
Recreated 2015 By Odai Salman

Experiment #10 (HW#5)

Introduction to Timer0 Module (timer & counter)

1. Prerequisites
ENCS 538, C programming language, PICC compiler, Microchip PIC16F877A datasheet.

2. Objectives
 Understanding how to use timers with interrupts to obtain the needed resolution (i.e. 10

ms).

 Building and programming embedded systems that use time in their functionalities (i.e.

Counters Applications).

3. Background

The timers of the PIC16F887 microcontroller can be briefly described in only one sentence. There

are three completely independent timers/counters marked as TMR0, TMR1 and TMR2. However,

in this experiment we would like to focus on Timer0 only since the Timer0 can be used to build

the target application of this experiment. The target application of this experiment is to build BCD

counters to count from 00 to 99 and then display the value of counter on seven segment display.

The counter is incremented by 1 each second, therefore, the Timer0 will be used to define a one

second resolution using ISR mechanism.

3.1 Timer0 module (TMR0)
The timer TMR0 has a wide range of applications in practice. Very few programs don't use it in

some way. It is very convenient and easy to use for writing programs or subroutines for generating

pulses of arbitrary duration, time measurement or counting external pulses (events) with almost no

limitations.

The timer TMR0 module is an 8-bit timer/counter with the following features:

 8-bit timer/counter.

 8-bit pre-scaler (shared with Watchdog timer).

 Programmable internal or external clock source.

 Interrupt on overflow.

 Programmable external clock edge selection.

If the periodic interrupt occurs every 10ms, the ISR will have a system tick period of 10ms, or a

rate of 100Hz. With a tick rate defined, you can specify delays to a resolution of one timer tick

period, e.g. delays of 10ms, 20ms, 1s, 2s, are possible.

The resolution of the tick rate is calculated using the following equation, where Fosc is the input

clock frequency, Period the resolution of the tick rate, Pre-scaler is configured in Timer0 control

register, and TMR0 is the value of Timer0 that should be loaded to achieve the desired tick rate.

Recreated 2015 By Odai Salman

𝑃𝑒𝑟𝑖𝑜𝑑 = (256 − 𝑇𝑀𝑅0) ∗
4

𝐹𝑜𝑠𝑐
∗ 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

Example: Suppose that the desired value of the tick rate is 10ms, the input clock frequency (Fosc) is

4MHz, and the pre-scaler is 256. However, it is important to mention that the potential values of pre-

scaler are (1, 2, 8, 16, 32, 64, 128, and 256) and it is configured in the control register for Timer0.

Now, by applying the given inputs on the above equation, the value of TMR0 is 217.

10 ∗ 10−3 = (256 − 𝑇𝑀𝑅0) ∗
4

4 ∗ 106
∗ 256 → 𝑇𝑀𝑅0 = 256 − 39 = 217

Figure 1 represents the timer TMR0 schematic with all bits which determine its operation.

These bits are stored in the OPTION_REG Register.

Notes: Watchdog timer must be disabled when using the internal or external frequencies.

Internal frequency = external frequency / 4

Figure 1: TMR0 Module

Recreated 2015 By Odai Salman

OPTION_REG Register

 RBPU - PORTB Pull-up enable bit
 1 - PORTB pull-up resistors are disabled; and

 0 - PORTB pins can be connected to pull-up resistors.

 INTEDG - Interrupt Edge Select bit
 1 - Interrupt on rising edge of INT pin (0-1); and

 0 - Interrupt on falling edge of INT pin (1-0).

 T0CS - TMR0 Clock Select bit
 1 - Pulses are brought to TMR0 timer/counter input through the RA4 pin; and

 0 - Internal cycle clock (Fosc/4).

 T0SE - TMR0 Source Edge Select bit
 1 - Increment on high-to-low transition on TMR0 pin; and

 0 - Increment on low-to-high transition on TMR0 pin.

 PSA – Pre-scaler Assignment bit
 1 – Pre-scaler is assigned to the WDT; and

 0 – Pre-scaler is assigned to the TMR0 timer/counter.

 PS2, PS1, PS0 – Pre-scaler Rate Select bit
 Pre-scaler rate is adjusted by combining these bits as seen in the table 4-1, the

same combination of bits gives different pre-scaler rate for the timer/counter and

watch-dog timer respectively.

PS2 PS1 PS0 TMR0 WDT
0 0 0 1:2 1:1
0 0 1 1:4 1:2
0 1 0 1:8 1:4
0 1 1 1:16 1:8
1 0 0 1:32 1:16
1 0 1 1:64 1:32
1 1 0 1:128 1:64
1 1 1 1:256 1:128

Pre-scaler Rates

3.2 The seven segment display IC
A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display device

for displaying decimal numerals that is an alternative to the more complex dot-matrix displays.

Recreated 2015 By Odai Salman

Seven-segment displays are widely used in digital clocks, electronic meters, and other electronic

devices for displaying numerical information.

Hexadecimal digits can be displayed on seven-segment displays. A particular combination of

uppercase and lowercase letters are used for A–F; this is done to obtain a unique, unambiguous

shape for each letter (otherwise, a capital D would look identical to a 0 and a capital B would look

identical to an 8). Also the digit 6 must be displayed with the top bar lit to avoid ambiguity with

the letter b)

Hexadecimal encodings for displaying the digits 0 to F

Digit gfedcba a b c d e f g

0 0×3F on on on on on on off

1 0×06 off on on off off off off

2 0×5B on on off on on off on

3 0×4F on on on on off off on

4 0×66 off on on off off on on

5 0×6D on off on on off on on

6 0×7D on off on on on on on

7 0×07 on on on off off off off

8 0×7F on on on on on on on

9 0×6F on on on on off on on

A 0×77 on on on off on on on

b 0×7C off off on on on on on

C 0×39 on off off on on on off

d 0×5E off on on on on off on

E 0×79 on off off on on on on

 F 0×71 on off off off on on on

http://en.wikipedia.org/wiki/Hexadecimal

Recreated 2015 By Odai Salman

4. Procedure

4.1 Overview

In this experiment, we’re going to use the PIC16F877A MCU to implement a 2-digit counter that

counts from 00 to 99 and repeats. The outputs that you shall get are two 7segment displays, one

that counts every 1 second, and the other counts every 10 seconds.

The flow of the code can be summarized as (for more clarification, check the code’s comments):

 Define 2 variables to control the value displayed on each 7-segment.

 Set the OPTION_REG to values that fit into equation parameters needed to obtain a 0.01

second interrupts.

 Also, adjust the pullup resistors enabling bit to enable connecting them on the specified output

ports.

 Within the routine that gets invoked on every interrupt that happens upon TMR0 overflow

(programmed to be each 0.01 seconds), reset the TMR0 register to 217 and reset the timer0

interrupt flag to obtain another 0.01; increase each digit counter.

 Start an endless loop that gets interrupted on every TMR0 overflow, where it increases the

number on the first display when the its counter reaches 100 (that is 100*0.01=1sec); and

increases the number on the second display when the its counter reaches 1000 (that is

1000*0.01=10sec).

The pin-to-pin connections that you are going to apply are according to the following table:

4.2 The implementation

1. Open MPLAB IDE.

2. Make new project, and add the codes 7seg_main.c provided in the experiment codes section.

3. Compile the project using HI-TECH UNVERSAL ANSI COMPILER for PIC16F877A.

4. Open Proteus ISIS.

5. Under components, list the following: PIC16F877A, 7SEG-COM-CAT-GRN, RES,

CRYSTAL and CAP.

PORT D 1st Seven Segment PORT B 2nd Seven Segment

D0 a B0 a

D1 b B1 b

D2 c B2 c

D3 d B3 d

D4 e B4 e

D5 g B5 g

D6 f B6 f

D7 DP B7 DP

Recreated 2015 By Odai Salman

6. Under terminal mode: use the POWER and GND.

7. Implement circuit provided in Figure 2 (set pullup resistors to 330Ohms).

8. Load the generated HEX onto the micro-controller. Set its external frequency to 4MHz.

9. Click on “play”.

10. Download the program on the PIC16F877A using PicKit3.

11. Apply the connections on hardware.

12. Observe the outputs you get and compare them to the simulated ones.

Figure 2: Experiment schematic diagram

Figure 3: Experiment outputs

Recreated 2015 By Odai Salman

4. Experiment Codes

7seg_main.c

#include <pic.h>

__CONFIG(DEBUG_OFF & WDTE_OFF & LVP_OFF & FOSC_HS & BOREN_ON);

char display_digit[10]= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

// binary values to be used in representing decimal Number from 0 to 0

int d1Counter=0; // used to trigger d2 on every second

int d2Counter=0; // used to trigger d2 on every 10 seconds

int d1=0; // 7-segment display1 index

int d2=0; // 7-segment display2 index

void InitMain() {

 PORTB = 0; // Set PORTB to 0

 PORTD = 0; // Set PORTD to 0

 TRISB = 0; // PORTB is output

 TRISD= 0; // PORTD is output

}

void main() {

 InitMain();

 GIE=1; // Enable Global Interrupt

 T0IE = 1; // Timer0 Interrput Enable

 // Prescaler Rate Select bit , 111 means multiply Timer0 by 256

 PSA=0;//Prescaler is assigned to the TMR0 timer/counter.

 TMR0 =217;

 OPTION_REG = 0x47;

 PORTB= display_digit[d1];

 PORTD= display_digit[d2];

 while (1) { // Endless loop

 if(d1Counter==100){ // we achieved 1 second

 d1++; // increase d1 on every second

 if(d1==10) d1=0;

 PORTB= display_digit[d1];

 d1Counter=0; // reset for the next second

 } // end of 1 second if-statement

 if(d2Counter==1000){ // we achieved 10 seconds

 d2++; // increase d1 on every 10 seconds

 if(d2==10) d2=0;

 PORTD= display_digit[d2];

 d2Counter=0; // reset for the next 10 seconds

 } // end of 10 seconds if-statement

 } // end of while(1)

} // end of main

void interrupt IntVector(void){ // invoked on every TMR0 int (happens

every 0.01 seconds)

 if (T0IE && T0IF) { // check if the Timer0 is overflowed and Timer

Interrupt is enabled

 T0IF = 0; // set Timer Overflow flag to zero for the next interrupt

Recreated 2015 By Odai Salman

 TMR0 =217; /* reload the time value. It is calcualted based on this

equation Period = (256 - TMR0)*(4/fosc)*(Prescaler)

 in our case a 10ms period (resolution) should be achieved by set

Prescaler to 256 and the used Fsoc=4MHz

 0.01 = (256 -TMR0)*(4/4*10^6)*256 -----> TMR0= 256-39=217 */

 d1Counter++; // increment d1Counter

 d2Counter++; // increment d2Counter

 }

}

