

Recreated 2015 By Odai Salman

1

Experiment #6 (HW#1)

Introduction to PIC Microcontroller

1. Prerequisites

ENCS 538, C programming language.

2. Objectives
 To be familiar with simple microcontroller (PIC)

 How to use MPLAB software to write C code and then generate the hex file.

 How to deploy the hex file on PIC using USB programmer.

3. Background

A PIC microcontroller is a processor with built in memory and RAM and you can use it to control

your projects (or build projects around it). The microcontrollers are used due to many reasons,

which are:

a. Cost: Microcontrollers with the supplementary circuit components are much cheaper than

a computer with an analog and digital I/O.

b. Size and Weight: Microcontrollers are compact and light compared to computers.

c. Simple applications: If the application requires very few number of I/O and the code is

relatively small, which do not require extended amount of memory and a simple LCD

display is sufficient as a user interface, a microcontroller would be suitable for this

application.

d. Reliability: Since the architecture is much simpler than a computer it is less likely to fail.

e. Speed: All the components on the microcontroller are located on a single piece of silicon.

Hence, the applications run much faster than it does on a computer.

Moreover, it saves building a circuit that has separate external RAM, ROM and peripheral chips.

This really means that the PIC is a very powerful device that has many useful built in modules

e.g.

 EEPROM.

 Timers.

 Analogue comparators.

 UART.

Even with just these four modules (note these are just example modules - there are more) you can

make up many projects e.g.:

 Frequency counter - using the internal timers and reporting through UART (RS232) or

output to LCD.

 Capacitance meter - analogue comparator oscillator.

 Event timer - using internal timers.

Recreated 2015 By Odai Salman

2

 Event data logger -capturing analogue data using an internal ADC and using the internal

EEPROM for storing data (using an external I2C for high data storage capacity.

The PIC 16f877A will be used in this experiment because it is considered one of the most famous

PIC microcontrollers and it's easy to see why - it comes in a 40 pin DIP pinout and it has many

internal peripherals. The 40 pins (see Figure 1) make it easier to use the peripherals as the

functions are spread out over the pins. This makes it easier to decide what external devices to

attach without worrying too much if there are enough pins to do the job.

One of the main advantages is that each pin is only shared between two or three functions, so it

is easier to decide what are the pin functions (other devices have up to 5 functions for a particular

pin). However, the main disadvantages of the device is that it has no internal oscillator so you

will need to add an external crystal of other clock source.

Figure 1: PIC 16F877 Microcontroller Pinout

4. Procedure

4.1 Programming Using MPLAB

1. Run the MPLAB IDE software.

2. Create 3 files: delay.h, delay.c and ledf.c by copying the attached code at the experiment

codes section.

3. Place these files into a new folder and name it ledsDemo.

4. Click on Project then Project Wizard then press Next.

5. In “Step One: Select a device”, choose the PIC16F877A then click Next. In case you didn’t

choose the right device, you can always be able to change it by clicking on Configure then

Select Device…

Recreated 2015 By Odai Salman

3

6. In “Step Two: Select a language toolsuite”, choose HI-TECH Universal Toolsuite then

click Next. In case you didn’t set the right toolsuite for the compiler, you can always change

it by clicking on Project, then Select Language Toolsuite…

7. In “Step Three: Create new project, or reconfigure the active project”, tick Create New

Project File and choose the ledsDemo folder and name your project ledsDemo, click Save.

8. In “Step Four: Add any existing files to your project”, tick the three files you already

created in step 2 of the procedure and click Add >> then Next.

9. Compile the project and you should get an Output that ends with “Build Successful”

message.

10. Once step 9 is accomplished successfully, a HEX file will be generated within the project

folder. You can use that HEX file to simulate your program and download it on a PIC device.

4.2 Simulation Using Real PIC Simulator

Sometimes before downloading or deploying the generated hex on PIC microcontroller, you

should verify and ensure that the functionality of the program is working well as the requirements

need. As a result of that, in this section, a simulator called Real PIC Simulator will be introduced

to see how the program is simulated using the generated HEX file as an input. The Real PIC

Simulator is usually used for simple simulations. Its weaknesses are that it doesn’t provide any

actual representation of the connections applied within the real-time project and that it lacks so

many IC modules. Real PIC Simulator is used to provide beginners with so much basic approach

to start from.

1. Open the Real PIC Simulator, then load the HEX file from File menu.

2. Go to Visual tab, and the drag and drop LED Bar inside the empty space.

3. Left-Click on any LED and then select the appropriate pin that you need.

4. Press Play Icon and observe the results.

4.3 Simulation Using Proteus ISIS

The Proteus ISIS is a program that is also used to run real-time simulation with providing ICs and

connections details. The Proteus ISIS also provides a large library of modules such as sensors,

timers, basic circuitry components… etc. In other words, it provides the developer with the

capability of representing an actual real-time application at the simulation time with every single

detail about the circuit implementation. The Proteus ISIS is used by professionals and it is highly

recommended.

1. Open Proteus.

2. Click on the ISIS icon viewed within the provided toolbars.

3. Click on the P symbol on the left panel “the components panel”. This panel is used to list all

the components you intend to use within your project.

4. Pick the components CAP, CRYSTAL, LED-BLUE, PIC16F877A and RES as listed in

Figure 2.

Recreated 2015 By Odai Salman

4

Figure 2: Proteus ISIS Components List

5. You can get POWER and GND from the “terminal mode” components as in Figure 3.

Figure 3: Proteus ISIS Terminal Mode

6. Apply the connections and components values as in Figure 4.

Recreated 2015 By Odai Salman

5

Figure 4: LEDs Interfacing

7. Double click on the PIC16F877A module, set the Program to ledf.hex found in the ledf project

folder (automatically generated at compilation time). Set the clock frequency to 4MHz.

8. On the bottom-left corner, click on “play” button and observe the output you get.

4.4 Deploying Hex file on PIC Microcontroller

Once the program is simulated well, the last step is downloading the HEX file on PIC.

In this section, a program called "PICKit 3 Programmer" will be introduced to show the

deployment process on the PIC.

1. Connect the PICkit3 USB Programmer to PC first and then with 16F877A PIC.

2. Run the PICkit3 program as administrator.

3. Import the needed HEX file (File > Import). A message is shown to notify you that the HEX

successfully imported.

4. Under VDD PICkit 3 pane, choose the voltage to be 5.0 and tick the On option.

5. Press Write button to begin downloading HEX file on PIC.

Recreated 2015 By Odai Salman

6

Figure 5: PICKit3 UI

4.5 Interfacing PIC Microcontroller Circuit

After finishing from deploying the HEX file on PIC, the last step is constructing the hardware

circuit to run the program and see how it works on real time. Figure 7 shows the circuit to interface

the PIC. It is clear that you need two 22pf capacitors, one 4MHz external crystal oscillator,

one resistor, and power supply to get 5 volts. Figure 6 shows PIC activation connections.

1. Connect the circuit as shown in the Figure 4.

2. Connect LEDs with 330 Ohms protecting resistors on the specified port.

3. Observe the output and compare it with the simulated one.

Recreated 2015 By Odai Salman

7

Figure 6: PIC16F877A Microcontroller Interfacing Circuit

4.6 Interfacing PIC Microcontroller Circuit with LCD

In this subsection, interfacing PIC microcontroller with LCD is introduced with code and

schematic which shows the connections between PIC and LCD. But first, we need to explain the

three control lines are referred to as EN, RS, and RW.

The EN line is called "Enable." This control line is used to tell the LCD that you are sending it

data. To send data to the LCD, your program should make sure this line is low (0) and then set

the other two control lines and/or put data on the data bus. When the other lines are completely

ready, bring EN high (1) and wait for the minimum amount of time required by the LCD datasheet

(this varies from LCD to LCD), and end by bringing it low (0) again.

The RS line is the "Register Select" line. When RS is low (0), the data is to be treated as a

command or special instruction (such as clear screen, position cursor on a particular cell, etc.).

When RS is high (1), the data being sent is text data which should be displayed on the screen. For

example, to display the letter "T" on the screen you would set RS high.

The RW line is the "Read/Write" control line. When RW is low (0), the information on the data

bus is being written to the LCD. When RW is high (1), the program is effectively querying (or

reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are

write commands. So RW will almost always be low.

Recreated 2015 By Odai Salman

8

Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected by the

user). In case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4, DB5,

DB6, and DB7. In case of a 4-bit data bus, the lines are referred to as DB4, DB5, DB6, and DB7.

1. Create a new project using MPLAB.

2. Add the codes: delay.h, delay.c, lcd.h, lcd.c, lcddemo.c to it.

3. Compile the project and simulate it using Proteus ISIS (Add LM016L and POT-LN to

the list of the LEDs program) and Real Pic Simulator, use connections as in Figure7.

Figure 7: LCD Interfacing

1. The LCD must display the text “Damn! I am smart since I use LCD”.

2. Download the program on the PIC16f877A

3. Apply the connections as in Figure 7.

Recreated 2015 By Odai Salman

9

5. Experiment Codes

Delay.h

/*

 * Delay functions for HI-TECH C on the PIC

 *

 * Functions available:

 * DelayUs(x) Delay specified number of microseconds

 * DelayMs(x) Delay specified number of milliseconds

 *

 * Note that there are range limits: x must not exceed 255 - for xtal

 * frequencies > 12MHz the range for DelayUs is even smaller.

 * To use DelayUs it is only necessary to include this file; to use

 * DelayMs you must include delay.c in your project.

 *

 */

/* Set the crystal frequency in the CPP predefined symbols list in

 HPDPIC, or on the PICC commmand line, e.g.

 picc -DXTAL_FREQ=4MHZ

 or

 picc -DXTAL_FREQ=100KHZ

 Note that this is the crystal frequency, the CPU clock is

 divided by 4.

 */

#ifndef XTAL_FREQ

#define XTAL_FREQ 4MHZ /* Crystal frequency in MHz */

#endif

#define MHZ *1000L /* number of kHz in a MHz */

#define KHZ *1 /* number of kHz in a kHz */

#if XTAL_FREQ >= 12MHZ

#define DelayUs(x) { unsigned char _dcnt; \

 _dcnt = (x)*((XTAL_FREQ)/(12MHZ)); \

 while(--_dcnt != 0) \

 continue; }

#else

#define DelayUs(x) { unsigned char _dcnt; \

 _dcnt = (x)/((12MHZ)/(XTAL_FREQ))|1; \

 while(--_dcnt != 0) \

 continue; }

#endif

extern void DelayMs(unsigned char cnt);

Delay.c

/*

 * Delay functions

 * See delay.h for details

 *

Recreated 2015 By Odai Salman

10

 * Make sure this code is compiled with full optimization!!!

 */

#include "delay.h"

void DelayMs(unsigned char cnt)

{

#if XTAL_FREQ <= 2MHZ

 do {

 DelayUs(996);

 } while(--cnt);

#endif

#if XTAL_FREQ > 2MHZ

 unsigned char i;

 do {

 i = 4;

 do {

 DelayUs(250);

 } while(--i);

 } while(--cnt);

#endif

}

Ledf.c

#include <pic.h>

#include "delay.h"

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON);

int i,j;

void pause(int d);

void main(void)

{

 TRISB = 0; // set port B to output

 PORTB=0;//set zero to output

 while (1) {

 PORTB=0b10000000; //set port B7 to 1

 pause(500); //delay

 PORTB=0b01000000; //set port B6 to 1

 pause(500); //delay

 PORTB=0b00100000; //set port B5 to 1

 pause(500); //delay

 PORTB=0b00010000; //set port B4 to 1

 pause(500);

 }

}

void pause(int d)

{

 for(i=0;i<20;i++)

Recreated 2015 By Odai Salman

11

 for(j=0;j<d;j++)

 ;

}

Lcd.h

extern void lcd_write(unsigned char);

extern void lcd_clear(void);

extern void lcd_puts(const char * s);

extern void lcd_goto(unsigned char pos);

extern void lcd_init(void);

extern void lcd_putch(char);

#define lcd_cursor(x) lcd_write(((x)&0x7F)|0x80)

Lcd.c

/*

* the list of included files contains:

* pic.h since we're going to use it with our pic microcontroller, duah

* ldc.h which contains all the prototypes of the functions used for the

lcd

* delay.h which contains the prototype of the melli-second delay and the

implementation

* of the micro-second delay (which is used in the melli-second

implementation, so it has to be included)

* delay.c contains the implementation of the delay_ms function, so it has

to be here

*/

#include <pic.h>

#include "lcd.h"

#include "delay.h"

#define LCD_STROBE ((RE1 = 1),(RE1=0)) //* The E bit on the lcd, where it

tells the lcd that we're writing data to it when it's set to 1*/

/*

* the following write functions take a character inpute or 8 bits where

it takes the higher 4 bits and passes their values to the D port of the pic

* then it shifts the character by 4 bits to the left in order to take the

values of the lower 4 bits and put them on the used D port bits. The strobe

* is used indicate that the LCD is receving data so that the values are

guaranteed to be passed in order and without interference

*

* As for the RS bit which is connected to RE0. It is used to tell the LCD

to accept the character as a command when it's set to 0, or as a character

to

* be displayed on the screen when it's set to 1

*/

void lcd_write(unsigned char c)

{

PORTD = (PORTD & 0x0F) | (c);

LCD_STROBE;

PORTD = (PORTD & 0x0F) | (c << 4);

LCD_STROBE;

DelayUs(40);

}

void lcd_clear(void)

{

RE0 = 0;

lcd_write(0x1);

DelayMs(2);

Recreated 2015 By Odai Salman

12

}

void lcd_puts(const char * s)

{

RE0 = 1;

while(*s)

lcd_write(*s++);

}

void lcd_putch(char c)

{

RE0 = 1;

PORTD = (PORTD & 0x0F) | (c);

LCD_STROBE;

PORTD = (PORTD & 0x0F) | (c << 4);

LCD_STROBE;

DelayUs(40);

}

void lcd_goto(unsigned char pos)

{

RE0 = 0;

lcd_write(0x80+pos);

}

void lcd_init(void)

{

RE0 = 0;

DelayMs(15); // power on delay

PORTD = (0x3 << 4);

LCD_STROBE;

DelayMs(5);

LCD_STROBE;

DelayUs(100);

LCD_STROBE;

DelayMs(5);

PORTD = (0x2 << 4);

LCD_STROBE;

DelayUs(40);

lcd_write(0x28); // 4 bit mode, 1/16 duty, 5x8 font

lcd_write(0x08); // display off

lcd_write(0x0F); // display on, blink curson on

lcd_write(0x06); // entry mode

}

Lcddemo.c

#include <pic.h>

#include "lcd.h"

#include "delay.h"

/*

* since we're using 4MHz oscillator, we need to set the oscillator bit to

HS

* the following are needed to make the LCD get to work:

* BODEN, WDTDIS and WRTEN

*/

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON);

int i,j;

void pause(int d);

void main(void)

{

Recreated 2015 By Odai Salman

13

TRISE = 0; //set PORT E to output mode

TRISD = 0; //set PORT D to output mode

TRISB = 0; //set PORT B to output mode

TRISA = 0; //set PORT A to output mode

ADCON1 = 7;//set PORT A to Digital mode

RE0 = 0;// set PORT E0 to zero

pause(1); //sleep for 1 sec

lcd_init(); //intialiaze LCD

while (1)

{

 lcd_clear(); //Clear LCD

 lcd_goto(0); // move LCD's cursor to location zero

 lcd_puts("Damn! I am too smart"); //put string on LCD

 lcd_goto(40);//move the cursor

 lcd_puts("Since I use LCDs :-)"); //put String

 PORTB=0b10000000;//set PORT B7 to 1 , Just for testing issue

 pause(1);// //wait for 1 sec, Testing Issue

 PORTB=0b00000000;// sec PORT B7 to zero , Testing issue

 pause(1);//wait for 1 sec

}

}

//Function to delay or sleep to number of seconds, based on the value of

integer d

void pause(int d)

{

 for(i=0;i<4;i++)

 for(j=0;j<d;j++)

 DelayMs(255);

}

