
Experiment #5

Multi-Threading Environment under Unix/Linux

Thread Management for Real-Time Applications

1. Prerequisite

ENCS 538, C programming language, basics of inter-process communications under Unix/Linux. Basic

concepts about threads and pthreads.

2. Objectives
 How to create and terminate threads.

 How to establish communication between threads.

 How to synchronize, manage and schedule threads.

 How to protect shared resources and ensure data integrity is maintained.

3. Background

Code is often written in a serialized (or sequential) fashion. Ignoring instruction level parallelism (ILP),

code is executed sequentially, one after the next in a monolithic fashion, without regard to possibly more

available processors the program could exploit. Often, there are potential parts of a program where

performance can be improved through the use of threads.

A computer program becomes a process when it is loaded from some store into the computer's memory

and begins execution. A process can be executed by a processor or a set of processors. A process

description in memory contains vital information such as the program counter which keeps track of the

current position in the program (i.e. which instruction is currently being executed), registers, variable

stores, file handles, signals, and so forth.

3.1 What is thread?

A thread is a semi-process, that has its own stack, and executes a given piece of code. Unlike a real

process, the thread normally shares its memory with other threads (where as for processes we usually

have a different memory area for each one of them). A Thread Group is a set of threads all executing

inside the same process. They all share the same memory, and thus can access the same global variables,

same heap memory, same set of file descriptors, etc. All these threads execute in parallel (i.e. using time

slices, or if the system has several processors, then really in parallel). Figure 1 shows that threads are

within the same process address space, thus, much of the information present in the memory description

of the process can be shared across threads.

3.2 What are pthreads?

 Historically, hardware vendors have implemented their own proprietary versions of threads. These

implementations differed substantially from each other making it difficult for programmers to

develop portable threaded applications.

 In order to take full advantage of the capabilities provided by threads, a standardized programming

interface was required. For UNIX systems, this interface has been specified by the IEEE POSIX

1003.1c standard (1995). Implementations which adhere to this standard are referred to as POSIX

threads, or Pthreads. Most hardware vendors now offer Pthreads in addition to their proprietary

API's.

 Pthreads are defined as a set of C language programming types and procedure calls. Vendors

usually provide a Pthreads implementation in the form of a header/include file and a library, which

you link with your program.

Figure 1 Process and Multithread Process Abstract View

3.3 pthreads APIs

The subroutines which comprise the Pthreads API can be informally grouped into three major classes:

Thread management: The first class of functions work directly on threads - creating, detaching,

joining, etc. They include functions to set/query thread attributes (joinable, scheduling etc.)

Mutexes and Race Conditions: The second class of functions deal with a coarse type of

synchronization, called a "mutex", which is an abbreviation for "mutual exclusion". Mutex functions

provide for creating, destroying, locking and unlocking mutexes. They are also supplemented by mutex

attribute functions that set or modify attributes associated with mutexes.

Condition variables: The third class of functions deal with a finer type of synchronization - based upon

programmer specified conditions. This class includes functions to create, destroy, wait and signal based

upon specified variable values. Functions to set/query condition variable attributes are also included.

Thread Management:

The function pthread_create is used to create a new thread, and a thread to terminate itself uses the

functions pthread_exit and pthread_cancel. A thread to wait for termination of another thread uses the

function pthread_join.

 Create Thread

 The required arguments for pthread_create():
1. pthread_t *thread: the actual thread object that contains pthread id.

2. pthread_attr_t *attr: attributes to apply to this thread.

3. void *(*start_routine)(void *): the function this thread executes.

4. void *arg: arguments to pass to thread function above.

The return value is 0 on success. The return value is negative on failure.

 Exit Thread

 The required arguments for pthread_exit():
1. void *value_ptr: the return value is passed as a pointer.

 Join Thread

 The required arguments for pthread_join():
1. pthread_t thread: the actual thread object that contains pthread id.

2. void **value_ptr: Return value is returned by ref.

The return value is 0 on success. The returned value is a pointer returned by reference.

 Cancel Thread

 pthread_cancel sends a cancellation request to the thread denoted by the thread argument.

 If there is no such thread, pthread_cancel fails. Otherwise it returns 0.

 Thread Identifiers

Returns the unique thread ID of the calling thread. The returned data object is opaque cannot be

easily inspected.

Compares two thread IDs: If the two IDs are different 0 is returned, otherwise a non-zero value is

returned.

Mutexes and Race Conditions:

Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions. A race

condition often occurs when two or more threads need to perform operations on the same memory area,

but the results of computations depends on the order in which these operations are performed.

int pthread_create(pthread_t *thread, pthread_attr_t *attr,void
*(*start_routine)(void *), void *arg);

void pthread_exit(void *value_ptr);

int pthread_join(pthread_t thread, void **value_ptr);

int pthread_cancel (pthread_t thread)

int pthread_cancel (pthread_t thread)

pthread_equal (thread1, thread2)

Mutex Overview

 Mutex is a shortened form of the words "mutual exclusion".

 Mutex variables are one of the primary means of implementing thread synchronization.

 A mutex variable acts like a "lock" protecting access to a shared data resource. The basic concept of

a mutex as used in Pthreads is that only one thread can lock (or own) a mutex variable at any given

time. Thus, even if several threads try to lock a mutex only one thread will be successful. No other

thread can own that mutex until the owning thread unlocks that mutex. Threads must "take turns"

accessing protected data.

 Very often the action performed by a thread owning a mutex is the updating of global variables.

This is a safe way to ensure that when several threads update the same variable, the final value is

the same as what it would be if only one thread performed the update. The variables being updated

belong to a "critical section".

 When several threads compete for a mutex, the losers block at that call an unblocking call is

available with "trylock" instead of the "lock" call.

Creating and Destroying Mutexes APIs:

pthread mutexes are created and destroyed through the following functions:

The pthread_mutex_init() function requires a pthread_mutex_t variable to operate on as the first

argument. Attributes for the mutex can be given through the second parameter. To specify default

attributes, pass NULL as the second parameter. The pthread_mutex_destroy() function shall destroy

the mutex object referenced by mutex; the mutex object becomes, in effect, uninitialized. An

implementation may cause pthread_mutex_destroy() to set the object referenced by mutex to an

invalid value. A destroyed mutex object can be reinitialized using pthread_mutex_init(); the results of

otherwise referencing the object after it has been destroyed are undefined.

Mutexes can be initialized to default values through a convenient macro rather than a function call:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

A mutex object named lock is initialized to the default pthread mutex values.

Locking and Unlocking Mutexes APIs:

To perform mutex locking and unlocking, the pthreads provides the following functions:

Each of these calls requires a reference to the mutex object. The difference between the lock and

trylock calls is that lock is blocking and trylock is non-blocking and will return immediately even if

gaining the mutex lock has failed due to it already being held/locked. It is absolutely essential to check

the return value of the trylock call to determine if the mutex has been successfully acquired or not. If it

has not, then the error code EBUSY will be returned.

 int pthread_mutex_init(pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr);

 int pthread_mutex_destroy(pthread_mutex_t *mutex);

 int pthread_mutex_lock(pthread_mutex_t *mutex);

 int pthread_mutex_trylock(pthread_mutex_t *mutex);

 int pthread_mutex_unlock(pthread_mutex_t *mutex);

Condition Variables:

Condition variables provide yet another way for threads to synchronize. While mutexes implement

synchronization by controlling thread access to data, condition variables allow threads to synchronize

based upon the actual value of data.

Without condition variables, the programmer would need to have threads continually polling (possibly

in a critical section), to check if the condition is met. This can be very resource consuming since the

thread would be continuously busy in this activity. A condition variable is a way to achieve the same

goal without polling.

Creating and Destroying Condition Variables APIs:

pthread condition variables are created and destroyed through the following functions:

Similar to the mutex initialization call, condition variables can be given non-default attributes through

the second parameter. To specify defaults, either use the initializer macro or specify NULL in the second

parameter to the call to pthread_cond_init(). The pthread_cond_destroy() function shall destroy the

given condition variable specified by cond; the object becomes, in effect, uninitialized. An

implementation may cause pthread_cond_destroy() to set the object referenced by cond to an invalid

value. A destroyed condition variable object can be reinitialized using pthread_cond_init(); the results

of otherwise referencing the object after it has been destroyed are undefined.

Condition Variable can be initialized to default values through a convenient macro rather than a

function call:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

A condition variable object named cond is initialized to the default pthread condition values.

Waiting and Destroying Condition Variables APIs:

Threads can act on condition variables in three ways: wait, signal or broadcast::

pthread_cond_wait() puts the current thread to sleep. It requires a mutex of the associated shared

resource value it is waiting on. pthread_cond_signal() signals one thread out of the possibly many

sleeping threads to wakeup. pthread_cond_broadcast() signals all threads waiting on the cond

condition variable to wakeup.

 int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t
*cond_attr);

 int pthread_cond_destroy(pthread_cond_t *cond);

 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex);

 int pthread_cond_signal(pthread_cond_t *cond);

 int pthread_cond_broadcast(pthread_cond_t *cond);

4. Procedure

4.1 Creating and joining pthreads
1. Type the following program that creates concurrent processes using the fork system call.

Name the file pfork.c.

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int shared_mem_id;

int *shared_mem_ptr;

int *r1p;

int *r2p;

extern int main(void)

{

 pid_t child1_pid, child2_pid;

 int status;

/* initialize shared memory segment */

 shared_mem_id = shmget(IPC_PRIVATE, 2*sizeof(int), 0660);

 shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);

 r1p = shared_mem_ptr;

 r2p = (shared_mem_ptr + 1);

 *r1p = 0;

 *r2p = 0;

 if ((child1_pid = fork()) == 0) {

 /* first child */

 do_one_thing(r1p);

 exit(0);

 }

/* parent */

 if ((child2_pid = fork()) == 0) {

 /* second child */

 do_another_thing(r2p);

 exit(0);

}

 /* parent */

 waitpid(child1_pid, &status, 0);

 waitpid(child2_pid, &status, 0);

 do_wrap_up(*r1p, *r2p);

 return 0;

 }

void do_one_thing(int *pnum_times)

{

 int i, j, x;

 for (i = 0; i < 4; i++)

 {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++)

 x = x + i;

 (*pnum_times)++;

 }

}

void do_another_thing(int *pnum_times)

{

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing another \n");

 for (j = 0; j < 10000; j++)

 x = x + i;

 (*pnum_times)++;

 }

}

void do_wrap_up(int one_times, int another_times)

{

 int total;

 total = one_times + another_times;

 printf("wrap up: one thing %d, another %d, total %d\n",one_times, another_times,

 total);

}

2. Compile pfork.c using the gcc compiler to create the executable pfork and run it. Notice

how the processes run concurrently.

3. We would like to run concurrent threads using the POSIX pthreads instead of fork system

calls. Type the following program that uses the functions pthread create and pthread join

calls. Name the file pcreate.c.

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0;

extern int main(void)

{

 pthread_t thread1, thread2;

 pthread_create(&thread1, NULL,(void *) do_one_thing,(void *) &r1);

 pthread_create(&thread2, NULL,(void *) do_another_thing,(void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

 return 0;

}

4. We would Compile the file pcreate.c using the gcc compiler to create the executable

pcreate as follows:

 > gcc pcreate.c -o pcreate -lpthread

where lpthread is the pthreads library.

4.2 Threads Synchronization and Sharing Resources
1. Type the following program that uses a mutex to synchronize the access of two threads

to a shared resource (variable r3 in the example below). Name the file pmutex1.c and

compile it using the gcc compiler.

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;

pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;

int main(int argc, char **argv)

{

 pthread_t thread1, thread2;

 if (argc != 2)

 {

 fprintf(stderr, "You must supply an integer as argument!\n");

 exit(-1);

 }

 r3 = atoi(argv[1]);

 pthread_create(&thread1,NULL,(void *) do_one_thing,(void *) &r1);

 pthread_create(&thread2,NULL,(void *) do_another_thing,(void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

 return 0;

}

void do_one_thing(int *pnum_times)

{

 int i, j, k, x;

 pthread_mutex_lock(&r3_mutex);

 if (r3 > 0)

 {

 x = r3;

 r3++;

 }

 else

x = 1;

 pthread_mutex_unlock(&r3_mutex);

 for (i = 0; i < 4; i++)

 {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++)

 x = x + i;

 (*pnum_times)++;

 for (k = 0; k < 1000000; k++);

 }

}

void do_another_thing(int *pnum_times)

{

 int i, j, k, x;

 pthread_mutex_lock(&r3_mutex);

 if (r3 > 0)

 {

 x = r3;

 r3--;

 }

 else

 x = 1;

 pthread_mutex_unlock(&r3_mutex);

 for (i = 0; i < 4; i++)

 {

 printf("doing another \n");

 for (j = 0; j < 10000; j++)

 x = x + i;

 (*pnum_times)++;

 for (k = 0; k < 1000000; k++);

 }

}

void do_wrap_up(int one_times, int another_times)

{

 int total;

 total = one_times + another_times;

 printf("wrap up: one thing %d, another %d, total %d\n", one_times,

 another_times, total);

}

2. Notice how the functions pthread_mutex_lock and pthread_mutex_unlock have been

used to limit the access to variable r3 to only one thread. Note also that if a thread cannot get

a mutex since it is unavailable, that specific thread will suspend its execution until the mutex

becomes available. Attention to deadlocks!!

4.3 Threads Identity
1. Type the following program that creates two threads and make use of the function call

pthread_self and pthread equal. Name the file pself.c and compile it using the gcc

compiler.

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;

pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;

pthread_t thread1, thread2;

int main(int argc, char **argv)

{

 pthread_create(&thread1,NULL,(void *) do_one_thing,(void *) &r1);

 pthread_create(&thread2,NULL,(void *) do_one_thing,(void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 return 0;

}

void do_one_thing(int *pnum_times)

{

 int k;

 pthread_t thread;

 while (1) {

pthread_mutex_lock(&r3_mutex);

 thread = pthread_self();

 if (pthread_equal(thread1, thread))

 printf("Thread %d: %d\n", thread, ++r3);

 else

 printf("Thread %d: %d\n", thread, --r3);

 pthread_mutex_unlock(&r3_mutex);

 for (k = 0; k < 10000000; k++);

}

 }

2. Notice how the two threads access the same function do_one_thing. If the calling thread is

thread1, the variable r3 is incremented. Otherwise, the variable r3 is decremented.

4.4 Exiting Threads and Return Status

1. Type the following program that makes use of the function pthread exit if it encounters a

negative number supplied by the user. Name the file pexit1.c and compile it using the gcc

compiler.

#include <stdio.h>

#include <pthread.h>

pthread_t thread;

static int arg;

static const int real_bad_error = -12;

static const int normal_error = -10;

static const int success = 1;

void * routine_x(void *arg_in)

{

 int *arg = (int *)arg_in;

 if (*arg < 0)

 pthread_exit((void *) &real_bad_error);

 else if (*arg == 0)

 return ((void *) &normal_error);

 else

 return ((void *) &success);

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int r;

 void *statusp;

 if (argc != 2)

 {

 fprintf(stderr, "You must supply an integer as argument!\n");

 exit(-1);

 }

 r = atoi(argv[1]);

 pthread_create(&thread, NULL, routine_x, &r);

 pthread_join(thread, &statusp);

 if ((int *) statusp == PTHREAD_CANCELED)

 printf("Thread was canceled.\n");

 else

 printf("Thread completed and exit status is %ld.\n", *(int *)statusp);

 return 0;

}

2. Run the program by supplying the number -10, 0 and 10 consecutively. Notice the exit

status that you get each time.

4.5 Threads Synchronization - Condition Variables
1. Type the following program that uses a condition variable and waits on a signal. Name the

file pwait1.c and compile it using the gcc compiler.

/*

* Using conditions variables for synchronization

*/

#include <stdio.h>

#include <pthread.h>

#define TCOUNT 10

#define WATCH_COUNT 12

int count = 0;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;

int thread_ids[3] = {0,1,2};

int main(void)

{

 int i;

 pthread_t threads[3];

 void inc_count(int *idp);

 void watch_count(int *idp);

 pthread_create(&threads[2], NULL, watch_count, &thread_ids[2]);

 pthread_create(&threads[0], NULL, inc_count, &thread_ids[0]);

 pthread_create(&threads[1], NULL, inc_count, &thread_ids[1]);

 for (i = 0; i < 3; i++)

 {

 pthread_join(threads[i], NULL);

 }

 return 0;

}

void watch_count(int *idp)

{

 pthread_mutex_lock(&count_mutex);

 while (count <= WATCH_COUNT)

 {

 pthread_cond_wait(&count_threshold_cv, &count_mutex);

 printf("watch_count(): Thread %d, Count is %d\n", *idp, count);

 }

 pthread_mutex_unlock(&count_mutex);

}

void inc_count(int *idp)

{

 int i;

 for (i = 0; i < TCOUNT; i++)

 {

 pthread_mutex_lock(&count_mutex);

 count++;

 printf("inc_count(): Thread %d, old count %d, new count %d\n",*idp,

 count - 1, count);

 if (count == WATCH_COUNT)

 pthread_cond_signal(&count_threshold_cv);

 pthread_mutex_unlock(&count_mutex);

 }

}

2. Type the Run the program and notice how the different threads behave. Notice mainly how

thread 3 waits a signal to be delivered by either thread 1 or thread 2 in order to accomplish

its duty.

3. Note that if multiple threads are waiting for a condition to become true, only one thread gets

awakened by pthread_cond_signal. The order is usually dependent on the threads

scheduling priority. If all waiting threads are of the same priority, they are released in a first-

in first-out order for each pthread_cond signal call that’s issued.

