Recreated 2015 By Odai Salman

Experiment #6 (HW#1)
Introduction to PIC Microcontroller

1. Prerequisites

ENCS 538, C programming language.

2. Objectives

e To be familiar with simple microcontroller (PIC)
e How to use MPLAB software to write C code and then generate the hex file.
e How to deploy the hex file on PIC using USB programmer.

3. Background

A PIC microcontroller is a processor with built in memory and RAM and you can use it to control
your projects (or build projects around it). The microcontrollers are used due to many reasons,
which are:

a. Cost: Microcontrollers with the supplementary circuit components are much cheaper than
a computer with an analog and digital I/O.

b. Size and Weight: Microcontrollers are compact and light compared to computers.

c. Simple applications: If the application requires very few number of I/O and the code is
relatively small, which do not require extended amount of memory and a simple LCD
display is sufficient as a user interface, a microcontroller would be suitable for this
application.

d. Reliability: Since the architecture is much simpler than a computer it is less likely to fail.

e. Speed: All the components on the microcontroller are located on a single piece of silicon.
Hence, the applications run much faster than it does on a computer.

Moreover, it saves building a circuit that has separate external RAM, ROM and peripheral chips.
This really means that the PIC is a very powerful device that has many useful built in modules

e.g.

« EEPROM.

e Timers.

e Analogue comparators.
« UART.

Even with just these four modules (note these are just example modules - there are more) you can
make up many projects e.g.:

e Frequency counter - using the internal timers and reporting through UART (RS232) or
output to LCD.

e (Capacitance meter - analogue comparator oscillator.

e Event timer - using internal timers.

Recreated 2015 By Odai Salman

e Event data logger -capturing analogue data using an internal ADC and using the internal
EEPROM for storing data (using an external [2C for high data storage capacity.

The PIC 16f877A will be used in this experiment because it is considered one of the most famous
PIC microcontrollers and it's easy to see why - it comes in a 40 pin DIP pinout and it has many
internal peripherals. The 40 pins (see Figure 1) make it easier to use the peripherals as the
functions are spread out over the pins. This makes it easier to decide what external devices to
attach without worrying too much if there are enough pins to do the job.

One of the main advantages is that each pin is only shared between two or three functions, so it
is easier to decide what are the pin functions (other devices have up to 5 functions for a particular
pin). However, the main disadvantages of the device is that it has no internal oscillator so you
will need to add an external crystal of other clock source.

PDIP
MCLRVPP ——a=] 1 '_J" 40 [=—8= RE7/FPGED
RANAN] =] = 29 [] - REEPGC
RATANT -] 28 [] bt RES
RAZIANZNVREF- -a—p=[] 4 37 [0 =—== REBE4
RAZANINVREF+ ot [5 25 [] st RE3FGM
RAATOCK! —ae[] & 35 [] —a= REZ
RAGANSES =—u=[]7 -t 24 [] =—s= RE1
REDROVANS -t—p-[] 2 r~ 23 [] st REDAMT
RE1AWRIANG —#=[] o 2 whe—vm
REZ/CSANT -a—=[] 10 t 21 [] -— vss
VDD —— [11 &2 w[=—= roTrser
V52— [] 12 w0 20 [] =—m= ROG/PSPE
OSC1CLKIN —=[] 13 E 28 [] =—== ROGPSPS
OSCZCLKOUT st] 14 e 27 [] == RD4/PSP4
RCOT10SOTICK! w—a=[] 15 26 [] =—== RCTRXOT
RCITIOSICCP2 a—me[] 16 25 [] w—e= RCETHCK
RCZLCCP! a—m] 17 24 [] w—w RCEEDO
RCYSCKSCL -—=[] 18 23 [] =—== RC4/SDISOA
ROOPSPD a—e] 10 72 [w—e RO3/PSP3
RO1PSF1 -t [] 20 21 [] b= ROZ/PSP2

Figure 1: PIC 16F877 Microcontroller Pinout

4. Procedure

4.1 Programming Using MPLAB

1. Run the MPLAB IDE software.

2. Create 3 files: delay.h, delay.c and ledf.c by copying the attached code at the experiment
codes section.

3. Place these files into a new folder and name it ledsDemo.

Click on Project then Project Wizard then press Next.

5. In “Step One: Select a device”, choose the PIC16F877A then click Next. In case you didn’t
choose the right device, you can always be able to change it by clicking on Configure then
Select Device...

b

Recreated 2015 By Odai Salman

6. In “Step Two: Select a language toolsuite”, choose HI-TECH Universal Toolsuite then
click Next. In case you didn’t set the right toolsuite for the compiler, you can always change
it by clicking on Project, then Select Language Toolsuite...

7. In “Step Three: Create new project, or reconfigure the active project”, tick Create New
Project File and choose the ledsDemo folder and name your project ledsDemo, click Save.

8. In “Step Four: Add any existing files to your project”, tick the three files you already
created in step 2 of the procedure and click Add >> then Next.

9. Compile the project and you should get an Output that ends with “Build Successful”
message.

10. Once step 9 is accomplished successfully, a HEX file will be generated within the project
folder. You can use that HEX file to simulate your program and download it on a PIC device.

4.2 Simulation Using Real PIC Simulator

Sometimes before downloading or deploying the generated hex on PIC microcontroller, you
should verify and ensure that the functionality of the program is working well as the requirements
need. As aresult of that, in this section, a simulator called Real PIC Simulator will be introduced
to see how the program is simulated using the generated HEX file as an input. The Real PIC
Simulator is usually used for simple simulations. Its weaknesses are that it doesn’t provide any
actual representation of the connections applied within the real-time project and that it lacks so
many IC modules. Real PIC Simulator is used to provide beginners with so much basic approach
to start from.

Open the Real PIC Simulator, then load the HEX file from File menu.
Go to Visual tab, and the drag and drop LED Bar inside the empty space.
Left-Click on any LED and then select the appropriate pin that you need.
Press Play Icon and observe the results.

b=

4.3 Simulation Using Proteus ISIS

The Proteus ISIS is a program that is also used to run real-time simulation with providing ICs and
connections details. The Proteus ISIS also provides a large library of modules such as sensors,
timers, basic circuitry components... etc. In other words, it provides the developer with the
capability of representing an actual real-time application at the simulation time with every single
detail about the circuit implementation. The Proteus ISIS is used by professionals and it is highly
recommended.

1. Open Proteus.

2. Click on the ISIS icon viewed within the provided toolbars.

3. Click on the P symbol on the left panel “the components panel”. This panel is used to list all
the components you intend to use within your project.

4. Pick the components CAP, CRYSTAL, LED-BLUE, PIC16F877A and RES as listed in
Figure 2.

Recreated 2015 By Odai Salman

Figure 2: Proteus ISIS Components List

5. You can get POWER and GND from the “terminal mode” components as in Figure 3.

Figure 3: Proteus ISIS Terminal Mode

6. Apply the connections and components values as in Figure 4.

Recreated 2015 By Odai Salman

Ui R D1
13m M) w1
Tan| OSCUCLKIN RBOANT =% ’ #
OSC2ICLKOUT RE1 | 5x 330
REZ | == - R8s LUE
RANAND REZPGM == #
RATIAN1 RE4 = 330
RA2IANZVREF-/CVREF RB5 (=0 . S g LUE
RA3JANINVREF+ REBIFGC [== 1 #
—o| RA4TOCKICIOUT RET/IPGD 330
X1 RASIAN4ESIC20UT he - R LUE
& T __ RCOTIOSOMICH 5= 1 o
D 3 REVANSRD RCATIOSICCR2 [o— 330
——— RE1/ANBWR RCZICCF1 (oo =TEXT= LED-BLUE
CRYSTAL REZIANTICS RCHSCKISCL 15— <STEXT=
= =i RC4SDNSDA |5
MCLR/VppiTHY RCS/SDO
=02 — C1 RCETHCK :g
22p 22p RCT/RX/DT
™ STENT=Im TR e
RDOIPSFO 15==
ROMPSF1 5=
RD2/PSF2 oo
ROPSFS 152>
- RD4/PSF4 o=
T ROSIPSFS 15=2
ROGIPSFE 15=r
RO7/IPSFT
FIC1BFETTA
KTEXTSH

Figure 4: LEDs Interfacing

7. Double click on the PIC16F877A module, set the Program to ledf.hex found in the ledf project
folder (automatically generated at compilation time). Set the clock frequency to 4MHz.
8. On the bottom-left corner, click on “play” button and observe the output you get.

4.4 Deploying Hex file on PIC Microcontroller

Once the program is simulated well, the last step is downloading the HEX file on PIC.
In this section, a program called "PICKit 3 Programmer" will be introduced to show the
deployment process on the PIC.

1. Connect the PICKkit3 USB Programmer to PC first and then with 16F877A PIC.

2. Run the PICKit3 program as administrator.

3. Import the needed HEX file (File > Import). A message is shown to notify you that the HEX
successfully imported.

4. Under VDD PICKit 3 pane, choose the voltage to be 5.0 and tick the On option.

5. Press Write button to begin downloading HEX file on PIC.

Recreated 2015 By Odai Salman

Ei PICKit 3 Programmer - BUR112845154 - °IE8
File Device Family Programmer Tools View Help

Midrange/Standard Corfiguration

Device: PIC16FET7A 2F4A

User 1Ds: FF FF FF FF

Checlksum: 358D OSCCAL BandGap

I S Mesoo

I i
[On 5.0

Read Wiite Verify Erase Blank Check [] /MCLR ~ L=

Program Memory
Enabled | Hex Only v Source: |E_ e WIP_IPDATE Fixed\Expbil EDVedf hex

aooao 1202 1182 2FTR 3FFF 3FFF 3FFF 3FFF 3FFF A
0008 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
o010 JFFF JFEF 3FFF JFFF JEFEF JFFF JFFF JEFF
00la 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
ao0zao 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
no2a 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
0030 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
003g 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
0040 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
004s JFFF JFEF 3FFF JFFF JEFEF JFFF JFFF JEFF
T 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
0058 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3EFF W

EEPROM Dat
a Auto Import Hex
Enabled | Hex Only w + Write Device
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF A Read Device +
10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Export Hex File

20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF w Flcklt 3

Figure 5: PICK:it3 Ul

4.5 Interfacing PIC Microcontroller Circuit

After finishing from deploying the HEX file on PIC, the last step is constructing the hardware
circuit to run the program and see how it works on real time. Figure 7 shows the circuit to interface
the PIC. It is clear that you need two 22pf capacitors, one 4MHz external crystal oscillator,
one resistor, and power supply to get 5 volts. Figure 6 shows PIC activation connections.

1. Connect the circuit as shown in the Figure 4.
2. Connect LEDs with 330 Ohms protecting resistors on the specified port.
3. Observe the output and compare it with the simulated one.

Recreated 2015 By Odai Salman

+Hv
4.7k
MCLRvep —= [1 l\u_./J 40 [] =—= RBTIFGD
RADAND -—=[] 2 PDIP 3¢ | | =—= RBE/IPGC
RATAN] -—=[] 3 33 [| =—= RBS
RAIANZVAEF- - =[] 4 37 [=—= RB4
RAZANIVREF+ =—= [5 36 [=—= RBIPGM
RA4TOCK] +—=[] & 35 [] =—= RBZ
RASIANASS =[] 7 < 34 [] =—= RE1
+5y REQRDIANS =—=[T 3 I~ 33[]-=—= RBOINT
RE1/WRIANG =+— [g R pH=-—vwvm +5v
| REZ/CSIANT =— [10 E 31 [| =— wss
VoD — [11 E 30 [] =—= RO7TPSFT
4Mhz Vss [T 12 o 29[]-=—= RDEPSPS
= DSCUCLKIN —= [13 G 28 [] =—» RDSPSPS
(] OSCCLKOUT -—[] 14 —~ 77 [] =—» RD4PSP4
}I_Rcu-'rmsomcm [15 o [] =—s RCT/RX/DT
22pf RC1TIOSVCCP2 =—= [18 25 [] =—= RCETXICK
I 22pf RCZCCP! w—= [17 24 [=+—= RCHSDO
e RCISCKISCL =—[] 18 23 [| =—= RC4SDUSDA —
- - RDO/FSPO =—»[18 22 [] == RDIPSF3 -
RO1/PSP] =—=] 20 21 [] =—= RDZPSPZ

Figure 6: PIC16F877A Microcontroller Interfacing Circuit

4.6 Interfacing PIC Microcontroller Circuit with LCD

In this subsection, interfacing PIC microcontroller with LCD is introduced with code and
schematic which shows the connections between PIC and LCD. But first, we need to explain the
three control lines are referred to as EN, RS, and RW.

The EN line is called "Enable." This control line is used to tell the LCD that you are sending it
data. To send data to the LCD, your program should make sure this line is low (0) and then set
the other two control lines and/or put data on the data bus. When the other lines are completely
ready, bring EN high (1) and wait for the minimum amount of time required by the LCD datasheet
(this varies from LCD to LCD), and end by bringing it low (0) again.

The RS line is the "Register Select" line. When RS is low (0), the data is to be treated as a
command or special instruction (such as clear screen, position cursor on a particular cell, etc.).
When RS is high (1), the data being sent is text data which should be displayed on the screen. For
example, to display the letter "T" on the screen you would set RS high.

The RW line is the "Read/Write" control line. When RW is low (0), the information on the data
bus is being written to the LCD. When RW is high (1), the program is effectively querying (or
reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are
write commands. So RW will almost always be low.

Recreated 2015 By Odai Salman

Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected by the
user). In case of an 8-bit data bus, the lines are referred to as DB0O, DB1, DB2, DB3, DB4, DBS,
DB6, and DB7. In case of a 4-bit data bus, the lines are referred to as DB4, DBS5, DB6, and DB7.
1. Create a new project using MPLAB.
2. Add the codes: delay.h, delay.c, lcd.h, lcd.c, lecddemo.c to it.
3. Compile the project and simulate it using Proteus ISIS (Add LMO016L and POT-LN to
the list of the LEDs program) and Real Pic Simulator, use connections as in Figure7.

LCDA
LuotoL

. Damn! I am Loo =
H R1
o R S
- LALAL] LALAL] LALARLAL AL AL L]
| od| o] || o = :: f: ': :
U1
:i: OSC1CLKIN REONT :ﬁ
O5C2ICLKOUT RE1 (D52
2m e u 35
Za| RADIAND RB2PGM 2=
o] RAUANT RE4 =20 »
a| RAZIANZIVREF-ICVREF RES (D=2
=5 RAIANIVREF+ RBEIPGC oo] '|
X1 =a| RA4TOCKIGTOUT RBETIPGD =
RAS/ANASS/C20UT e & J
4 4 i __ RCOTIOSOICK! o=
D 5| FEOIANSED RGATIOSHCCR2 oo n
5| RENANSIWR RC2ICCP1 o
CRYSTAL —— REZFANTICS RC3/5CKISCL 5]
B TEXT=E a5 RO4/SDUSDA. ==
I C2 | C1 MCLRNVpp/THW RCS/5DO WoE
= —— ROBTXICK 5=
22p 2p RCTRADT
u <TEXT= ® STET = mig
RDO/PSPO (oo
: RDUPSPY (o=
RD2/PSP2 (S22
RD3PSP3 =
L RO4IPSP4 o=
ROSIPSPS 222
ROBIPSFS o=n
RD7/PSPT I
FIC1BFETTA
=TEXT=

Figure 7: LCD Interfacing

1. The LCD must display the text “Damn! I am smart since I use LCD”.
2. Download the program on the PIC16f877A
3. Apply the connections as in Figure 7.

Recreated 2015 By Odai Salman

5. Experiment Codes

Delay.h
/ *
* Delay functions for HI-TECH C on the PIC
*
* Functions available:
* DelayUs (x) Delay specified number of microseconds
* DelayMs (x) Delay specified number of milliseconds
*
* Note that there are range limits: x must not exceed 255 - for xtal
* frequencies > 12MHz the range for DelayUs is even smaller.
* To use DelayUs it is only necessary to include this file; to use
* DelayMs you must include delay.c in your project.
*
*/
/* Set the crystal frequency in the CPP predefined symbols list in
HPDPIC, or on the PICC commmand line, e.g.
picc —DXTAL_FREQ:4MHZ
or
picc —DXTALiFREQZIOOKHZ
Note that this is the crystal frequency, the CPU clock is
divided by 4.
*/
#ifndef XTAL FREQ
#define XTAL FREQ 4MHZ /* Crystal frequency in MHz */
#endif
#define MHZ *1000L /* number of kHz in a MHz */
#define KHZ *1 /* number of kHz in a kHz */

#if XTAL FREQ >= 12MHZ

#define DelayUs (x) { unsigned char decnt; \
_dent = (x)* ((XTAL _FREQ)/ (12MHZ)); \
while (-- dcnt != 0) \
continue; }
#else

#define DelayUs (x) { unsigned char decnt; \
_dent = (x)/((12MHZ)/ (XTAL _FREQ)) [1; \
while (== decnt != 0) \
continue; }
#endif

extern void DelayMs (unsigned char cnt);

Delay.c

/*

* Delay functions

* See delay.h for details

*

Recreated 2015 By Odai Salman

* Make sure this code is compiled with full optimization!!!

*/
#include "delay.h"

void DelayMs (unsigned char cnt)
{
#if XTAL FREQ <= 2MHZ
do {
DelayUs (990) ;
} while(--cnt);
#endif

#1if XTAL FREQ > 2MHZ
unsigned char i
do {

DelayUs (250) ;
} while(--1i);
} while(--cnt);
#endif
}

Ledf.c

#include <pic.h>
#include "delay.h"

__ CONFIG(DEBUG OFF & WDTE OFF & LVP OFF & FOSC_HS & BOREN_ON) ;

int 1,37
void pause(int d);

void main(void)

{

TRISB = 0; // set port B to output
PORTB=0;//set zero to output

while (1) {

PORTB=0b10000000; //set port B7 to 1
pause (500) ; //delay

PORTB=0b01000000; //set port B6 to 1

pause (500) ; //delay
PORTB=0b00100000; //set port B5 to 1
pause (500) ; //delay

PORTB=0b000010000; //set port B4 to 1
pause (500) ;

}
}

void pause(int d)

{

for (i=0;1i<20;i++)

10

Recreated 2015 By Odai Salman

for (j=0;j<d;j++)

r

Led.h

extern void lcd write(unsigned char);
extern void lcd clear(void);

extern void lcd puts(const char * s);
extern void lcd goto(unsigned char pos);
extern void lcd init(void);

extern void lcd putch(char);

#define lcd cursor (x) lcd write(((x)&0x7F) |0x80)

Led.c
/ *
* the list of included files contains:
* pic.h since we're going to use it with our pic microcontroller, duah
* ldc.h which contains all the prototypes of the functions used for the
lcd

* delay.h which contains the prototype of the melli-second delay and the
implementation

* of the micro-second delay (which is used in the melli-second
implementation, so it has to be included)

* delay.c contains the implementation of the delay ms function, so it has
to be here

*/

#include <pic.h>

#include "lcd.h"

#include "delay.h"

#define LCD STROBE ((RE1l = 1), (RE1=0)) //* The E bit on the lcd, where it
tells the lcd that we're writing data to it when it's set to 1*/

/*

* the following write functions take a character inpute or 8 bits where
it takes the higher 4 bits and passes their values to the D port of the pic
* then it shifts the character by 4 bits to the left in order to take the
values of the lower 4 bits and put them on the used D port bits. The strobe
* is used indicate that the LCD is receving data so that the values are
guaranteed to be passed in order and without interference

*

* As for the RS bit which is connected to REO. It is used to tell the LCD
to accept the character as a command when it's set to 0, or as a character
to

* be displayed on the screen when it's set to 1
*/

void lcd write(unsigned char c)

{

PORTD = (PORTD & 0x0F) | (c);

LCD STROBE;

PORTD = (PORTD & 0x0F) | (c << 4);
LCD_STROBE;

DelayUs (40) ;

}

void lcd clear(void)
{

REO = 0;

lcd write(Ox1);
DelayMs (2) ;

11

Recreated 2015 By Odai Salman

}

void lcd puts(const char * s)
{

REO = 1;

while (*s)

lcd write(*s++);

}

void lcd putch(char c)

{

REO = 1;

PORTD = (PORTD & 0x0F) | (c);
LCD_STROBE;

PORTD = (PORTD & 0x0F) | (c << 4);
LCD_STROBE;

DelayUs (40) ;

}

void lcd goto(unsigned char pos)
{

REO = 0O;

lcd write(0x80+pos);

}

void lcd init(void)

{

REO = 0O;

DelayMs(15); // power on delay
PORTD = (0x3 << 4);

LCD_STROBE;

DelayMs (D) ;

LCD_STROBE;

DelayUs (100) ;

LCD STROBE;

DelayMs (D) ;

PORTD = (0x2 << 4);

LCD_ STROBE;

DelayUs (40) ;

led write(0x28); // 4 bit mode, 1/16 duty, 5x8 font
lcd write(0x08); // display off

lcd write(0x0F); // display on, blink curson on
lcd write(0x06); // entry mode

}

Lcddemo.c

#include <pic.h>

#include "lcd.h"

#include "delay.h"

/*

* since we're using 4MHz oscillator, we need to set the oscillator bit to
HS

* the following are needed to make the LCD get to work:

* BODEN, WDTDIS and WRTEN

*/

47CONFIG(DEBUG70FF & WDTE OFF & LVP OFF & FOSC HS & BORENioN);
int 1,37

void pause(int d);

void main (void)

{

12

Recreated 2015 By Odai Salman

TRISE = 0; //set PORT E to output mode
TRISD = 0; //set PORT D to output mode
TRISB = 0; //set PORT B to output mode
TRISA = 0; //set PORT A to output mode
ADCON1 = 7;//set PORT A to Digital mode

REO = 0;// set PORT EO to zero
pause(1l); //sleep for 1 sec
lcd init(); //intialiaze LCD

while (1)

{
lcd clear(); //Clear LCD
lcd goto(0); // move LCD's cursor to location zero
lcd puts("Damn! I am too smart"); //put string on LCD
lcd goto(40);//move the cursor
lcd puts("Since I use LCDs :-)"); //put String

PORTB=0b10000000;//set PORT B7 to 1 , Just for testing issue
pause(1l);// //wait for 1 sec, Testing Issue
PORTB=0b00000000;// sec PORT B7 to zero , Testing issue
pause (1) ;//wait for 1 sec

}

}

//Function to delay or sleep to number of seconds, based on the value of
integer d
void pause (int d)
{
for (i=0;1<4;i++)
for (3=0;3j<d; j++)
DelayMs (255) ;

13

