme listed.

• 11 = Code protection off

• 10 = 1F00h to 1FFFh code protected

• 01 = 1000h to 1FFFh code protected

• 00 = 0000h to 1FFFh code protected

12/12/2012

51

IN-CIRCUIT DEBUGGING
• In-circuit debugging (ICD) allows the program

to be downloaded after the chip has been

fitted in the application circuit, and allows it to

be tested with the real hardware.

• The normal debugging techniques of single

stepping, breakpoints and tracing can be

applied in ICD mode.

LOW VOLTAGE PROGRAMMING
• Normally, when the chip is programmed, a high

voltage (12–14 V) is applied to the PGM pin
(RB3).

• To avoid the need to supply this voltage during in-
circuit programming (e.g. during remote
reprogramming), a low-voltage programming
mode is available.

• Using this option means that RB3 is not then
available for general I/O functions during normal
operation.

12/12/2012

52

POWER-UP TIMER
• When the supply power is applied to the programmed

MCU, the start of program execution should be delayed
until the power supply and clock are stable, otherwise
the program may not run correctly.

• The power-up timer may therefore be enabled (PWRTE
0) as a matter of routine.

• It avoids the need to reset the MCU manually at start
up, or connect an external reset circuit, as is necessary
with some microprocessors.

• At a clock frequency of 4 MHz, this works out to 256μs.

BROWN-OUT RESET
• Brown out refers to a short dip in the power-supply (PSU)

voltage, caused by mains supply fluctuation, or some

other supply fault, which might disrupt the program

execution.

• If the Brown-Out Detect Enable bit (BODEN) is set, a PSU

glitch of longer than about 100 μs will cause the device

to be held in reset until the supply recovers, and then

wait for the power-up timer to time out, before

restarting. The program must be designed to recover

automatically.

12/12/2012

53

WATCHDOG TIMER
• The watchdog timer is designed to automatically reset the MCU if

the program malfunctions, by stopping or getting stuck in loop.

• This could be caused by an undetected bug in the program, an
unplanned sequence of inputs or supply fault.

• A separate internal oscillator and counter automatically generates a
reset about every 18 ms, unless this is disabled in the configuration
word.

• If the watchdog timer is enabled, it should be regularly reset by an
instruction in the program loop (CLRWDT) to prevent the reset.

• If the program hangs, and the watchdog timer reset instruction not
executed, the MCU will restart, and (possibly) continue correctly,
depending on the nature of the fault.

RC OSCILLATOR
• The MCU clock drives the program along,

providing the timing signals for program
execution.

• The RC (resistor–capacitor) clock is cheap
and useful. It allows operating with the
internal clock driver circuit, to generate
the clock.

• The time constant (product R X C)
determines the clock period.

• A variable resistor can be used to give a
manually adjustable frequency, although it
is not very stable or accurate.

12/12/2012

54

CRYSTAL (XTAL) OSCILLATOR
• Used for greater precision

– uses the hardware timers to make accurate measurements

– generate precise output signals

• Normally, it is connected across the clock pins with a pair of

small capacitors (15 pF) to stabilize the frequency.

• The crystal acts as a self-contained resonant circuit, where the

quartz or ceramic crystal vibrates at a precise frequency when

subject to electrical stimulation.

• A convenient value (used in our examples later) is 4 MHz; this

gives an instruction cycle time of 1 μs

– This is the maximum frequency allowed for the XT configuration

setting.

• Operating at higher frequency requires the selection of the HS

configuration option.

• Each instruction takes four clock cycles

CRYSTAL (XTAL) OSCILLATOR/2

12/12/2012

55

CONFIGURATION SETTINGS
• The default setting for the configuration bits is 3FFF,

which means
– The code protection is off

– In-circuit debugging disabled

– Program write enabled

– Low-voltage programming enabled

– Brown-out reset enabled

– Power-up timer disabled

– Watchdog timer enabled

– RC oscillator selected.

• A typical setting for basic development work would
enable in-circuit debugging, enable the power-up timer
– This would minimize the possibility of a faulty start-up.

• For reliable starting, disable the watchdog timer and
use the XT oscillator type.
– By default, the watchdog timer is enabled.

Program Execution

• The program counter keeps track of program

execution; it clears to zero on power up or reset.

• With 8k of program memory, a count from 0000

to 1FFF (8191) � requires (13 bits).

• The PCL (Program Counter Low) register (SFR 02)

contains the low byte, and this can be read or

written like any other file register.

• The high byte is only indirectly accessible via

PCLATH (Program Counter Latch High, SFR 0Ah).

12/12/2012

56

SUBROUTINES

• A label is used at the start of the subroutine

• When a subroutine is called (Using the CALL instruction),
– the destination address is copied into the program counter

– the return address (the one following the CALL) is pushed onto the
stack

• In the PIC, there are 8 stack address storage levels, which are used
in turn.

• The subroutine is terminated with a RETURN instruction
– causes the program to go back to the original position and continue.

– achieved by popping the address from the top of the stack and
replacing it in the program counter.

• CALL and RETURN must always be used in sequence to avoid a stack
error, and a possible program crash.

• In the PIC, the stack is not directly accessible

PAGE BOUNDARIES

• Jump instructions (CALL or GOTO) provide
only an 11-bit destination address, so the
program memory is effectively divided into
four 2k blocks, or pages.

• A jump across the program memory page
boundary requires the page selection bits to
be modified by the user program.

• Sections 2.3 and 2.4 in the 16F877 data sheet
contain detail how to handle these problems.

12/12/2012

57

Input/output ports

Input/output ports
• There are five parallel ports in the PIC 16F877, labelled

A–E.

• All pins can be used as bit- or byte-oriented digital
input or output with
– Some having alternate functions depending on the

initialization of the relevant control registers.

• The TRIS (data direction) register bits in bank 1, default
to 1, setting the ports B, C and D as inputs.

• Ports A and E are set to ANALOGUE INPUT by default,
because the analogue control register ADCON1 in bank
1 defaults to 0 - - - 0000.

• To set up these ports for digital I/O, this register must
be loaded with the code x - - - 011x (x don’t care),e.g.
06h.

• ADCON1 can be initialized with bit codes that give a
mixture of analogue and digital I/O on Ports A and E.

• ADCON1 is in bank 1 so BANKSEL is needed to access it.

12/12/2012

58

Input/output ports

Port functions

12/12/2012

59

Two bits of a possible digital output

port

Two bits of a possible digital input

port

12/12/2012

60

Combine the two circuits to create a

programmable bidirectional input/output pin

Input & Output (Interfacing)

• Switch Input

– input loading and debouncing.

12/12/2012

61

Switch Debouncing
• Delay

• Schmit trigger

• capacitor

PIC Applications

� LED Flasher

Loop:

bsf PORTB, 0

call Delay_500ms

bcf PORTB, 0

call Delay_500ms

goto Loop

12/12/2012

62

PIC Applications

� Button Read

Movlw 0

movwf TRISD, f

bsf TRISD, 2

Loop:

btfsc PORTD, 2

goto light

goto No_light

Light:

bsf PORTB,0

goto Loop

No_light:

bcf PORTB,0

goto Loop

INTERRUPTS
• The stack is used when an interrupt is processed.

• An interrupt is effectively a call and return which is initiated by an
external hardware signal

• Forces the processor to jump to a dedicated instruction sequence,
an Interrupt Service Routine (ISR).
– For example, the MCU can be set up so that when a hardware timer

times out (finishes its count), the process required at that time is
called via a timer interrupt.

• When an interrupt signal is received,
– the current instruction is completed and

– the address of the next instruction (the return address) is pushed into
the first available stack location.

– The ISR is called

– The ISR is terminated with the instruction RETFIE (return from
interrupt), which causes the return address to be pulled from the
stack.

– Program execution then restarts at the original location.

• If necessary, the registers must be saved at the beginning of the ISR,
and restored at the end, in spare set of file registers.

12/12/2012

63

Interrupt Control Registers

12/12/2012

64

Interrupt Control Registers
• The registers involved in interrupt handling are INTCON, PIR1, PIR2, PIE1,

PIE2 and PCON.

• Interrupts are external hardware signals which force the MCU to suspend
its current process, and carry out an Interrupt Service Routine (ISR).

• In PIC when an interrupt occurs the program execution jumps to address
004.

• By default, interrupts are disabled.

• If interrupts are to be used
– the main program start address needs to be 0005, or higher, and a ‘GOTO

start’ (or similar label) placed at address 0000.

– A ‘GOTO ISR’ instruction can then be placed at 004, using the ORG directive,
which sets the address at which the instruction will be placed by the
assembler.

– The Global Interrupt Enable bit (INTCON, GIE) must be set to enable the
interrupt system.

– The individual interrupt source is then enabled.

– For example, the bit INTCON, T0IE is set to enable the Timer0 overflow to
trigger the interrupt sequence.

– When the timer overflows, INTCON, T0IF (Timer0 Interrupt Flag) is set to
indicate the interrupt source, and the ISR called.

• The flags can be checked by the ISR to establish the source of the
interrupt, if more than one is enabled.

Interrupt sources and control bits

12/12/2012

65

Macros, Special Instructions, Assembler Directives

Another structured

• Supplementary instructions

12/12/2012

66

Program Design and flowcharts

• There are two main forms of flowchart.

– Data flowcharts: used to represent complex data

processing systems

– Program flow charts: used to represent overall

program structure and sequence, but not the

details.

Previous Example flow chart

12/12/2012

67

Flowchart implementation

PIC Peripherals

� Each peripheral has a set of SFRs to control its operation.

� Different PICs have different on-board peripherals

12/12/2012

68

Timers
• The PIC 16F877 has three hardware timers.

– Used to carry out timing operations simultaneously with the
program.

– Ex.: Generating a pulse every second at an output.

• Timer0 uses an 8-bit register
– TMR0, file register address 01.

– The register counts from 0 to 255, and then rolls over to 00
again.

– When the register goes from FF to 00, an overflow flag, T0IF, bit
2 in the Interrupt Control Register INTCON, address 0B, is set.

• The timer register is incremented via a clock input from
either the MCU oscillator (fOSC) or an external pulse train at
RA4.

• If the internal clock is used, the register acts as a timer.

• The timers are driven from the instruction clock (fOSC/4).

• If the chip is driven from a crystal of 4 MHz, the instruction
clock will be 1 MHz, and the timer will update every 1us.

Timers – cont.
• A timer can work as a counter.

– Counts external pulses

– timers can also be used as counters.

• Timer0, can be controlled by a pre-scaler, see next
slide.

• The pre-scaler is a divide by N register, where N 2, 4, 8,
16, 32, 64, 128 or 256, meaning that the output count
rate is reduced by this factor.

• This extends the count period or total count by the
same ratio, giving a greater range to the measurement.

• The watchdog timer interval can also be extended, if
this is selected as the clock source.

• The pre-scale select bits, and other control bits for
Timer0 are found in OPTION_REG.

12/12/2012

69

BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

OPTION_REG REGISTER

Each of the PORTB pins has a weak

internal pull-up. A single control bit can

turn on all the pull-ups. This is performed

by clearing bit RBPU (OPTION_REG<7>).

The weak pull-up is automatically turned

off when the port pin is configured as an

output. The pull-ups are disabled on a

Power-on Reset.

RB0/INT is an external interrupt input pin

and is configured using the INTEDG bit

(OPTION_REG<6>).

12/12/2012

70

Timer 0 options

TIMER0 registers

12/12/2012

71

Typical configurations for Timer0

• Sh

• show (LED1H design and code) which illustrates the use
of a hardware timer and the use of interrupt.

Timers – cont.

• Timer1 is a 16-bit counter, consisting of TMR1H and TMR1L
(addresses 0E AND 0F).
– When the low byte rolls over from FF to 00, the high byte is

incremented.

– The maximum count is therefore 65535, which allows a higher
count without sacrificing accuracy.

• Timer2 is an 8-bit counter (TMR2) with a 4-bit pre-scaler, 4-
bit post-scaler and a comparator.
– It can be used to generate Pulse Width Modulated (PWM)

output which is useful for driving DC motors and servos, among
other things.

• These timers can also be used in capture and compare
modes, which allow external signals to be more easily
measured.

12/12/2012

72

TIMER1 summary

12/12/2012

73

TIMER2

• Timer2 is an 8-bit
timer with a
prescaler and a
postscaler. It can be
used as the PWM
time base for the
PWM mode of the
CCP module(s). The
TMR2 register is
readable and
writable and is
cleared on any device
Reset.

TIMER2 summary

12/12/2012

74

Keypad Input
• A keypad is simply an array of push buttons connected in rows and columns, so

that each can be tested for closure with the minimum number of connections.

• There are 12 keys on a phone type pad (0–9, #, ∗∗∗∗), arranged in a 3X4 matrix. The

columns are labeled 1, 2, 3 and the rows A, B, C, D.

Keypad Input – cont.

• If we assume that all the rows and columns

are initially high, a keystroke can be detected

by setting each row low in turn and checking

each column for a zero.

• In the KEYPAD circuit, the 7 keypad pins are

connected to Port D.

– Bits 4–7 are initialized as outputs, and bits 0–2

used as inputs.

• The input pins are pulled high to logic 1. The

output rows are also initially set to 1.

12/12/2012

75

Keypad operation
• If a 0 is now output on row A, there is no effect on the inputs unless

a button in row A is pressed. If these are checked in turn for a 0, a
button in this row which is pressed can be identified as a specific
combination of output and input bits.

• A simple way to achieve this result is to increment a count of keys
tested when each is checked, so that when a button is detected, the
scan of the keyboard is terminated with current key number in the
counter.

• This works because the (non-zero) numbers on the keypad arranged
in order:
– Row A 1, 2, 3

– Row B 4, 5, 6

– Row C 7, 8, 9

– Row D *, 0, #

• Following this system, the star symbol is represented by a count of
10 (0Ah), zero by 11(0Bh) and hash by 12 (0C).

• Show Keypad design and code.

Calculator

12/12/2012

76

• The calculator operates as follows:

– To perform a calculation, press a number key, then

an operation key, then another number and then

equals.

– The calculation and result are displayed. For the

divide operation, the result is displayed as result

and remainder.

Pseudo code for the calculator
• CALC

– Single digit calculator produces two digit results.

– Hardware: x12 keypad, 2x16 LCD, P16F887 MCU

• MAIN

• Initialise
– PortC = keypad

• RC0 – RC3 = output rows

• RC4 – RC7 = input columns

– PortD = LCD
• RD1, RD2 = control bits

• RD4– RD7 = data bits

– CALL Initialise display

• Scan Keypad
– REPEAT

• CALL Keypad input, Delay 50ms for debounce

• CALL Keypad input, Check key released

• IF first key, load Num1, Display character and restart loop

• IF second key, load sign, Display character and restart loop

• IF third key, load Num2 Display character and restart loop

• IFfourth key, CALL Calculate result

• IF fifth key, Clear display

– ALWAYS

12/12/2012

77

Subroutines
• Included LCD driver routines

– Initialise display

– Display character

• Keypad Input
– Check row A, IF key pressed, load ASCII code

– Check row B, IF key pressed, load ASCII code

– Check row C, IF key pressed, load ASCII code

– Check row D, IF key pressed, load ASCII code

– ELSE load zero code

• Calculate result
– IF key = ‘+’, Add

– IF key = ‘-‘, Subtract

– IF key = ‘x’, Multiply

– IF key = ‘/’, Divide

– Add Add Num1 + Num2
• Load result, CALL Two digits

– Subtract Subtract Num1 – Num2
• IF result negative, load minus sign, CALL Display character

• Load result, CALL Display character

Subroutines – cont.
– Multiply

• REPEAT

• Add Num1 to Result

• Decrement Num2

• UNTIL Num2= 0

• Load result, CALL Two digits

– Divide

• REPEAT

• Subtract Num2 from Num1

• Increment Result

• UNTIL Num1 negative

• Add Num2 back onto Num1 for Remainder

• Load Result, CALL Display character

• Load Remainder, CALL Display character

• Two digits

– Divide result by 10, load MSD, CALL Display character

– Load LSD, CALL Display character

12/12/2012

78

• Show calc code and design

156

Optocouplers
• The way it works is simple: when a signal arrives, the LED within

the optocoupler is turned on, and it illuminates the base of a
photo-transistor within the same case. When the transistor is
activated, the voltage between collector and emitter falls to
0.7V or less and the microcontroller sees this as a logic zero on
its RA4 pin.

12/12/2012

79

157

158

Optocoupler - output
• An Optocoupler can be also used to separate the output

signals. If optocoupler LED is connected to microcontroller
pin, logical zero on pin will activate optocoupler LED, thus
activating the transistor. This will consequently switch on
LED in the part of device working on 12V. Layout of this
connection is shown below.

12/12/2012

80

159

Program

• Write a program to command the relay after

each interrupt RB0

160

Program

• Write a program to command the relay after

each interrupt RB0

12/12/2012

81

161

Sounds

• Generating sound

In microcontroller systems, beeper is used for indicating certain
occurrences, such as push of a button or an error. To have the beeper
started, it needs to be delivered a string in binary code - in this way,
you can create sounds according to your needs. Connecting the
beeper is fairly simple: one pin is connected to the mass, and the
other to the microcontroller pin through a capacitor, as shown on the
following image.

162

Program

• Write a program to make a sound of

frequency 1Khz

12/12/2012

82

163

7 segment-display
• To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel. The

common line (the common-cathode line) is taken out separately and this line is taken low for
a short period of time to turn on the display. Each display is turned on at a rate above 100
times per second, and it will appear that all the displays are turned on at the same time. As
each display is turned on, the appropriate information must be delivered to it so that it will
give the correct reading.

164

Program

• Write a program to display 45 to the 7

segments displays

12/12/2012

83

ADC

• Registers used

– ADCON0

– ADCON1

– The output from the converter is stored in

ADRESH (analogue to digital conversion result,

high byte) and ADRESL (low byte).

• Show ADC code and design (VINTEST)

ADC block diagram

12/12/2012

84

8-bit Conversion

• The 16F877 MCU has eight analogue inputs available,
at RA0, RA1, RA2, RA3, RA5, RE0, RE1 and RE2.

• RA2 and RA3 may be used as reference voltage inputs,
setting the minimum and maximum values for the
measured voltage range.

• These inputs default to analogue operation, so the
register ADCON1 has to be initialized explicitly to use
these pins for digital input or output.

• The ADC converts an analogue input voltage (e.g. 0 –
2.56V) to 10-bit binary, but only the upper 8 bits of the
result are used, giving a resolution of 10 mV per bit
((1/256) X 2.56 V).

ADC OPERATION
• The inputs are connected to a function selector block which sets up

each pin for analogue or digital operation according to the 4-bit
control code loaded into the A/D port configuration control bits,
PCFG0–PCFG3 in ADCON1.
– The code used, 0011, sets Port E as digital I/O, and Port A as analogue

inputs with AN3 as the positive reference input.

• The analogue inputs are then fed to a multiplexer which allows one
of the eight inputs to be selected at any one time.
– This is controlled by the three analogue channel select bits, CHS0–

CHS2 in ADCON0.

– In the example, channel 0 is selected (000), RA0 input.

– If more than one channel is to be sampled, these select bits need to
be changed between ADC conversions.

• The conversion is triggered by setting the GO/DONE bit, which is
later cleared automatically to indicate that the conversion is
complete.

12/12/2012

85

12/12/2012

86

ADC control registers

12/12/2012

87

To do an A/D Conversion, follow these steps:

1. Configure the A/D module:

– Configure analog pins/voltage reference and

– digital I/O (ADCON1)

– Select A/D input channel (ADCON0)

– Select A/D conversion clock (ADCON0)

– Turn on A/D module (ADCON0)

2. Configure A/D interrupt (if desired):

– Clear ADIF bit

– Set ADIE bit

– Set PEIE bit

– Set GIE bit

3. Wait the required acquisition time

4. Start conversion:

– Set GO/DONE bit (ADCON0)

5. Wait for A/D conversion to complete by either:

– Polling for the GO/DONE bit to be cleared
(interrupts disabled); OR Waiting for the A/D
interrupt

12/12/2012

88

6. Read A/D Result register pair

(ADRESH:ADRESL), clear bit ADIF if required.

7. For the next conversion, go to step 1 or step 2

as required. The A/D conversion time per bit is

defined as TAD.

ADC Test Circuit

12/12/2012

89

ADC clock
• The speed of the conversion is selected by bits ADSC1 and ADSC0.

• The ADC operates by successive approximation;
– this means that the input voltage is fed to a comparator, and if the voltage is

higher than 50% of the range, the MSB of the result is set high.

– The voltage is then checked against the mid-point of the remaining range, and
the next bit set high or low accordingly, and so on for 10 bits.

• This takes a significant amount of time: the minimum conversion time is
1.6 μs per bit, making 16 μs for a 10-bit conversion.

• The ADC clock speed must be selected such that this minimum time
requirement is satisfied;

• The MCU clock is divided by 2, 8 or 32 as necessary.

• Our simulated test circuit is clocked at 4 MHz. This gives a clock period of
0.25 μs. We need a conversion time of at least 1.6 μs; if we select the
divide by 8 option, the ADC clock period will then be 8 X 0.25 = 2 μs, which
is just longer than the minimum required.

• The select bits are therefore set to 01.

Capture/compare/ PWM

Each Capture/Compare/PWM (CCP) module

contains a 16-bit register which can operate as:

– 16-bit Capture register

– 16-bit Compare register

– PWM Master/Slave Duty Cycle register

• Both the CCP1 and CCP2 modules are identical in

operation

12/12/2012

90

Capture mode

Compare mode

12/12/2012

91

PWM Mode (PWM)

• In Pulse Width Modulation mode, the CCPx

pin produces up to a 10-bit resolution PWM

output. Since the CCP1 pin is multiplexed with

the PORTC data latch, the TRISC<2> bit must

be cleared to make the CCP1 pin an output

12/12/2012

92

• PWM Period =

[(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value)

• PWM Duty Cycle =

(CCPR1L:CCP1CON<5:4>) •TOSC • (TMR2 Prescale)

12/12/2012

93

SETUP FOR PWM OPERATION

1. Set the PWM period by writing to the PR2
register.

2. Set the PWM duty cycle by writing to the
CCPR1L register and CCP1CON<5:4> bits.

3. Make the CCP1 pin an output by clearing the
TRISC<2> bit.

4. Set the TMR2 prescale value and enable Timer2
by writing to T2CON.

5. Configure the CCP1 module for PWM operation

12/12/2012

94

COMPARATOR MODULE

• The comparator module contains two analog

comparators. The inputs to the comparators

are multiplexed with I/O port pins RA0

through RA3, while the outputs are

multiplexed to pins RA4 and RA5. The on-chip

voltage reference can also be an input to the

comparators.

12/12/2012

95

12/12/2012

96

PIC CCS Compiler

12/12/2012

97

Data types

Multi-Precision Operations

12/12/2012

98

Multi-Precision Operations

Multi-Precision Operations

12/12/2012

99

Multi-Precision Operations

Built-in functions

12/12/2012

100

Built-in functions

Built-in functions

12/12/2012

101

Built-in functions

Built-in functions

12/12/2012

102

Built-in functions

Device Definition file

12/12/2012

103

Delay

Multiple source files

12/12/2012

104

Access to IO ports

Support for I/O

12/12/2012

105

Support for I/O

12/12/2012

106

Support for I/O

Timers

12/12/2012

107

Counter example

Interrupts

12/12/2012

108

Timer interrupt

PWM

12/12/2012

109

LCD

LCD

12/12/2012

110

RS232

ADC

12/12/2012

111

ADC

