Static dynamic characterstic
modeled by a constant-coefficient linear differential equation
"“5’“’ .a —L"m“ a, %m () =x{1)
Thmk of the Laplace domam as an extension of the Fourier transform
Fourier analysis is restricted to sinusoidal signals
« x(t) = sin(wt) = e-jwt
+ Laplace analysis can also handle exponential behavior
+ x(t) = e-otSin(wt) = e~(0 +jw)
Laplace transform of a time signal y(t) is denoted by
Lly(D] = Y(s)
The fundamental relationship is the one that concerns the
transformation of differentiation

L[%y(l)]-sY(SH(O)

Other useful relationships are

Impulse: LB()|=1 Decay: Llexp(at)|=(s-a)'
Step: L[u(l)]-% Sine: L[s-n{(..g)].;,._i"’Gr

Cosine: Llcos(wt)|= ;,‘57-

Applying the Laplace transform to the sensor model yields

1
Ramp: Llr(t)]= =

dy d’y
Lla, s b L d a,y(t)=x(t)
!

(a,8"+-a,8* +a5+a, )Y(s)= X(s)

L
Yis) 1

Gs)= X(s) a.s'o---a,s‘-a.soa,

Zero-order is the desirable response of a sensor

Y(s)
t)=k-x(t
yit)=k-x(t)= —— X(e)
First-order sensors
dy Y(s)__ 1 __k
&5t *ay(=x=35 X(s) as+a, rs+1

Step response
y(t) = Ak(1-exp(-t/T))
+ A'is the amplitude of the step
k (=1/a0) is the static gain, which determines the static response

+ T (=al/a0) is the time constant, which determines the dynamic
response

Ramp response
y(t) = Akt - AkTu(t) + AKT exp(-t/T)
Frequency response
- Better described by the amplitude and phase shift plots

MK, — 3%, )= Kx, + Bk,
]
Ms?X, (s) = X, (s)|K + Bs = Ms? |

U
Xo(s) _M KM
5°X,(s) K s°+5(B/M)+KM

First Order Systems: frequency response

The complete solution:  y(f)=Ce™" + \/ sm(ar tan™ @r)
1+(
Tm""'"' Steady state _ Frequency
b o response ~ response

If we do interest in only steady state response of the system, we can write the
equation in general form

(1) =Ce™"" + B(w)sinfat + ¢(o))
KA

B(w)= 5
) |I+(wr):| )
Hw)=—tan™ or

Where B(m) = amplitude of the steady state response and ¢(w») = phase shift

Ma@=2- 1
K4 +lor) |

The phase angle is

The amplitude ratio M(e)= ,(l—l #w) =—tan™ (wr)

V(or) +
( Dynamic error, 5(o) = M(®) -1: a measure of an inability of a system to )
L adequately reconstruct the amplitude of the input for a particular frequency

= Step response

= Frequency response
* Comer frequency w. =1/t
* Bandwidth

| Yo

Second-order sensors

2
e :ti{ e 3—¥+aoy(t) = IEZ; a,8° +;,s;+ =
Second-order transfer function
Y(s) _ Koo
X(s) s*=2Zw.s+w:

ac

with ks— C=
2:78,,5,

= Frequency response

I |

= Ramp response

Som MAWDY o

The equilibrium equation is:

n' Order ordinary linear differential equation with constant coefficient
d"’\'(l) dv(r)

“+a, —n—+a,\(l) by ——=

i d .. .

d™x(1) B, d™"x(t)
" dr” o 2

" o= +byx(r)

< —
~

F(f) = forcing function

is obtained by calculating the  roots of the algebraic characteristic

)

The solution

The solution y,, .
equation

Characteristic equation Iﬂ.,D" +a,, D"+ +aD+ay = OI

Roots of the characteristic equation:

Complementary-function solution: I

1. Real roots, unrepeated e

2. Real roots, repeated:

2 -1
each root s which appear p times (G GrCr* 4.4+ Cpy™ )"

3. Complex roots, unrepeated
the complex form: a + ib

Ce” sin(br +¢)

[C, sinbr + ¢, )+ Crsin(br+ ) + C,r* sin(br + é,)

4. Complex roots, repeated:
ot CP_,.""] sin(br+¢, ,)]e”

each pair of complex root which appear p times




Method of undetermined coefficients:

\}-W = Af (1) + B (1) + Cf (1) + |

Zero order system

All the a's and b's other than a, and b, are zero.
a,y(1) = byx(1)|— |¥(1) = Kx(1)

x
V=V .— here, K =V, /x,,
A‘"I
Where 0 = x < x,, and V, is a reference voltage

First order system
All the a's and b’s other than a,, a, and b, are zero.

where X = static sensitivity = b,/a,

dv(r)

+a,v(1) = byx(r)

r d"{'i(l” +3(r) = Kx(r)| <

Where K = by/a, is the static sensitivity
T =a,/a, is the system’s time constant (dimension of time)

a

First order system: step response
Assume for r < 0, y = y,, at time = 0 the input quantity, x increases instantly
by an amount 4. Therefore r > 0

0
.m):.u'(n:{(: :fo

l’dym
dr

+v(r)=KAU(r)

V() =Ce™"'" + KA

complete solution:

[ R
Voer Vopi
Transient Steady state

response response

Applying the initial condition, we get ' = y,-K.4, thus
gives

[ = K+ (yy — K)o

Here, we define the term error fraction as

_MO)-Kd_ y()-p(=) e
= K YOy ]
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Non-dimensional step response of first-order instrument

Determination of time constant

Ine, =23loge, = L
r

First order systems: Ramp Response
Assume that at initial condition, both y and x = 0, at time = 0, the input quantit
start to change at a constant rate 4. Thus, we have

{0 <0
x(r) =

qut >0

_MD-K4_ .
" (0)- K4

Slope =-1/r

Therefore r—d‘;') +v(r) = Kq 1U(1)
r
The complete solution: ¥(1)=Ce™" +Kq,(r-1)
Transient Steady state
response response

Applying the initial condition, gives  |y(1)=Kq, (=™ +1-71)

v(r) o ot
ya “quT® T
—_—— —
Transient Steady
eror state error

Measurement error e, =x(1)-

First order systems: frequency response

From the response of first-order system to sinusoidal inputs, x(r)= Asiner
we have v
Tty =Kisinon gy (D +1)y(r) = Kdsin or

o K4 -
The complete solution:  ¥(1)=Ce™" + sinlor —tan" or)
p J+(or)?
Transient Steady state _ Frequency
fesponse response = response

If we do interest in only steady state response of the system, we can write the
equation in general form

viry=Ce™" + Bla)sin|or + ¢(@)]

K4
Blo)=——=7
[1+(rar)’]
Hw)=—tan" or
Where B(w) = amplitude of the steady state response and ¢(w) = phase shift
1

M@)=2 -
Kt [i+(orf]”
1

The amplitude ratio M(w)= s The phase angle is  ¢(w)=-tan™(or)
Vier) +1

Dynamic error, 3(») = M(®) -1: a measure of an inability of a system to )

adequately reconstruct the amplitude of the input for a particular frequency J

Second Order Systems
In general, a second-order measurement system subjected to arbitrary input, x(1)

), ), L e

a, R a,T+a0J (1) = byx(t) —> [(aj + o D+l}\ ()= Kx(r)
1 d’y(t) 28 dy(0) | s
o dr ) o, di +3(t)=Kx()

The essential parameters

k=2 = the static sensitivity
0

% __ =the damping ratio, dimensionless

& a gy

[ = the natural angular frequency

Consider the characteristic equation
5
L p*+X pii=0
o), o,

This quadratic equation has two roots:

S ==¢o, 0, -1

Depending on the value of , three forms of complementary solutions are possible

(-c+dt Jar +C‘e(—.'-\/:’-n Jour

Overdamped (£ > 1): Yo =Cie

Voo (1) = Cie™™ + Cyte™

Vo (t)=Ce™™ siu(m" J1-¢t+ 0)

Case 2 Overdamped ({ > 1):
Su=bee i,

Case 3 Critically damped (L =1):

Critically damped (£ = 1):

Underdamped (C< 1): :

Case | Underdamped ({< 1):

- »2
S,=—¢0, 0,y -1

=0t jo,

S.=-0,




Second Order Systems: Step Response

LQ+££+} =KAU(n) h‘%

ol dr o, dr

-
For a step input x(1) ;T'DH V(1) = KAU(r)

With the initial conditions: y=0att =0+ dvdr =0att =0+

The complete solution:

W £+

Overdamped (£ > 1): o

Critically damped (L = 1): M =—(l+a,)e ™ +1
K4
. .. (T Bt ) Al fy_ 2
Underdamped (c<11: X0 = sal\i- oot g=sn(i-27)
vi=e
2
I . T —
Ringing period o o,
Ringing frequency: «r, = a2, ~f1 — 5"2
Second Order Systems: Ramp Response
1 d*y 2% d B
Forarampinput (=g U() —5—a+=—=2+y=Kg,U(r)
o, d° o,d
With the initial conditions: y = dvdr =0att =0+
The possible solutions:
W) _ 28, [, 282 -1-24y¢P -1 (< a)a
Overdamped: x W, "1‘ e
(T Jar
+ p
" G} 2, 0L a|
Critically damped: = =rl.,'-7 l—(I+T)e [
W) 244, : e — -‘
3 =gt ——=|1- smly1-C" o+ ¢)|
Underdamped: K o, | g v ‘,'_l
24.¢ Steady state | _
Steady state error = —= time lag = ==
o, ,

Second Order Systems: Frequency Response

The response of a second-order to a sinusoidal input of the form x(7) = Asinot
K4

WO =y, (N + i sin[(-)l + ¢(m)]

[l—((a‘('),,f]:ﬂl;{a (o"):‘

where @#w)=-tan™ ——=——
olo,-o,/o

The steady state response of a second-order to a sinusoidal input
Vaeaty (D = B(m)sm[r'x + a)({o)]
KA

- W2 H@)=—tan™
{]Aim {'),,i:]'HZ;(«) (r),,):;

B(w)=

olo,-0,/6

Where B(o) = amplitude of the steady state response and ¢(») = phase shift

B 1
M(@)=—= 7
K4 [l—((«) r'),,f]: +(2lo/ o, )"'.

The amplitude ratio The phase angle
1 2,

M(o)= H)=—tan™ &

= Nz
{l—lm o, i'rﬂl;m o,) |

Second Order System

arctan(—a, / &
Rise time: = (=@D,i0)

Maximum
overshoot:

. b3
Peak time: 7, =—

@,
fequency. NN
frequency:

Resonance M, = 1
o - -2
amplitude: 24\1—

where 6=Cm,.0, =m,\/1-<°. and ¢ = arcsiu(,}lf._,’l)

Dynamic Characteristics
H(s) = Y(s)/X(s)
Dynamic error, §(o) = M(o) -1

0.35
r, =
S
M(@) =~
Var'r’ +1
Dynamic error = (M (@) -1)x100% =| — ‘]‘ ~1|x100%
WWe'r'+1 )
Phase shift ¥ — — @r<tan e

olo,-0, o

Sensing Principles
» The capacitance of a parallel plate capacitor is

A sy
C-—‘d— 24, ¢

Strain gauges
Strain is a fractional change (AL/L) in the dimensions of
an object as a result of mechanical stress (force/area)
The resistance R of a strip of material of length L, cross-
section A and resistivity p is R=pL/A
Differentiating, the gauge factor G becomes

AR AL DA 8o AL Do o BRR o DD
RT A p MT =LY @
p p szovETeC e

l"I:" .

relationship between temperature difference & output voltage of a
thermocouple is nonlinear and is approximated by polynomial:

N .
AT = Z a,v",
n=0
NTC thermistor

wonecfy-2]

first-order, relationship between resistance and temperature is linear:

AR = kAT
R, =R, [1+a.T+0,T*+ a1 +|=R,[1+aT]

All semiconductor temperature sensors make use of the relationship between a
bipolar junction transistor's (BJT) base-emitter voltage to its collector current:

q Is

If we take N transistors identical to the first and allow the total current Ic to be
shared equally among them, we find that the new base-emitter
voltage is given by the equation

oO—eo—
Vee

vee - XTin(iS

ONE TRANSISTOR it NBISTORS.

Z*‘\T%’}

=50 o
q N:-is

I AVBE = VBE — VN = %IH(N) ‘




VPTAT -—-2—Tlmxl.

Capacitive-sensors

Charge (in coulomb, C)

voltage difference between !
two plates (in volts, V).

Capacitance (in farad, F)

force (in newton, N) =™ Fd
V=—= E d + the distance between two plates
q

electric field (in volt per meter, V - m™" or
newton per coulomb, N - C~') between two
parallel plates,

+ The voltage—current relationship of a capacitor is expressed by

V() = ! J I(t)dt

+ Capacitors in series: — = Z—
=XG

+ Capacitors in parallel. Ceq

Parallel-(flat) plate capacitor

Plate

_=r = S
- d

Ratio A/d is called the geometry factor for a parallel-plate capacitor.

g

Cylindrical (coaxial) capacitor

(=
1| s

Ratio 2nh/In(r,/r,) is the geometry factor for a cylindrical capacitor.

2nege 1
In(ry/ry)

(h > ry)

ne € ,f

AC =

Accelerometer f

(21, +1,)0

The level h of the dielectric material can be found by

= (€= Co)In(ra/my)

2mey(e, — 1)
Amplifier
G
Vi PIOPOIONAI0 A Vo =~V = — 22y v y
out P portlona out ~ Cf in = Cfd in - v,
.
( Gd ‘-‘
" v
Vou: Proportional to d V"‘=_f!"‘“=_r.,';_;|l"“ o~ "
T
AC Bridge

+ The capacitances between the plates C;
and €, comprise a voltage divider circuit.

. Equmalento:apa::ltanceC vy

+ The output voltage V,,, is

Ve = —Vip + 2Vip X — 21— i
out in in [ + C, G v
G -G V. L—O —0
- in —
C+C; T v [}

+ The output voltage V. is
C -G, G
Vout =———Vin Va G

Cr
where C; and C, are the capacitances

. -L O out
between the plates. T, Tj ;

+ For the balance condition: A
VB = VD 4 N
LI
+ Therefore, @) s :n,‘—m
Z N )
Ve =V = ZZa =252, R Mz,
T Sz3+z s L

+ Since impedance is a complex number,
Re(Z1Z3) = Re(Z;Z4)
Im(Z,Z3) =1m(Z,Z,)
The complex impedance balance condition can also be expressed in polar form:
[ |Z1||Z3| = |Zz||24|

L91 + L03 = Lez + L94
Comparison Bridge

+ Acomparison bridge measures an unknown capacitance or inductance by
comparing it with a known capacitance or inductance.

+ Under the bridge balance condition: n

RZ R4 R‘,Ltf J "'\(_' Unknown
Ry=— T s
Ry

_kG
S R4

Bridges

4]

o, ]

ac \

" " N
f—é-I:)—{ ‘
= " i
k‘

The output voltage of the circuit is

ReR

=

U

il

3 5 8 8 3 9§ 3 =
2o p

VusvccR R =
-V. R.(1-x)

1+x
“R,(1+x)+Rk =V

C1ex+k

= What is the sensitivity of this
circuit? “
dav, d 1+x
— VYV, ——|a -
™ dx[ °"1~xok] ket
(1-x‘k]—(1—xl‘

=V,
= ([1+x+k

o 1 het0
A S
“([1+x+k)f Pt

= For which R, do we achieve
maximum sensitivity?

(1+x=kf -k2(1+x~k)
(1+x+k)*

=0=k=1+x

K
< A x <k} J'°=

o This is, the sensitivity is maximum
when R =Rg



Vee 1

o Null mode
= R, adjusted until the balance condition is
met:
R;
V..=0=R,=R, R
= Agdvantage: maasurement is independent
of fluctuations in Vg,
o Deflection mode
= The unbalanced voltage V_, is used as

the output of the circuit
R R
Vo, 8 Vo] et 4
- oc[R,-R, R,+R‘J

« Advantage: speed

= Assumptions -
« Want to measure sensor fractional o
resistance changes Rg=R,(1+x) “ -t
« Bridge is operating near the 3 -t
balance condition: 3
L
Y
R‘ R: .‘.' LAl
= The output voltage becomes "
il R,(1+x) R L
= Rk+R;(1+x) Rk+R,
=V, _(1:.’11___1_. vk
“UAk+(1+x) k+1) “([+k)1+k+x)
What is the sensitivity of the Wheatstone
bridae?
NV =] o s
S “dx((1—»k)(14—k-x)
K1k 1+k - x)—kx(1+-k)
= Vo -

A+ (1+k+x)
<
ey (T+k =x)

= The balance condition becomes

4.z

Z z Vic @

o which yields two equalities, for real and \ / Z,
imaginary components

RR, - XX, =R,R, = X,X,
RX,+XR, =R, X, + X;R,

Interfacing Circuits_transistor amplifiers
Diodes

Approximations: I

- Forward Bias:
1F VvV, >V, (~YO0.6-0.7 V)
== Diode conducts (short circuit)
- Reverse Bias:
1€V, <=V, <V,

== Diode does mnot conduct
(open circuit)

RS
to W
Ve — Vy
Vs Current: R—
-0
Ry Ry
v, | Vv,
N Vour N Vour

+ +

Vour = Vin = Vpeax + Voc Vour = Vin + Vpeak = Voc

= Load voltage equals V, ifvthe Zener diode is in the revers
breakdown region: i, = -~

TR
= Load current comes from KCL: i, =i.—,
Vs =V

Rq

= Source currentis: is =

= Zener diode is usually rated by its maximum allowable
power dissipation: 7z = iz mar V2

Vin
R
Vout = R +R, Vin
Vuu[ = Vm = iC Rl

V..t is dependenton i,
which in turn is controlled
by adjustments to 7,

What if we could control i,
with a small input signal?

BJT i
ipg = ic + ip B
L ip
— = A i
lc lc
N 1 ==
Xac ﬁdc
Zdc Bac
o —— A — —————
Bdg ot dc Bac+1

Three operation modes:

Active Linear — Current Amplification
ic=ig P
Cutoff — Open Switch (no collector current)

ic =0, Rcg =00

Saturation — Closed Switch (V. — 0)

ic = icQimit), Rce = 0

Active Linear — Current Amplification

Vi Vi & Vg == V3 ) == i, i



~Power dissipated: P = .-V,
Cutoff — No collector current flow.
Ve <Vy = ig=0= ir=0; Vep =0
Saturation — Closed Switch.

ic aimit)

(Vnr =V &ig > B

) = Vee= Vsar
- Point A [i, =~ 0 or small V(< 0.6 V)]

— transistor is cutoff

—iig = ig = 0= Voyr = VCC

— Switch is open!

- Point B [i, > 1',‘.‘. O large V,y (> 0.7 V)]
— transistor is saturated.

- Vour = ~ 0.2 V (very small!)

VCE(sat)
— Switch is closed!

T Vin — VIII'(\/\I'! . . Vee — Vee(sar)
= "’Ie ' b Rlv
P iclimin
= 10
- turnN-ON time ton tp + tg
- turn-0OFF time tors te + tp
“ 7 Ve
Rl
+ Re=(Vee = Vieo)/liep = (1
Viw
: = Rg = (V,, — 0.7)/(l ¢5/10)
MOSFET

Four operation region:
. Cutoff state - Transistor is turned OFF
Ves < Vr=> lp =0; Vps=Vpp
- Ohmic state - Linear (or triode) region

WVgs > Vr & Vps < Vs — Vp <K Vpp) = ip = Vpp/Rp ;

~ ip is controlled by the drain circuit Ip(MmA)

~ From D to S can be viewed as closed with a
voltage-controlled (small) resistor

L Constant current — Saturation (or active) region
(Vs > Vr & Vps > Vs — V) = ip x (Vgs — l’,‘)-'
~ ip is controlled by the gate-source voltage
~ Power dissipated: P = i, - Vps
- Breakdown — Transistor will get VERY HOT!
- Point A C V), < Vy D
~ transistor is cutoff
- iy =~ ig = O = Vgour = Vpp
~ Switch open!
- Point B C V,, > V; )
~ transistor is in Ohmic region
= Vour = Vop — Vps = Vpp — ip(V¢g, )Ry
~ Switch closed!

OPAMPS and its applications
Eo = Go(ET — E™)

« Inverting Amplifier = Non-inverting Amplifier
R xe

E

Eo R, R,
= —=2 = [E,=——2F
E, R, R,

efficiency in terms of power
l|l)

y =2

Pin

Inputimpedance i th rai o nput voltage to nput | y .
current ; T R
7,2 5 §

s
= Voltage comparator

Vour

Vin

Vour = Veesign(V,,) Vee

= Voltage follower
e What is the main use of this circuit?
= Buffering

Vou  Nan=Va
Vin

» Non-inverting amplifier ® Inverting ampifier

R, R
R,

R, v,

h R,
v, Vv, ==V,
. v_‘.[u:‘_'}J_‘ R - "R,
Vi

= Summing amplifier

= Differential amplifier
R

=R VR s B [ TR
— (Vo — V) o = R Vet Ry

= Integrating amplifier = Differentiating amplifier

s ]

out

1 1
Vo == fam Vo =~ ) Vet

= Current-to-voltage = Voltage to current

R
'll
vy
ﬂ“‘ - ”

= Consider the difference amplifier we saw in the previous lecture

= We define COMMON-MODE and DIFFERENCE-MODE voltage as

N V: ;V.

Ve mV;=V,

= As a result of a mismatch in the resistors (R',= R,), the
differential inputs may not have the same gain

L. vV, V,
V=GV, =V,) = GV, —G,V, = G,[-—zla- s ]-G,(—214~ Vi ]-
= Ve[ 258 | Veu(6: =61 = - VoG + Ve S

= We define COMMON-MODE REJECTION RATIO as
G,+G, ]

CMRR = 20Iog,o[ §° )- 20|og,,(

em

2(G; -G,)

Vow = mViy, + W P=IR Viw = mR; + V
~Re= Rt + Ry = Ry(1 + i)

P = P,AT I1=[PR'": V = IR Vi, —JFPR Vg = IR, R2=V/I

._ Vin-Va _ Va-Vout
[ — ——
R1 R2

va:o

Vin _  Vout

R R2




