
 
Recreated 2015 By Odai Salman 

 

Experiment #8 (HW#3) 

Analog to Digital Conversion and Serial 

Communication 

1. Prerequisites 
ENCS 538, C programming language, PICC compiler, Microchip PIC16F877A datasheet, basic 

knowledge about Java and NetBeans IDE. 

2. Objectives 

 Getting familiar with ADC (Analog to Digital Converters). 

 Getting familiar with serial communication with PIC16F877A microcontroller. 

 Configuring the USART module to send and receive data with PC via standard COM 

ports.  

 

3. Background 

3.1 Analog Data Reading 
Within the PIC16F877A, there is an 8-bit analog port that is distributed on two ports that can be 

either dedicated to work as digital or analog ports. These two ports are the A and the E ports. In 

order to be able to control these ports to work in either digital or analog modes. There are only 

four registers that you need to understand to configure the ADC. They are ADCON0, ADCON1, 

ADRESH and ADRESL. The two most important ones are ADCON0 and ADCON1.ADRESH 

and ADRESL are just the registers where the ADC stores the result of the conversion. 

 
Figure 1: the ADCON0 register 

 

Figure 2: the ADCON0 clock selection bits 



 
Recreated 2015 By Odai Salman 

 

 

The user has to select the correct clock conversion. The period must be at least more than 1.6us 

to obtain an accurate conversion. For example, using a 4MHz crystal oscillator on PIC16F877A. 

If we select Fosc/2, that is 2MHz, this will result in a 500ns periodic time which is far less than 

the minimum required (1.6us), Leading to cause an inaccurate conversion. 

So what do we need to choose in order to solve this? If we choose Fosc/8, that is 0.5MHz which 

results a periodic time of 2us. That is more than minimum requires (1.6us). So far, our ADCON0 

is 01xx xxxx. 

 

Figure 3: the ADCON0 analog channel selection bits 

 

Now that we finished selecting the clock selection bits, we need to select the analog channel were 

we need to import our reading. The ADC takes one channel only at a time, providing us with a 

sequential way in reading analog values on AN-port. Assuming that we want to start reading a 

value on AN2, then we will need to set our 3bits channel-selection inputs to 010. At this stage, 

our ADCON0 will take the value 0101 0xxx. 

 

Figure 4: the ADCON0 analog conversion control bits 

 

According to the stated information in Figure 4, the GO/DONE must be set to 1 to start the 

conversion process for the applied value on channel2. The hardware will automatically set this 

value back to zero at the end of the conversion making us able to start reading another value. 

The unimplemented bit is set as zero, and of course, since we’re reading an analog value, we need 

to set the ADON bit to one. Finally, our ADCON0 register will take the value 0101 0101 at the 

start of the analog value reading and it will be automatically set to 0101 0001 at the end of it. 



 
Recreated 2015 By Odai Salman 

 

 

 

Figure 5: the ADCON1 register 

 

The ADFM bit determines how the result of the ADC is justified. The ADC on the 

PIC16F877A has 10-bits of resolution, so of course a single register (that has 8 bits) is not 

enough to contain the 10-bits result. Therefore, two registers are required to store the results. 

ADRESH and ADRESL (H is the high byte while L is the low byte). 

Two registers will allow us to store up to 16 bits, but since there are only 10 bits, we have the 

flexibility to align it right justified or left justified. Hopefully you will get the picture from the 

diagram below. 

 

Figure 6: the ADRES register result justification 

 

Storing the result in left justified mode is weird and unusual but it gives the user flexibility. Let’s 

say that our application does not need the 10-bit accuracy, where 8 bits is more than enough. We 

can just take the result in ADRESH and ignore the remaining two least significant bits in 

ADRESL. However, you cannot ignore the two highest significant bit because that will cause the 

result to be inaccurate when choosing right justified mode. Setting a left justification will result 

the value of ADCON1 to be 0xxx xxxx. 



 
Recreated 2015 By Odai Salman 

 

 

Figure 7: the ADCON1 clock selection bit 

 

Next is the ADCS2 bit. Earlier, we calculated that Fosc/8 is adequate, so that we selected it in 

ADCON0. But for Fosc/8, we also need to set the ADCS2 bit in ADCON1. According clock 

selection table for ADCON1, the value achieving Fosc/8 for ADCS2 bit alongside the value set 

in ADCON0 is zero resulting a value of ADCON1 to be 00xx xxxx. 

 

Figure 8: the ADCON1 AD channel assignment bits 

Lastly, the most important part of the ADC configuration is to select the mode for each Analog 

channel. As shown before, we have Analog Channels from 0 to 7. All these inputs can either be 

set to analog or digital. Referring to the table above, if we don’t need any analog inputs and 

require more digital pins (let’s say for a few LCDs), we can set the PCFG3:0 bits to be 011x. But 



 
Recreated 2015 By Odai Salman 

 

in this case we do need the Analog inputs, so for simplicity we will set all of them to be in analog 

mode. Therefore, our final value for ADCON1 is 0000 0000. 

One important thing to note is that we’ve selected Vdd as the Vref+ and Vss as the Vref- that 

means that our conversion range is from 0 to 5 Volts. If you need it to be other than that, you can 

set a custom Vref value by choosing other configurations of PCFG3:0. 

 

3.2 Configuring the Serial Communication 

Serial communication is very important for micro devices. By using the serial communication 

one can communicate with computers (via COM port, USB, etc). Peripheral devices or some ICs 

(such as EEPROM, A/D converters, etc.). 

The process of serial communication can be done by low level coding. You need to have a look 

at timing specification of the protocol and write a code to meet the requirements. However, most 

PIC microcontrollers come with built-in serial communication protocols such as USART, I2C, 

and SPI. You only need to configure it in order to starting transmitting/receiving data. In this 

experiment, we will use PC's COM port also called as RS-232 (Recommended Standard 232) and 

built-in USART module for the PIC microcontroller. 

The word USART is the acronym of Universal Synchronous Asynchronous Receive Transmit. 

Standard COM port uses asynchronous receiver and transmitter. In this mode there are Tx 

(transmit) and Rx (receive) lines. There are two types of transmission modes: the full-duplex, 

where both transmitting and receiving data work simultaneously; and the half-duplex, where only 

one line (transmitter or receiver) work at a time. USART can be used to allow communication 

between PIC to PIC or between PIC to a personal computer.  

There are two types communication based on transmission lines: serial, where data bits are 

transmitted one bit at a time; and parallel, where a bulk of bits are transmitted simultaneously 

depending on the number of parallel lines. The trade-off in using serial vs. parallel is measured 

in hardware consumption vs. transmission speed. If one is interested in speed of transmission, 

parallel communication will be the right choice. However, if one is interested in hardware usage 

optimization, serial communication will do the job. Of course, there are variations in this trade-

off depending on application itself. 

 

There are two techniques in communication based on timing: the synchronous, where data is 

sent/received as a stream, bit-wise, with fixed baud rates and clock frequencies at the source and 

destination; asynchronous, where frequencies on source and destination are not equal where this 

requires bits to control the data flow in order to achieving consistent transmission of data. Data 

is sent in frames that are controlled by start and stop bits indicating the starting and ending of 

each frame. Synchronous technique is faster than the asynchronous since it constantly transmits 

steams of data without stops.  



 
Recreated 2015 By Odai Salman 

 

Within the serial communication module, there are three registers that take in role: the TXSTA 

transmission status register, the RCXSTA reception status register, and the SPBRG baud 

generation register. 

 

3.2.1 The TXSTA register 

According to the register specifications provided for the TXRSTA register. The transmission 

status bits function according to Figure 9. 

  
Figure 9: the TXSTA register sheet 



 
Recreated 2015 By Odai Salman 

 

3.2.2 The RCSTA register 

According to the register specifications provided for the TXRCTA register. The transmission 

status bits function according to Figure 10. 

 
Figure 10: the RCSTA register sheet 



 
Recreated 2015 By Odai Salman 

 

3.2.3 The SPBRG register 

This register holds the value of the baud rate associated with data transmission. The following 

presents the formula that both synchronous and asynchronous behaviors in calculating the baud 

rate depending on the SYNC and BRGH bits. 

 

 
 

Example - Baud Rate Calculation: Calculate the SPBRG and error rate for an application 

that uses PIC16F877A with 4MHz external clock oscillator and BRH set to high where a 

baud percentage of 9600 is required for serial synchronous communication. 

9600 = 4000000/ (16(X+1)) 

SPBRG= ((4000000/9600)-16)/16=25.041,67 [trim floating] ~ 25 (since SPBRG only holds 

integer values) 

Baud Rate = 4000000/ (16(25+1))=9615 

Error = (9615-9600)/9600=0.16% 

 

3.2.4 The Transmission and Reception Modules 

The following figures show how the bits associated with the three registers previously control 

hardware parts for the transmission and reception modules. 

 

Figure 11: the transmission block diagram 

 



 
Recreated 2015 By Odai Salman 

 

 

Figure 12: the reception block diagram 

 

3.2.5 RS-232 Interfacing  

For transmitting/receiving the information we use - USART. Although the USART successfully 

achieves PIC-PIC communication where both voltage levels on transmitter and receiver are the 

same, it still has a problem with PIC-PC communication since the voltage levels of the PIC and 

the PC are different. 

Therefore, in order to establish a successful communication between a PIC and a PC, we have to 

add another component.  

The RS232 uses voltages below -5 Volts to represent a logical level "1", and voltages above 5 

Volts to represent a logical level "0". Therefore, to use this protocol we need voltage level 

conversion. This is possible using the device such as the MAX232. MAX232 is simple 

component, which operates on 5V.  

 

Figure 13: the MAX232 block diagram 



 
Recreated 2015 By Odai Salman 

 

 

Figure 14: the MAX232 basic connection 

The output of the USART (information transmitted to the computer) connects to pin 10 or 11. 

Levels of information are converting to voltage values that are suitable for RS232 and outputs 

from pins 7 or 14. From here the information advances to the computer.  

The information that is transmitted from the computer connects to the pin 8 or 13 of the device. 

Here again there is conversion levels, but the opposite way, which will apply to USART. 

Converted signals are outputs through pin 9 or 12.  

 

Figure 15: the MAX232-UART connection 

 



 
Recreated 2015 By Odai Salman 

 

4. Procedure 

The basic idea of the project is summarized as follows: 

1. The PIC reads an analog value on pin AN0. 

2. The PIC converts this value from analog to digital using the analog-to-digital internal module. 

3. The PIC sends the value to the LCD to be displayed. 

4. The PIC decides what character to send to the computer via serial communication based on 

the analog value read. If it’s greater than 2 Volts, it sends the letter “g”, else, it sends the letter 

“l”. 

5. The computer receives the character from the PIC via a hyper terminal and decides what 

letter to send in response. If it received a “g”, it sends the letter “e” (stands for enable). Else, 

it sends the letter “d” (stands for disable). 

6. The PIC uses the letter received from the computer to apply an action of enabling or disabling 

a DC motor interfaced at some port (B). If the letter was “e”, the PIC enables the DC motor. 

Else, it disables it. 

The experiment is outlined in the following steps: 

4.1 Setting up the hardware 

1. Open MPLAB IDE. 

2. Make new project, and add the codes delay.h, delay.c, lcd.h, lcd.c, string.h, string.c and 

USART_main.c provided in the experiment codes section. 

3. Compile the project using HI-TECH UNVERSAL ANSI COMPILER for PIC16F877A. 

4. Open Proteus ISIS. 

5. Under components, list the following: PIC16F877A, POT-LN or POT-HG, RES, LM016L, 

CRYSTAL, CAP, VSOURCE, INVERTER, L298, MOTOR, BUTTON, MAX232, and 

COMPIM. 

6. Under terminal mode: use the POWER and GND. 

7. Under instruments, pick a DC VOLTMETER and VIRTUAL TERMINAL. These devices 

results usually pop-up at simulation time. In case they didn’t, you can always display them 

by clicking on Debug, then ticking the devices listed on the bottom of the list. All this happens 

only at simulation time. 

 

8. Implement circuit provided in Figure 16 (for more clarity, check the attached image). 

9. Set the values according to the Figure 16. 

10. Double click on the VIRTUAL TERMINAL, set the baud rate to 9600. 



 
Recreated 2015 By Odai Salman 

 

11. Double click on the COMPIM, set the port to COM7, baud rates to 9600, 1 stop bit, 8 

physical data bits and no parity bits. 

12. Load the generated HEX onto the micro-controller. Set its external frequency to 4MHz. 

13. Click on “play” and observe the outputs you get. Again, in case the terminal output didn’t 

pop-up at simulation time. During simulation, click on Debug then Virtual Terminal. 

14. Stop the simulation and move on to the next part. 

Figure 16: Hardware schematic 

 

4.2 Setting up the Java serial communication library 

1. Extract the provided RAR file that contains the DLL and JAR files for the serial 

communication. 

2. Pick the folder that fits with your platform (64 or 32 bit machines). 

3. Copy "rxtxSerial.dll" into "C:\Program Files\Java\jdk1.7.0_80\jre\bin". 

4. Copy "RXTXComm.jar" into "C:\Program Files\Java\jdk1.7.0_80\jre\lib\ext". 

4.3 Setting up the Java communication program 

1. Make a new Java NetBeans project. 

2. Name it “TwoWaySerialComm”. 

3. Include a main class within it. 

4. Finish. 

5. Copy "RXTXComm.jar" into "lib" folder within the project directory. 

6. In case that the library still wasn’t added, you can add it by clicking on Libraries within the 

project navigator then “Add JAR/Folder…”. 



 
Recreated 2015 By Odai Salman 

 

7. Compile the project. 

8. Most probably that you will encounter an exception throw since COM7 (where the program 

is assigned to communicate through) is still unavailable. 

9. Ignore the warning about driver version mismatch at the run-time. 

10. Stop the compilation and move on the next part. 

4.4 Setting up a virtual connection using VSPE 

This program will be used to establish virtual COM connection in a way that makes the 

communication between the Java program and the Proteus ISIS possible. This will provide a 

real-time simulation between the connected hardware and the software programmed on the 

computer. 

1. Open VSPE. 

2. Click on “Create New Device” icon as in Figure 17. 

 
Figure 17: VSPE GUI 

 

 
Figure 18: Setting up a virtual connection 



 
Recreated 2015 By Odai Salman 

 

 

 
Figure 19: Emulating connection on COM7 

 

3. You can choose a pair of devices where you assign the terminal within Proteus a different 

port from that programmed in the Java application e.g. COM2 and COM3. For more 

simplicity, we will choose a device of type “Connector”, where the two virtual devices that 

intend to communicate share the same COMx port. Set this port to COM7 and click on 

“Emulate” as shown in Figure 19. 

4.5 Integrating the project 

1. Now that everything is ready for the integration, go back to Proteus ISIS and simulate the 

project. 

2. Go back to NetBeans IDE and compile/run the program. 

3. Within the console in NetBeans, you must see messages being sent and received. Each 

message sent can be a character of “e” or “d”. Each message received can be “g” or “l”. 

4. Get back to Proteus ISIS, adjust the potentiometer to have a values above 2 Volts once, 

wait for the response from the computer and observe the changes. 

5. Now try setting the value of the potentiometer to some value bellow 2 Volts, wait for response 

time, and observe the outputs you get. 

6. The behavior of the system must be exactly as that described in previous sections. 



 
Recreated 2015 By Odai Salman 

 

Figure 20: Hardware output 

 

Figure 21: Software output 

 

  



 
Recreated 2015 By Odai Salman 

 

5. Experiment Codes 
Delay.h 

/* 

 * Delay functions for HI-TECH C on the PIC 

 * 

 * Functions available: 

 *  DelayUs(x) Delay specified number of microseconds 

 *  DelayMs(x) Delay specified number of milliseconds 

 * 

 * Note that there are range limits: x must not exceed 255 - for xtal 

 * frequencies > 12MHz the range for DelayUs is even smaller. 

 * To use DelayUs it is only necessary to include this file; to use 

 * DelayMs you must include delay.c in your project. 

 * 

 */ 

 

/* Set the crystal frequency in the CPP predefined symbols list in 

 HPDPIC, or on the PICC commmand line, e.g. 

 picc -DXTAL_FREQ=4MHZ 

  

 or 

 picc -DXTAL_FREQ=100KHZ 

  

 Note that this is the crystal frequency, the CPU clock is 

 divided by 4. 

 

 * MAKE SURE this code is compiled with full optimization!!! 

  

 */ 

 

#ifndef XTAL_FREQ 

#define XTAL_FREQ 4MHZ  /* Crystal frequency in MHz */ 

#endif 

 

#define MHZ *1000L   /* number of kHz in a MHz */ 

#define KHZ *1   /* number of kHz in a kHz */ 

 

#if XTAL_FREQ >= 12MHZ 

 

#define DelayUs(x) { unsigned char _dcnt; \ 

     _dcnt = (x)*((XTAL_FREQ)/(12MHZ)); \ 

     while(--_dcnt != 0) \ 

      continue; } 

#else 

 

#define DelayUs(x) { unsigned char _dcnt; \ 

     _dcnt = (x)/((12MHZ)/(XTAL_FREQ))|1; \ 

     while(--_dcnt != 0) \ 

      continue; } 

#endif 

 

extern void DelayMs(unsigned char); 

 

 

 



 
Recreated 2015 By Odai Salman 

 

Delay.c 

/* 

 * Delay functions 

 * See delay.h for details 

 * 

 * Make sure this code is compiled with full optimization!!! 

 */ 

 

#include "delay.h" 

 

void DelayMs(unsigned char cnt) 

{ 

#if XTAL_FREQ <= 2MHZ 

 do { 

  DelayUs(996); 

 } while(--cnt); 

#endif 

 

#if    XTAL_FREQ > 2MHZ  

 unsigned char i; 

 do { 

  i = 4; 

  do { 

   DelayUs(250); 

  } while(--i); 

 } while(--cnt); 

#endif 

} 

 

Lcd.h 

extern void lcd_write(unsigned char); 

extern void lcd_clear(void); 

extern void lcd_puts(const char * s); 

extern void lcd_goto(unsigned char pos); 

extern void lcd_init(void); 

extern void lcd_putch(char); 

#define lcd_cursor(x) lcd_write(((x)&0x7F)|0x80) 

 

Lcd.c 

/* 

* the list of included files contains: 

* pic.h since we're going to use it with our pic microcontroller, duah 

* ldc.h which contains all the prototypes of the functions used for the 

lcd 

* delay.h which contains the prototype of the melli-second delay and 

the implementation 

* of the micro-second delay (which is used in the melli-second 

implementation, so it has to be included) 

* delay.c contains the implementation of the delay_ms function, so it 

has to be here 

*/ 

 

#include <pic.h> 



 
Recreated 2015 By Odai Salman 

 

#include "lcd.h" 

#include "delay.h" 

#define LCD_STROBE ((RE1 = 1),(RE1=0)) //* The E bit on the lcd, where 

it tells the lcd that we're writing data to it when it's set to 1*/ 

/*  

* the following write functions take a character inpute or 8 bits where 

it takes the higher 4 bits and passes their values to the D port of the pic 

* then it shifts the character by 4 bits to the left in order to take 

the values of the lower 4 bits and put them on the used D port bits. The 

strobe 

* is used indicate that the LCD is receving data so that the values are 

guaranteed to be passed in order and without interference 

*  

* As for the RS bit which is connected to RE0. It is used to tell the 

LCD to accept the character as a command when it's set to 0, or as a 

character to 

* be displayed on the screen when it's set to 1 

*/ 

void lcd_write(unsigned char c) 

{ 

PORTD = (PORTD & 0x0F) | (c); 

LCD_STROBE; 

PORTD = (PORTD & 0x0F) | (c << 4); 

LCD_STROBE; 

DelayUs(40); 

} 

void lcd_clear(void) 

{ 

RE0 = 0; 

lcd_write(0x1); 

DelayMs(2); 

} 

void lcd_puts(const char * s) 

{ 

RE0 = 1; 

while(*s) 

lcd_write(*s++); 

} 

void lcd_putch(char c) 

{ 

RE0 = 1; 

PORTD = (PORTD & 0x0F) | (c); 

LCD_STROBE; 

PORTD = (PORTD & 0x0F) | (c << 4); 

LCD_STROBE; 

DelayUs(40); 

} 

void lcd_goto(unsigned char pos) 

{ 

RE0 = 0; 

lcd_write(0x80+pos); 

} 

void lcd_init(void) 

{ 

RE0 = 0; 

DelayMs(15); // power on delay 

PORTD = (0x3 << 4); 

LCD_STROBE; 

DelayMs(5); 



 
Recreated 2015 By Odai Salman 

 

LCD_STROBE; 

DelayUs(100); 

LCD_STROBE; 

DelayMs(5); 

PORTD = (0x2 << 4); 

LCD_STROBE; 

DelayUs(40); 

lcd_write(0x28); // 4 bit mode, 1/16 duty, 5x8 font 

lcd_write(0x08); // display off 

lcd_write(0x0F); // display on, blink curson on 

lcd_write(0x06); // entry mode 

} 

 

String.h 

#include <pic.h> 

extern void reverse(char *str, int len); 

extern int intToStr(int x, char str[], int d); 

extern void ftoa(float n, char *res, int afterpoint); 

 

String.c 

// C program for implementation of ftoa() 

#include <pic.h> 

#include<stdio.h> 

#include<math.h> 

#include "string.h" 

  

// reverses a string 'str' of length 'len' 

void reverse(char *str, int len) 

{ 

    int i=0, j=len-1, temp; 

    while (i<j) 

    { 

        temp = str[i]; 

        str[i] = str[j]; 

        str[j] = temp; 

        i++; j--; 

    } 

} 

  

 // Converts a given integer x to string str[].  d is the number 

 // of digits required in output. If d is more than the number 

 // of digits in x, then 0s are added at the beginning. 

int intToStr(int x, char str[], int d) 

{ 

    int i = 0; 

    while (x) 

    { 

        str[i++] = (x%10) + '0'; 

        x = x/10; 

    } 

  

    // If number of digits required is more, then 

    // add 0s at the beginning 

    while (i < d) 



 
Recreated 2015 By Odai Salman 

 

        str[i++] = '0'; 

  

    reverse(str, i); 

    str[i] = '\0'; 

    return i; 

} 

  

// Converts a floating point number to string. 

void ftoa(float n, char *res, int afterpoint) 

{ 

    // Extract integer part 

    int ipart = (int)n; 

  

    // Extract floating part 

    float fpart = n - (float)ipart; 

  

    // convert integer part to string 

    int i = intToStr(ipart, res, 0); 

  

    // check for display option after point 

    if (afterpoint != 0) 

    { 

        res[i] = '.';  // add dot 

  

        // Get the value of fraction part upto given no. 

        // of points after dot. The third parameter is needed 

        // to handle cases like 233.007 

        fpart = fpart * pow(10, afterpoint); 

  

        intToStr((int)fpart, res + i + 1, afterpoint); 

    } 

} 

 

USART_main.c 

#include <stdlib.h> 

#include <stdio.h> 

#include <pic.h> 

#include "lcd.h" 

#include "delay.h" 

#include "string.h" 

#define BAUD 9600 //Define baudrate 

#define FOSC 4000000L //crystal OSC 

#define DIVIDER ((int)(FOSC/(16UL * BAUD) -1)) // calculate baud rate 

generator value  

/* 

* since we're using 4MHz oscillator, we need to set the oscillator bit 

to HS 

* the following are needed to make the LCD get to work: 

* BODEN, WDTDIS and WRTEN 

*/ 

 

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON); 

 

void putchOnSerial(unsigned char byte);  

void pause(int d);  

void init_a2d(void);  

float read_a2d(unsigned char channel); 



 
Recreated 2015 By Odai Salman 

 

float x; 

char str[10];  

unsigned int send=1; 

 

void main(void){  

 unsigned char rec;  

 TRISD = 0; /* to transmit characters to the LCD */ 

 TRISE = 0; /* to control the LCD */ 

 TRISB = 0; /* to control the motor */ 

 ADCON1 = 3;//set PORT A to Digital mode, Port E to digital  

 TRISA = 0xFF; /* to take analog values */   

 TRISC7=1;  /* set RC7 to input (RX) to receive bits */ 

 TRISC6=0;  /* set RC6 to output (TX) ro send bits */ 

 pause(1); //sleep for 1 sec 

  

 /* Loading screen */ 

 lcd_init(); /* Initialize the LCD */ 

 lcd_clear(); /* in case of a reset */ 

 lcd_puts("Starting..."); 

 DelayMs(1000); 

 

 nRBPU = 0; /* enable pullup resistors */  

  

 SPBRG = DIVIDER; /* set baud rate generator value in SPBRG register 

*/ 

 RCSTA = 0x90; /* set - Receive Status and Control Register */ 

 TXSTA =0x24; /* set Transmit Status and Control Register */ 

  

 init_a2d();  /* Initialize the A2D module */ 

 DelayMs(500); 

  

 lcd_clear(); 

 GIE=0;  /* Disable global interrupts */ 

 while ( 1 ) {  

   

  if(send==1) { 

   DelayMs(100); /* increase to 100 in case any problems 

occured during the implementation */ 

   lcd_goto(0);  

  

   /* Read analog value on AN0, adjust by coeficient to 

obtain actual value */ 

   x= read_a2d(0); 

   x = x/51.0; /* fraction to reflect actual analog value 

(since it reaches within the range of the analog register */ 

  

   ftoa(x, str, 2); /* Convert value to string with 2 digits 

after the point */ 

  

   lcd_puts(str); /* display value on LCD */ 

    

   if(x>2.0){ 

     putchOnSerial('g');  

     DelayMs(100); 

   } 

   else {putchOnSerial('l'); 

     DelayMs(100); 

   } 

   send=0; 



 
Recreated 2015 By Odai Salman 

 

  } 

  else { 

   rec = getch(); 

   DelayMs(100); 

  

   if(rec!=NULL) { //check the PC response is zero or one to 

rotate the motor  

    if(rec=='d') {  

     RB1=0;  

     lcd_goto(8); 

     lcd_puts("Disabled");  

    } 

  

    else if(rec=='e') {  

     RB1=1; 

     lcd_goto(8);  

     lcd_puts("Enabled ");  

    } 

   } /* end of if not null */ 

   send=1; 

  } /* end of else */ 

 } 

 

} 

 

void putchOnSerial(unsigned char byte) {  

 /* output one byte */ 

 while(!TXIF) /* set when register is empty */  

  continue;  

 TXREG = byte;  

} 

unsigned char getch() {  

 /* retrieve one byte */  

 if(RCIF)  

  return RCREG;  

 else  

  return NULL;  

} 

 

void init_a2d(void){  

 ADCON0 = 0x41; // select Fosc/8  

 ADCON1 = 0x0E; // select left justify result. A/D port configuration 

0  

 ADON=1; // turn on the A2D conversion module  

 } 

  

/* Return an 8 bit result */  

float read_a2d(unsigned char channel){  

 channel &=0x07; // truncate channel to 3 bits  

 ADCON0 = 0x41; // select Fosc/8  

 ADCON1 = 0x0E; // select left justify result. A/D port configuration 

0  

 DelayMs(10);  

 GO_nDONE = 1; 

 ADCON0 |=(channel<<3); // apply the new channel select 

 while(GO_nDONE) 

  continue;  

 return( (float) ADRESH); // return 8 MSB of the result 

 } 



 
Recreated 2015 By Odai Salman 

 

void pause(int d) {  

 int i,j;  

 for(i=0;i<4;i++)  

  for(j=0;j<d;j++)  

   DelayMs(255);  

 } 

 

TwoWaySerialComm.java 

package twowayserialcomm; 

 

import gnu.io.CommPort; 

import gnu.io.CommPortIdentifier; 

import gnu.io.SerialPort; 

import java.io.InputStream; 

import java.io.OutputStream; 

 

public class TwoWaySerialComm {  

 public TwoWaySerialComm() {  

 super(); 

 }  

  

 void connect ( String portName ) throws Exception {  

                boolean send=false; 

  CommPortIdentifier portIdentifier = 

CommPortIdentifier.getPortIdentifier(portName); 

  if ( portIdentifier.isCurrentlyOwned() ) {  

   System.out.println("Error: Port is currently in use"); 

  }  

  else { //outer else 

  CommPort commPort = 

portIdentifier.open(this.getClass().getName(),2000); 

  if ( commPort instanceof SerialPort ) { //outer if 

   SerialPort serialPort = (SerialPort) commPort; 

  

 serialPort.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.

STOPBITS_1,SerialPort.PARITY_NONE); 

   InputStream in = serialPort.getInputStream(); 

   OutputStream out = serialPort.getOutputStream(); 

    byte[] buffer = new byte[1024]; 

    int len = -1; 

    byte cmd='d'; 

   while(true) {  

    if(!send && (len = in.read(buffer))!=-1) { //start 

of if 

                                    cmd= buffer[0]; 

                                    send=true; 

                                    System.out.println("Received: " + 

(char) cmd); 

                                    Thread.sleep(1000); 

    } //end of if  

                                else if(send){ 

                                    if(cmd=='g') { out.write(cmd='e'); 

send=false; Thread.sleep(1000);} 

                                    else { out.write(cmd='d'); send=false; 

Thread.sleep(1000);} 

                                    System.out.println("Sent: " + (char) 

cmd); 



 
Recreated 2015 By Odai Salman 

 

                                } 

   } //end of while 

  } //outer if 

  else  

  System.out.println("Error: Only serial ports are handled by 

this example."); 

  } //outer else   

 }  

 

 public static void main ( String[] args ) {  

  try { (new TwoWaySerialComm()).connect("COM7"); 

  }  

  catch ( Exception e ) {  

  e.printStackTrace(); 

  }  

 } //end of main 

} //end of class 

 


