
 
Recreated 2015 By Odai Salman 

 

Experiment #9 (HW#4) 

Capture, Compare and Pulse Width Modulation 

1. Prerequisites 
ENCS 538, C programming language, PICC compiler, Microchip PIC16F877A datasheet. 

2. Objectives 

 Getting familiar with Capture, Compare, and Pulse Width Modulation (PWM) module. 

 Configuring the CCP module to capture an input signal. 

 Generating signals of different frequencies and duty cycles. 

 

3. Background 

The abbreviation CCP stands for Capture/Compare/PWM. The CCP module is a peripheral which 

allows the user to timing and controlling different events. 

 

Capture Mode: allows timing for the duration of an event. This circuit gives insight into the 

current state of a register which constantly changes its value. In this case, it is the timer TMR1 

register. 

 

Compare Mode: compares values contained in two registers at some point. One of them is the 

timer TMR1 register. This circuit also allows the user to trigger an external event when a 

predetermined amount of time has expired. 

 

PWM: Pulse Width Modulation can generate signals of varying frequency and duty cycle. 

 

The PIC16F887 microcontroller has two such modules: CCP1 and CCP2. 

Both of them are identical in normal mode, with the exception of the Enhanced PWM features 

available on CCP1 only. Each CCP module has 3 registers. Multiple CCP modules may exist on 

a single device. Throughout this section we use generic names for the CCP registers. These 

generic names are shown in Table 1. 

 
Table 1: the CCP1 and CCP2 modules 

 
 

 

 



 
Recreated 2015 By Odai Salman 

 

 

  

 

Figure 1: CCPxCON Register 

 

3.1 The capture mode 
In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an 

event occurs on pin CCPx. An event is triggered for an input signal can be on every falling edge, 

rising edge, 4th rising edge or every 16th rising edge. An event is selected by the control bits 

CCPxM3:CCPxM0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, 

CCPxIF, is set. The CCPxIF bit must be cleared in software. If another capture occurs before the 

value in register CCPRx is read, the previous captured value will be lost.   

 

 

 

 

 

Legend 
R = Readable bit     W = Writable bit,  U = Unimplemented bit, read as ‘0’    n = Value at POR reset 

Note: Timer1 must be running in timer mode or synchronized counter mode for 

the CCP module to use the capture feature. In asynchronous counter mode, the 

capture operation may not work. 



 
Recreated 2015 By Odai Salman 

 

 

As can be seen in Figure 2, a capture does not reset the 16-bit TMR1 register. This is so Timer1 

can also be used as the time base for other operations. The time between two captures can easily 

be computed as the difference between the two consecutive capture values. When Timer1 

overflows, the TMR1IF bit. An interrupt occurs if and only if the TMR1IE flag was set. In Capture 

mode, the CCPx (RC2) pin must be configured as an input by setting its corresponding 

TRIS bit.       

 
Figure 2: CCP1 in Capture mode 

The pre-scaler can be used to get a fine average resolution on a constant input frequency, e.g. if 

we have a stable input frequency and we set the pre-scaler to 1:16, then the total error for those 

16 periods is 1 TCY. This gives an effective resolution of TCY/16, which at 20 MHz is 12.5 ns. 

This technique is only valid where the input frequency is “stable” over the 16 samples. The flag 

bit CCP1IF is set when a capture is made. If it happens and if the CCP1IE bit of the PIE register 

is set, then an interrupt occurs.  

 

When the Capture mode is changed, an undesirable capture interrupts may be generated. In order 

to avoid that, both a bit enabling CCP1IE interrupt and flag bit CCP1IF should be cleared prior 

to any change occurring in the control register. Undesirable interrupt may be also generated by 

switching from one capture pre-scaler to another. To avoid this, the CCP1 module should be 

temporarily switched off before changing the pre-scaler. 

 

3.2 The compare mode 
In this mode, the value in the CCP1 register is constantly compared to the value in the timer 

register TMR1. When a match occurs, the output pin RC2/CCP1 logic state may be changed, 

which depends on the state of bits in the control register (CCP1M3 - CCP1M0). The flag-bit 

CCP1IF will be simultaneously set (See Figure 3). 

 



 
Recreated 2015 By Odai Salman 

 

 
Figure 3: CCP1 in Compare mode 

Note: To setup CCP1 module to operate in this mode, two conditions must be met: 

1. Pin RC2/CCP1 must be configured as output. 

2. Timer TMR1 must be synchronized with internal clock. 

 

3.3 The PWM mode 
In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM 

output. Since the CCPx pin is multiplexed with the PORT data latch, the corresponding TRIS bit 

must be cleared to make the CCPx pin an output. 

 

Figure 4 shows the block diagram of the CCP1 module setup in PWM mode. In order to generate 

a pulse of arbitrary form on its output pin, it is necessary to determine only two values, pulse 

frequency and duration. 

 

3.3.1 PWM period 

The output pulse period (T) is specified by the PR2 register of the timer TMR2. The PWM period 

can be calculated using the following equation: 

PWM Period(T) = (PR2 +1) * 4Tosc * TMR2 Prescale Value 

 

If the PWM Period (T) is known then, it is easy to determine the signal frequency F because these 

two values are related by equation F=1/T. 

3.3.2 PWM duty cycle 

The PWM duty cycle is specified by using in total of 10 bits: eight MSbs found in the CCPR1L 

register and two additional LSbs found in the CCP1CON register (DC1B1 and DC1B0). The 

result is 10-bit number. 



 
Recreated 2015 By Odai Salman 

 

 
Figure 4: PWM module 

Pulse Width (High Part) = (CCPR1L,DC1B1,DC1B0) * Tosc * TMR2 Prescale Value 

 

 

The following table shows how to generate PWM signals of varying frequency if the 

microcontroller uses 20 MHz quartz-crystal (Tosc=50nS). 

 

Frequency [KHz] 1.22 4.88 19.53 78.12 156.3 208.3 

TMR2 Pre-scaler 16 4 1 1 1 1 

PR2 Register FFh FFh FFh 3Fh 1Fh 17h 

 

Note1: Output pin will be constantly set in case the pulse width is by negligence determined 

to be larger than PWM period; and 

Note2: In this application, the timer TMR2 Post-scaler cannot be used for generating longer 

PWM periods. 



 
Recreated 2015 By Odai Salman 

 

3.3.3 PWM resolution 

PWM signal is nothing more than the pulse sequence with varying duty cycle. For one specified 

frequency (number of pulses per second), there is a limited number of duty cycle combinations. 

This number is called resolution measured by bits. For example, a 10-bit resolution will result in 

1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles etc. 

In relation to this microcontroller, the resolution is specified by the PR2 register. The maximal 

value is obtained by writing number FFh. 

PWM frequencies and resolutions ( Fosc = 20MHz): 

PWM Frequency 1.22kHz 4.88kHz 19.53kHz 78.12kHz 156.3kHz 208.3kHz 

Timer Prescale 16 4 1 1 1 1 

PR2 Value FFh FFh FFh 3Fh 1Fh 17h 

Maximum 

Resolution 

10 10 10 8 7 6 

 

PWM frequencies and resolutions ( Fosc = 8MHz): 

PWM Frequency 1.22kHz 4.90kHz 19.61kHz 76.92kHz 153.85kHz 200.0kHz 

Timer Prescale 16 4 1 1 1 1 

PR2 Value 65h 65h 65h 19h 0Ch 09h 

Maximum 

Resolution 

8 8 8 6 5 5 

 

3.4 Timer1 module 
The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and 

TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) 

increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 Interrupt, if enabled, is 

generated on overflow which is latched in the TMR1IF interrupt flag bit. This interrupt can be 

enabled/disabled by setting/clearing the TMR1IE interrupt enable bit. Timer1 can operate in one 

of three modes: as a synchronous timer, synchronous counter, or as an asynchronous counter. The 

operating mode is determined by clock select bit, TMR1CS (T1CON<1>), and the 

synchronization bit, T1SYNC (See Figure 5).  

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on 

every rising edge of the external clock input on pin T1CKI. Timer1 can be turned on and off using 

theTMR1ON control bit (T1CON<0>). Timer1 also has an internal “reset input”, which can be 

generated by a CCP module. Timer1 has the capability to operate off an external crystal. When 

the Timer1 oscillator is enabled (T1OSCEN is set), the T1OSI and T1OSO pins become inputs. 

That is, their corresponding TRIS values are ignored.    



 
Recreated 2015 By Odai Salman 

 

 

 
Figure 5: Timer1 Block Diagram 

 
Figure 6: Timer1 Block Diagram 

 



 
Recreated 2015 By Odai Salman 

 

3.5 Timer2 module 
Timer2 is an 8-bit timer with a pre-scaler, a post-scaler, and a period register. Using the pre-scaler 

and post-scaler at their maximum settings, the overflow time is the same as a 16-bit timer. Timer2 

is the PWM time-base when the CCP module(s) is used in the PWM mode. Figure 7 shows a 

block diagram of Timer2. The post-scaler counts the number of times that the TMR2 register 

matched the PR2 register. This can be useful in reducing the overhead of the 

Interrupt service routine on the CPU performance. 

 

 
Figure 6: Timer2 Block Diagram 

 
Figure 7: Timer2 Control Register 



 
Recreated 2015 By Odai Salman 

 

 

4. Procedure 

4.1 Capturing a signal using capture mode 

1. Open MPLAB IDE. 

2. Make new project, and add the codes delay.h, delay.c, lcd.h, lcd.c, string.h, string.c and 

capture.c provided in the experiment codes section. 

3. Compile the project using HI-TECH UNVERSAL ANSI COMPILER for PIC16F877A. 

4. Open Proteus ISIS. 

5. Under components, list the following: PIC16F877A, POT-LN or POT-HG, RES, LM016L, 

CRYSTAL and CAP. 

6. Under terminal mode: use the POWER and GND. 

7. Under instruments, pick a SIGNAL GENERATOR and OSCILLOSCOPE. These devices 

results usually pop-up at simulation time. In case they didn’t, you can always display them 

by clicking on Debug, then ticking the devices listed on the bottom of the list. All this happens 

only at simulation time. 

8. Implement circuit provided in Figure 8. 

 

Figure 8: Capture mode connections 

9. Load the generated HEX onto the micro-controller. Set its external frequency to 4MHz. 



 
Recreated 2015 By Odai Salman 

 

10. Click on “play”. 

11. Set the values according to the Figure 9. Observe the outputs you get. 

 

Figure 9: Capture mode results 

12. Change the values to ones of your own choice and observe how the outputs change. 

13. Download the program on the PIC16F877A using PicKit3. 

14. Apply the connections on hardware. 

15. Observe the outputs you get and compare them to the simulated ones. 

 

4.1 Generating 15KHz signal using PWM mode 

16. Open MPLAB IDE. 

17. Make new project, and add the code pwm.c provided in the experiment codes section. 

18. Compile the project using HI-TECH UNVERSAL ANSI COMPILER for PIC16F877A. 

19. Open Proteus ISIS. 

20. Under components, list the following: PIC16F877A, RES, CRYSTAL and CAP. 

21. Under terminal mode: use the POWER and GND. 

22. Under instruments, pick an OSCILLOSCOPE. This device results usually pop-up at 

simulation time. In case they didn’t, you can always display them by clicking on Debug, then 

ticking the device listed on the bottom of the list. All this happens only at simulation time. 

23. Implement circuit provided in Figure 10. 

24. Load the generated HEX onto the micro-controller. Set its external frequency to 4MHz. 

25. Click on “play” and observe the output signal displayed on the oscilloscope. 



 
Recreated 2015 By Odai Salman 

 

 
Figure 10: PWM mode connections 

26. Note that the signal is not exactly 15KHz. Also it quite closer to 14KHz instead. There are 

two reasons for this large error percentage, can you guess them? 

 

Figure 11: PWM mode results 



 
Recreated 2015 By Odai Salman 

 

27. Download the program on the PIC16F877A using PicKit3. 

28. Apply the connections on hardware. 

29. Observe the outputs you get and compare them to the simulated ones. 

5. Experiment Codes 
Delay.h 

/* 

 * Delay functions for HI-TECH C on the PIC 

 * 

 * Functions available: 

 *  DelayUs(x) Delay specified number of microseconds 

 *  DelayMs(x) Delay specified number of milliseconds 

 * 

 * Note that there are range limits: x must not exceed 255 - for xtal 

 * frequencies > 12MHz the range for DelayUs is even smaller. 

 * To use DelayUs it is only necessary to include this file; to use 

 * DelayMs you must include delay.c in your project. 

 * 

 */ 

 

/* Set the crystal frequency in the CPP predefined symbols list in 

 HPDPIC, or on the PICC commmand line, e.g. 

 picc -DXTAL_FREQ=4MHZ 

  

 or 

 picc -DXTAL_FREQ=100KHZ 

  

 Note that this is the crystal frequency, the CPU clock is 

 divided by 4. 

 

 * MAKE SURE this code is compiled with full optimization!!! 

  

 */ 

 

#ifndef XTAL_FREQ 

#define XTAL_FREQ 4MHZ  /* Crystal frequency in MHz */ 

#endif 

 

#define MHZ *1000L   /* number of kHz in a MHz */ 

#define KHZ *1   /* number of kHz in a kHz */ 

 

#if XTAL_FREQ >= 12MHZ 

 

#define DelayUs(x) { unsigned char _dcnt; \ 

     _dcnt = (x)*((XTAL_FREQ)/(12MHZ)); \ 

     while(--_dcnt != 0) \ 

      continue; } 

#else 

 

#define DelayUs(x) { unsigned char _dcnt; \ 

     _dcnt = (x)/((12MHZ)/(XTAL_FREQ))|1; \ 

     while(--_dcnt != 0) \ 

      continue; } 

#endif 

 

extern void DelayMs(unsigned char); 



 
Recreated 2015 By Odai Salman 

 

 

 

 

Delay.c 

/* 

 * Delay functions 

 * See delay.h for details 

 * 

 * Make sure this code is compiled with full optimization!!! 

 */ 

 

#include "delay.h" 

 

void DelayMs(unsigned char cnt) 

{ 

#if XTAL_FREQ <= 2MHZ 

 do { 

  DelayUs(996); 

 } while(--cnt); 

#endif 

 

#if    XTAL_FREQ > 2MHZ  

 unsigned char i; 

 do { 

  i = 4; 

  do { 

   DelayUs(250); 

  } while(--i); 

 } while(--cnt); 

#endif 

} 

 

Lcd.h 

extern void lcd_write(unsigned char); 

extern void lcd_clear(void); 

extern void lcd_puts(const char * s); 

extern void lcd_goto(unsigned char pos); 

extern void lcd_init(void); 

extern void lcd_putch(char); 

#define lcd_cursor(x) lcd_write(((x)&0x7F)|0x80) 

 

Lcd.c 

/* 

* the list of included files contains: 

* pic.h since we're going to use it with our pic microcontroller, duah 

* ldc.h which contains all the prototypes of the functions used for the 

lcd 

* delay.h which contains the prototype of the melli-second delay and 

the implementation 



 
Recreated 2015 By Odai Salman 

 

* of the micro-second delay (which is used in the melli-second 

implementation, so it has to be included) 

* delay.c contains the implementation of the delay_ms function, so it 

has to be here 

*/ 

 

#include <pic.h> 

#include "lcd.h" 

#include "delay.h" 

#define LCD_STROBE ((RE1 = 1),(RE1=0)) //* The E bit on the lcd, where 

it tells the lcd that we're writing data to it when it's set to 1*/ 

/*  

* the following write functions take a character inpute or 8 bits where 

it takes the higher 4 bits and passes their values to the D port of the pic 

* then it shifts the character by 4 bits to the left in order to take 

the values of the lower 4 bits and put them on the used D port bits. The 

strobe 

* is used indicate that the LCD is receving data so that the values are 

guaranteed to be passed in order and without interference 

*  

* As for the RS bit which is connected to RE0. It is used to tell the 

LCD to accept the character as a command when it's set to 0, or as a 

character to 

* be displayed on the screen when it's set to 1 

*/ 

void lcd_write(unsigned char c) 

{ 

PORTD = (PORTD & 0x0F) | (c); 

LCD_STROBE; 

PORTD = (PORTD & 0x0F) | (c << 4); 

LCD_STROBE; 

DelayUs(40); 

} 

void lcd_clear(void) 

{ 

RE0 = 0; 

lcd_write(0x1); 

DelayMs(2); 

} 

void lcd_puts(const char * s) 

{ 

RE0 = 1; 

while(*s) 

lcd_write(*s++); 

} 

void lcd_putch(char c) 

{ 

RE0 = 1; 

PORTD = (PORTD & 0x0F) | (c); 

LCD_STROBE; 

PORTD = (PORTD & 0x0F) | (c << 4); 

LCD_STROBE; 

DelayUs(40); 

} 

void lcd_goto(unsigned char pos) 

{ 

RE0 = 0; 

lcd_write(0x80+pos); 

} 



 
Recreated 2015 By Odai Salman 

 

void lcd_init(void) 

{ 

RE0 = 0; 

DelayMs(15); // power on delay 

PORTD = (0x3 << 4); 

LCD_STROBE; 

DelayMs(5); 

LCD_STROBE; 

DelayUs(100); 

LCD_STROBE; 

DelayMs(5); 

PORTD = (0x2 << 4); 

LCD_STROBE; 

DelayUs(40); 

lcd_write(0x28); // 4 bit mode, 1/16 duty, 5x8 font 

lcd_write(0x08); // display off 

lcd_write(0x0F); // display on, blink curson on 

lcd_write(0x06); // entry mode 

} 

 

String.h 

#include <pic.h> 

extern void reverse(char *str, int len); 

extern unsigned int intToStr(unsigned int x, char str[], int d); 

extern void ftoa(float n, char *res, int afterpoint); 

 

String.c 

// C program for implementation of ftoa() 

#include <pic.h> 

#include<stdio.h> 

#include<math.h> 

#include "string.h" 

  

// reverses a string 'str' of length 'len' 

void reverse(char *str, int len) 

{ 

    int i=0, j=len-1, temp; 

    while (i<j) 

    { 

        temp = str[i]; 

        str[i] = str[j]; 

        str[j] = temp; 

        i++; j--; 

    } 

} 

  

 // Converts a given integer x to string str[].  d is the number 

 // of digits required in output. If d is more than the number 

 // of digits in x, then 0s are added at the beginning. 

unsigned int intToStr(unsigned int x, char str[], int d) 

{ 

    unsigned int i = 0; 

    while (x) 

    { 

        str[i++] = (x%10) + '0'; 

        x = x/10; 



 
Recreated 2015 By Odai Salman 

 

    } 

  

    // If number of digits required is more, then 

    // add 0s at the beginning 

    while (i < d) 

        str[i++] = '0'; 

  

    reverse(str, i); 

    str[i] = '\0'; 

    return i; 

} 

  

// Converts a floating point number to string. 

void ftoa(float n, char *res, int afterpoint) 

{ 

    // Extract integer part 

    int ipart = (int)n; 

  

    // Extract floating part 

    float fpart = n - (float)ipart; 

  

    // convert integer part to string 

    int i = intToStr(ipart, res, 0); 

  

    // check for display option after point 

    if (afterpoint != 0) 

    { 

        res[i] = '.';  // add dot 

  

        // Get the value of fraction part upto given no. 

        // of points after dot. The third parameter is needed 

        // to handle cases like 233.007 

        fpart = fpart * pow(10, afterpoint); 

  

        intToStr((int)fpart, res + i + 1, afterpoint); 

    } 

} 

 

Capture.c 

#include <pic.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include "lcd.h" 

#include "delay.h" 

#include "string.h" 

 

 

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON); 

 

unsigned int  rising_edge_time=0; // hold the current value of rising edge 

time  

char str[10]; 

 

void main(void) { 

 ADCON1 = 7; // Set A/D-pins as digital I/O 

 nRBPU = 0;   // enable internal pullups on PORTB 

 TRISE = 0;  // set port E in output mode 



 
Recreated 2015 By Odai Salman 

 

 TRISD = 0;  // set port D in output mode 

 RE2 = 0;    // Initialize PortE pin 2  

 

 

 //Timer1 configuration  

 TMR1CS = 0; // use internal clock  (Fosc/4) , where Fosc= 4MHz in our 

case 

 TMR1IF = 0; // set Timer interrupt flag bit to 0. It is set to 1 when 

an overflow is occurred in Timer1  

 TMR1H  = 0x00;  // the MSB 8 bit for Timer1 , which has the value of 

the timer 

 TMR1L = 0x00; // the LSB 8 bit for Timer1.  

 T1CKPS0 = 0;  T1CKPS1 = 0;  //set the prescale value to 1:1 (See 

datasheet)  

 T1SYNC = 0;// Timer is synchronized to external clock input 

 TMR1IE = 1;// enable TIMER1 interrupt  

 TMR1ON = 1; //Enable Timer1 

 

 //Configure CCP module to Capture mode 

 CCP1M3 = 0; CCP1M2 = 1; CCP1M1 = 0; CCP1M0 = 1;  // Capture the input 

signal on every rising edge 

 CCP1IE = 1; // enable CCP1 interrupt 

 CCP1IF = 0;  

 

 GIE = 1;  // Global Interrupt Enable  

 PEIE = 1; 

 

 DelayMs(100); 

 lcd_init(); 

 lcd_clear(); 

 

 //forever loop to display the rising edge time 

 while(1) { 

  DelayMs(100); 

  lcd_clear(); 

  intToStr((unsigned int)rising_edge_time, str, 5); 

  lcd_puts(str); /* display value on LCD */ 

 } 

 

} 

 

//the interrupt function is called , when an overflow is occurred in Timer1 

or the rising or falling edge is detected depends on the configuration of 

CCP module  

static void interrupt ISR(void) { 

 //CCP1IF 

  // check if the interrupt is 1  

  if ( CCP1IF ) { 

 //store the time of rising or falling edge in  rising_edge_time by 

getting the time value from CCPR1L    

 rising_edge_time=0; 

 rising_edge_time= (int) CCPR1; 

 //rest the CCP1 interrupt flag to 0 

    CCP1IF = 0; 

  } 

 

  //check if the Timer1 is overflowed  

  if ( TMR1IF ) { 

 //rest the Timer1 counter to 0 



 
Recreated 2015 By Odai Salman 

 

    TMR1H = 0x00;  TMR1L = 0x00; 

 //reset Timer1 overflow flag to 0 

    TMR1IF = 0; 

  } 

} 

 

Pwm.c 

#include <pic.h> 

 

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON); 

 

int i=0; 

void main(void) {                              

 TRISC = 0 ; // set PORTC as output 

 PORTC = 0 ; // clear PORTC 

  

 /* configure CCP module as 15 KHz PWM output */ 

 PR2 = 66 ; //set PR2 Regesiter to  66 decimal  

 T2CON =   0b00000100; //set Timer2 control Register , where Prescaler 

is 1 and Postscale is 1:1 

 CCP1CON = 0b00101100; //set CCP1 to Pulse Width Modulation Mode  

  

 for(;;){ 

  /* PWM resolution is 10 bits, so only CCPRxL have to be touched 

to change duty cycle */ 

  /* set CCPR1L to 25 to give 50% duty cycle with frequency = 15 

KHz , note that DC1B1 and DC1B0 are set to 10 in CCP1CON */ 

  CCPR1L = 0b00100001;         

 } 

} 

 


