Data Acquisition I

- Architecture of DAQ systems
- Signal conditioning
- Aliasing

Architecture of data acquisition systems

Signal conditioning

- Instrumentation amplifiers
- Filters
- Integrators/differentiators

Instrumentation amplifiers

Consider the difference amplifier we saw in the previous lecture

We define COMMON-MODE and DIFFERENCE-MODE voltage as

Instrumentation amplifiers

■ As a result of a mismatch in the resistors (R'_k≠ R_k), the differential inputs may not have the same gain

$$V_{0} = G(V_{2} - V_{1})^{H_{c}^{'} \neq R_{c}} G_{2}V_{2} - G_{1}V_{1} = G_{2}\left(-\frac{V_{D}}{2} + V_{CM}\right) - G_{1}\left(\frac{V_{D}}{2} + V_{CM}\right) =$$
$$= -V_{D}\left(\frac{G_{2} + G_{1}}{2}\right) + V_{CM}(G_{2} - G_{1}) = -V_{D}G_{D} + V_{CM}G_{CM}$$

We define COMMON-MODE REJECTION RATIO as

$$CMRR = 20log_{10} \left(\frac{G_{D}}{G_{CM}} \right) = 20log_{10} \left(\frac{G_{2} + G_{1}}{2(G_{2} - G_{1})} \right)$$

- CMRR is, in practice, a function of frequency, and its magnitude decreases with increasing frequency
- An additional shortcoming of the difference amplifier is its LOW INPUT IMPEDANCE

Instrumentation amplifiers

- The term INSTRUMENTATION AMPLIFIER is used to denote a difference amplifier with
 - High gain (INA2126)
 - Single-ended output
 - High input impedance
 - High CMRR
- High input impedance may be achieved by buffering the differential inputs
 - This solution, however, requires high CMR both in the followers and in the final opamp
 - Otherwise, since the input buffers have unity gain, all the CM rejection must come in the output op-amp, requiring precise resistor matching

Common mode rejection ratio

- A better solutions is the "standard" instrumentation amplifier shown below
 - Input stage provides high GD and unity GCM
 - Close resistor (R2) matching is NOT critical
 - As a result, the output opamp (U3) does not require exceptional CMRR and resistor matching in U3is not critical
 - Offset trimming can be done at one of the input op-amps

INA...

$$A = \left(1 + \frac{2R}{R_a}\right)\frac{R_3}{R_2}$$

INA126.....

DESIRED GAIN (V/V)	R _g (Ω)	NEAREST 1% R _g VALUE	
5	NC	NC	
10	16k	15.8k	
20	5333	5360	
50	1779	1780	
100	842	845	
200	410	412	
500	162	162	
1000	80.4	80.6	
2000	40.1	40.2	
5000	16.0	15.8	
10000	8.0	7.87	

APPLICATIONS

- INDUSTRIAL SENSOR AMPLIFIER: Bridge, RTD, Thermocouple
- PHYSIOLOGICAL AMPLIFIER: ECG, EEG, EMG
- MULTI-CHANNEL DATA ACQUISITION
- PORTABLE, BATTERY OPERATED SYSTEMS

PIN CONFIGURATION (Single)

V+

Filters

- Filters are used to remove unwanted bandwidths from a signal
- Filter classification according to implementation
 - Active filters include RC networks and op-amps
 - Suitable for low frequency, small signal
 - Active filters are preferred since avoid the bulk and nonlinearity of inductors and can have gains greater than 0dB
 - However, active filters require a power supply
 - Passive filters consist of RCL networks
 - Simple, more suitable for frequencies above audio range, where active filters are limited by the op-map bandwidth
- Digital filters
 - DSP is beyond the scope of this course

Filters

- Filter classification according to frequency response
 - Low-pass filter
 - n High-pass filter
 - Band-pass filter
 - Band-stop (Notch)

Low- and high-pass filters

Low pass filters

High pass filters

From [Rem96]

From [Rem96]

 R_{2}

 $C_1 = C_2$

ł٩.

 (\mathbf{c})

O.

Out

Band-pass and band-stop filters

- Band-pass
 - · High-pass and low pass in series
 - High-pass should usually precede
 - · Corner frequency of low-pass must then be higher
 - If these are passive filters they should be buffered in between

Band-stop

- High-pass and low-pass in
 - parallel followed by a summer
 - Corner frequency of high-pass must be higher

Types of Filters

normalized frequency (rad/s)

Attenuation curves for Butterworth LPF

LC Low Pass Filter network

π

Т

Note: Values of L_n and C_n are for a 1- Ω load and -3-dB frequency of 1 rad/s and have units of H and F. These values must be scaled down. See text.

Example

Suppose that you want to design a low-pass filter that has a $f_{3dB} = 3000$ Hz (attenuation is -3 dB at 3000 Hz) and an attenuation of -25 dB at a frequency of 9000 Hz—which will be called the *stop frequency* f_{s} . Also, let's assume that both the signal-source impedance R_s and the load impedance R_L are equal to 50 Ω . How do you design the filter?

Step 1: Normalization

Step 2&3: Pick Response Curve and determine number of Poles

n=3 from the curve for Butterworth

Step 4: Create Normalized Filter

Step 5: Frequency and Impedance Scaling

Active Filter Design

Basic two-pole section

Basic three-pole section

Normalized Curves

ORDER n	NUMBER OF SECTIONS	SECTIONS	C 1	C ₂	C ₃
2	1	2-pole	1.414	0.7071	
3	1	3-pole	3.546	1.392	0.2024
4	2	2-pole 2-pole	1.082 2.613	0.9241 0.3825	
5	2	3-pole 2-pole	1.753 3.235	1.354 0.3090	0.4214
6	3	2-pole 2-pole 2-pole	1.035 1.414 3.863	0.9660 0.7071 0.2588	
7	3	3-pole 2-pole 2-pole	1.531 1.604 4.493	1.336 0.6235 0.2225	0.4885
8	4	2-pole 2-pole 2-pole 2-pole	1.020 1.202 2.000 5.758	0.9809 0.8313 0.5557 0.1950	

TABLE 8.2 Butterworth Normalized Active Low-Pass Filter Values

Exqample

Suppose that you wish to design an active lowpass filter that has a 3-dB point at 100 Hz and at least 60 dB worth of attenuation at 400 Hz which we'll call the *stop frequency f_s*.

Solution

High Pass Filter - Passive-

Suppose that you want to design a high-pass filter that has an *f3dB* = 1000 Hz and an attenuation of at least -45 dB at 300 Hz—which we call the *stop frequency fs. Assume* that the filter is hooked up to a source and load that both have impedances of 50 Ω and that a Butterworth response is desired

How do you design the filter?

Solution

To convert the low-pass into a high-pass filter, replace the inductors with capacitors that have value of 1/L, and replace the capacitors with inductors that have values of 1/C. In other words, do the following:

$$L_{2(\text{transf})} = 1/C_{2(\text{table})} = 1/1.6180 = 0.6180 \text{ H}$$

 $L_{4(\text{transf})} = 1/C_{4(\text{table})} = 1/1.6180 = 0.6180 \text{ H}$

n=5 from the curves

Start with a "T" low-pass filter...

Transform low-pass filter into a high-pass filter...

$$\begin{split} C_{1(\text{transf})} &= 1/L_{1(\text{table})} = 1/0.6180 = 1.6180 \text{ F} \\ C_{3(\text{transf})} &= 1/L_{3(\text{table})} = 1/2.0 = 0.5 \text{ F} \\ C_{5(\text{transf})} &= 1/L_{5(\text{table})} = 1/0.6180 = 1.6180 \text{ F} \end{split}$$

Now Scaling

Next, frequency and impedance scale to get the actual component values:

$$C_{1(\text{actual})} = \frac{C_{1(\text{trans})}}{2\pi f_{3\text{dB}}R_L} = \frac{1.618 \text{ H}}{2\pi (1000 \text{ Hz})(50 \Omega)} = 5.1 \ \mu\text{F} \qquad L_{2(\text{actual})} = \frac{L_{2(\text{trans})}R_L}{2\pi f_{3\text{dB}}} = \frac{(0.6180 \text{ F})(50 \Omega)}{2\pi (1000 \text{ Hz})} = 4.9 \ \text{mH}$$

$$C_{3(\text{actual})} = \frac{C_{3(\text{trans})}}{2\pi f_{3\text{dB}}R_L} = \frac{0.5 \text{ H}}{2\pi (1000 \text{ Hz})(50 \Omega)} = 1.6 \ \mu\text{F} \qquad L_{4(\text{actual})} = \frac{L_{4(\text{trans})}R_L}{2\pi f_{3\text{dB}}} = \frac{(0.6180 \text{ F})(50 \Omega)}{2\pi (1000 \text{ Hz})} = 4.9 \ \text{mH}$$

$$C_{5(\text{actual})} = \frac{C_{5(\text{trans})}}{2\pi f_{3\text{dB}}R_L} = \frac{1.618 \text{ H}}{2\pi (1000 \text{ Hz})(50 \Omega)} = 5.1 \ \mu\text{F}$$

Impedance and frequency scale high-pass filter to get final circuit

High Pass Filter-Active-

suppose

that you want to design a high-pass filter with a –3-dB frequency of 1000 Hz and 50 dB worth of attenuation at 300 Hz. What do you do?

n=5 from the curves

Normalized low-pass filter

Next, the normalized low-pass filter must be converted into a normalized high-pass filter. To make the conversion, exchange resistors for capacitors that have values of 1/R F, and exchange capacitors with resistors that have values of $1/C \Omega$.

Follow.....

Bandpass Filter Design-Wide Band-Passive-

When is the filter wide band??

If f_2/f_1 is greater than 1.5,

Suppose that you want to design a bandpass filter that has -3-dB points at $f_1 = 1000$ Hz and $f_2 = 3000$ Hz and at least -45 dB at 300 Hz and more than -25 dB at 9000 Hz. Also, again assume that the source and load impedances are both 50 Ω and a Butterworth design is desired.

Low-pass	-3 dB at 3000 Hz
	–25 dB at 9000 Hz
High-pass	–3 dB at 1000 Hz
	–45 dB at 300 Hz

Bandpass Filter Design-Wide Band-Active-

Suppose that you want to design a bandpass filter that has -3-dB points at $f_1 = 1000$ Hz and $f_2 = 3000$ Hz and at least -30 dB at 300 and 10,000 Hz. What do you do?

 $\frac{f_2}{f_1} = \frac{3000 \text{ Hz}}{1000 \text{ Hz}} = 3$

Low-pass: -3 dB at 3000 Hz -30 dB at 10,000 Hz High-pass: -3 dB at 1000 Hz -30 dB at 300 Hz

The steepness factor for the low-pass filter is

$$A_s = \frac{f_s}{f_{3dB}} = \frac{10,000 \text{ Hz}}{3000 \text{ Hz}} = 3.3$$

while the steepness factor for the high-pass filter is

Follow...

Narrow Bandwidth BPF-Passive (optional)

Suppose that you want to design a bandpass filter with -3-dB points at $f_1 = 900$ Hz and $f_2 = 1100$ Hz and at least -20 dB worth of attenuation at 800 and 1200 Hz. Assume that both the source and load impedances are 50Ω and that a Butterworth design is desired.

Since $f_2/f_1 = 1.2$, which is less than 1.5, a narrow-band filter is needed.

geometric center frequency $f_0 = \sqrt{f_1 f_2} = \sqrt{(900 \text{ Hz})(1100)} = 995 \text{ Hz}$

Next, compute the two pair of geometrically related stop-band frequencies by using

 $f_{a}f_{b} = f_{0}^{2}$ $f_{a} = 800 \text{ Hz} \qquad f_{b} = \frac{f_{0}^{2}}{f_{a}} = \frac{(995 \text{ Hz})^{2}}{800 \text{ Hz}} = 1237 \text{ Hz} \qquad f_{b} - f_{a} = 437 \text{ Hz}$ $f_{b} = 1200 \text{ Hz} \qquad f_{a} = \frac{f_{0}^{2}}{f_{b}} = \frac{(995 \text{ Hz})^{2}}{1200 \text{ Hz}} = 825 \text{ Hz} \qquad f_{b} - f_{a} = 375 \text{ Hz}$ Choose the pair having the least separation, which represents more severe requirements-375 Hz

Follow.....

Low-pass bandpass relationship

Normalized low-pass response

Follow.....

Impedance and frequency scaled low-pass filter

The important part comes now. Each circuit branch of the lowpass filter must be resonated to f_0 by adding a series capacitor to each inductor and a parallel inductor to each capacitor. The *LC* resonant equation is used to determine the additional compo-Final bandpass filter nent values:

$$L_{\text{(parallel with }C1)} = \frac{1}{(2\pi f_0)^2 C_{1(\text{actual})}} = \frac{1}{(2\pi \cdot 995 \text{ Hz})^2 (15.92 \ \mu\text{F})} = 1.61 \text{ mH}$$

$$L_{\text{(parallel with }C3)} = \frac{1}{(2\pi f_0)^2 C_{3(\text{actual})}} = \frac{1}{(2\pi \cdot 995 \text{ Hz})^2 (15.92 \ \mu\text{F})} = 1.61 \text{ mH}$$

$$C_{\text{(series with }L2)} = \frac{1}{(2\pi f_0)^2 L_{2(\text{actual})}} = \frac{1}{(2\pi \cdot 995 \text{ Hz})^2 (79.6 \text{ mH})} = 0.32 \ \mu\text{F}$$

BPF-Narrow Band-Active Design

Suppose that you want to design a bandpass filter that has a center frequency $f_0 = 2000$ Hz and a -3-dB bandwidth $\Delta f_{BW} = f_2 - f_1 = 40$ Hz. How do you design the filter?

Since $f_2/f_1 = 2040 \text{ Hz}/1960 \text{ Hz} = 1.04$, No Cascading

Narrow-band filter circuit $Q = \frac{f_0}{f_2 - f_1} = \frac{2000 \text{ Hz}}{40 \text{ Hz}} = 50$ $R_1 = \frac{Q}{2\pi f_0 C}$ $R_2 = \frac{R_1}{2Q^2 - 1}$ $R_3 = 2R_1$ $R_1 = \frac{50}{2\pi (2000 \text{ Hz}) (0.0)}$

 $ZQ^{2} - 1$ $R_{1} = \frac{50}{2\pi (2000 \text{ Hz}) (0.01 \text{ }\mu\text{F})} = 79.6 \text{ } \text{k}\Omega$ $R_{2} = \frac{79.6 \text{ } \text{k}\Omega}{2(50)^{2} - 1} = 400 \text{ }\Omega$ $R_{3} = 2(79.6 \text{ } \text{k}\Omega) = 159 \text{ }\text{k}\Omega$

Choose convenient value of C, let it

Final Design ...

Final filter circuit $0.01\mu F$ R_3 159K $V_{in} \circ V_{out}$ R_2 400Ω + V_{out}

Passive Notch Filter (optional)

EXAMPLE

Suppose that you want to design a notch filter with -3-dB points at $f_1 = 800$ Hz and $f_2 = 1200$ Hz and at least -20 dB at 900 and 1100 Hz. Let's assume that both the source and load impedances are 600Ω and that a Butterworth design is desired.

First, you find the geometric center frequency:

 $f_0 = \sqrt{f_1 f_2} = \sqrt{(800 \text{ Hz})(1200 \text{ Hz})} = 980 \text{ Hz}$

Next, compute the two pairs of geometrically related stop-band frequencies:

$$f_a = 900 \text{ Hz} \qquad f_b = \frac{f_0^2}{f_a} = \frac{(980 \text{ Hz})^2}{900 \text{ Hz}} = 1067 \text{ Hz}$$

$$f_b - f_a = 1067 \text{ Hz} - 900 \text{ Hz} = 167 \text{ Hz}$$

$$f_b = 1100 \text{ Hz} \qquad f_a = \frac{f_0^2}{f_b} = \frac{(980 \text{ Hz})^2}{1100 \text{ Hz}} = 873 \text{ Hz}$$

$$f_b - f_a = 1100 \text{ Hz} - 873 \text{ Hz} = 227 \text{ Hz}$$

Choose the pair of frequencies that gives the more severe requirement—227 Hz.

Follow....

Follow...

Actual high-pass filter

Final bandpass filter

Active Notch Filter -Wide-Band

Basic wide-band notch filter

For example, if you need a notch filter to have – 3-dB points at 500 and 5000 Hz and at least –15 dB at 1000 and 2500 Hz.

Narrow-Band Notch Filter

Improved notch filter

Suppose that you want to make a "notch" at $f_0 = 2000$ Hz and desire a -3-dB bandwidth of $\Delta f_{BW} = 100$ Hz. To get this desired response, do the following: First determine the *Q*:

 $Q = \frac{\text{``notch'' frequency}}{-3\text{-dB bandwidth}} = \frac{f_0}{\Delta f_{BW}} = \frac{2000 \text{ Hz}}{100 \text{ Hz}} = 20$

$$R_1 = \frac{1}{2\pi f_0 C} \qquad \text{and} \qquad K = \frac{4Q - 1}{4Q}$$

Now arbitrarily choose *R* and *C*; say, let R = 10 k and $C = 0.01 \mu$ F. Next, solve for R_1 and *K*:

$$R_{1} = \frac{1}{2\pi f_{0}C} = \frac{1}{2\pi (2000 \text{ Hz})(0.01 \text{ }\mu\text{F})} = 7961 \Omega$$
$$K = \frac{4Q - 1}{4Q} = \frac{4(20) - 1}{4(20)} = 0.9875$$

Anti-aliasing

- The sampling theorem
 - A continuous signal can be represented completely by, and reconstructed from, a set of instantaneous measurements or samples of its voltage which are made at equally-spaced times. The interval T(=1/fs) between such samples must be less than one-half the period of the highest-frequency component fMAX in the signal
 - In other words: you must sample at least twice the rate of the maximum frequency in your signal to prevent aliasing (Fs \geq 2FMAX)
 - The sampling rate Fs=2Fмах is called the Nyquist rate

Anti-aliasing

- The effects of aliasing can also be observed on the frequency spectrum of the signal
- In the figures below
 - F₁ appears correctly since F₁≤ F₈/2
 - F₂, F₃ and F₄ have aliases at 30, 40 and 10Hz, respectively
 - You can compute these aliased frequencies by <u>folding</u> the spectrum around F_g/2 or with the expression

FIGURE 117.5 Spectral of signal with multiple frequencies. FIGURE 117.6 Spectral of signal with multiple frequencies after sampled at fs = 100 Hz.

Anti-aliasing filters

- An anti-aliasing filter is a low-pass filter designed to filter out frequencies higher than the sampling frequency
 - An anti-aliasing filter should have
 - Steep cut-off and
 - Flat response in the frequency band
- Typical filters are:
 - Butterworth: flattest response in the frequency band but phase shifts well below the break frequency
 - Bessel: phase shift proportional to frequency, so the signal is not distorted by the filter
 - Recommended for anti-aliasing if it is important to preserve the waveform
 - Chebyshev: steepest cut-off but it has ripples in the band-pass

