
1

Experiment #1
Multi-Processing Environment Under Unix/Linux
Process Management for Real-Time Applications

1. Prerequisite

ENCS 538, C programming language, basics of inter-process communications under Unix/Linux.
Please refer to section 4 for a detailed list of prerequisites.

2. Introduction

The realization and control of embedded system needs some tools to manage multitasks and
concurrent processes. This experiment aims to introduce some of these concepts using Linux as
multi-tasking environment.

3. Objectives
 To learn how to create and manage processes on a multi-tasking environment.
 To learn how to establish inter-task communication between the different tasks.
 To learn and implement different control algorithms in embedded systems using software and

programming in a multi-tasking environment.

4. List of prerequisites
Review the lecture notes that you have got during the ENCS538 course (Real-Time
Applications and Embedded Systems). Mainly, you need to focus on the following items :

 Unix/Linux file system information.

 The C-language programming techniques.

 Process creation, process ID, parent process ID.

 Ending a process, waiting on a process.

 Systems calls: exec, execl, execlp, system, fork.

 Signal and signal management calls.

 Primitive communication between processes (lock files, signals), pipes and fifos.

 Better inter-process communication techniques: pipes, fifos, message queues, semaphores,

shared memory.

 Basic Unix/Linux commands relative to process management (e.g. ls, ps, kill).

2

5. Background
5.1 Process Creation Concepts

Processes are the primitive units for allocation of system resources. Each process has its own
address space and (usually) one thread of control. A process executes a program; you can have
multiple processes executing the same program, but each process has its own copy of the
program within its own address space and executes it independently of the other copies.

Processes are organized hierarchically. Each process has a parent process, which explicitly
arranged to create it. The processes created by a given parent are called its child processes. A
child inherits many of its attributes from the parent process.

A process ID number names each process. A unique process ID is allocated to each process
when it is created. The lifetime of a process ends when its termination is reported to its parent
process; at that time, all of the process resources, including its process ID, are freed.

Processes are created with the fork() system call (so the operation of creating a new process is
sometimes called forking a process). The child process created by fork is a copy of the original
parent process, except that it has its own process ID.

After forking a child process, both the parent and child processes continue to execute normally.
If you want your program to wait for a child process to finish executing before continuing, you
must do this explicitly after the fork operation, by calling wait() or waitpid(). These functions
give you limited information about why the child terminated--for example, its exit status code.

A newly forked child process continues to execute the same program as its parent process, at the
point where the fork call returns. You can use the return value from fork to tell whether the
program is running in the parent process or the child process.

When a child process terminates, its death is communicated to its parent so that the parent may
take some appropriate action. A process that is waiting for its parent to accept its return code is
called a zombie process. If a parent dies before its child, the child (orphan process) is
automatically adopted by the original “init” process whose PID is 1.

5.2 File Execution
A child process can execute another program using one of the exec functions (See Appendix A).
The program that the process is executing is called its process image. Starting execution of a
new program causes the process to forget all about its previous process image; when the new
program exits, the process exits too, instead of returning to the previous process image.

Executing a new process image completely changes the contents of memory, copying only the
argument and environment strings to new locations. But many other attributes of the process are
unchanged:

 The process ID and the parent process ID.
 Session and process group membership.
 Real user ID and group ID, and supplementary group IDs.

3

 Current working directory and root directory. In the GNU system, the root directory is
not copied when executing a setuid program; instead the system default root directory is
used for the new program.

 File mode creation mask.
 Process signal mask.
 Pending signals.
 Elapsed processor time associated with the process; see section Processor Time.

5.3 Signals

Programs must sometimes deal with unexpected or unpredictable events, such as:

 a floating point error.
 a power failure.
 an alarm clock "ring".
 the death of a child process.
 a termination request from a user (i.e., a Control-C).
 a suspend request from a user (i.e., a Control-Z).

These kind of events are sometimes called interrupts, as they must interrupt the regular flow of
a program in order to be processed. When UNIX recognizes that such an event has occurred, it
sends the corresponding process a signal.

The kernel isn't the only one that can send a signal; any process can send any other process a
signal, as long as it has permissions.

A programmer may arrange for a particular signal to be ignored or to be processed by a special
piece of code called a signal handler. In the latter case, the process that receives the signal
suspends its current flow of control, executes the signal handler, and then resumes the original
flow of control when the signal handler finishes.

Signals inform processes of the occurrence of asynchronous events. Every type of signal has a
handler which is a function. All signals have default handlers which may be replaced with user-
defined handlers. The default signal handlers for each process usually terminate the process or
ignore the signal, but this is not always the case.

Signals may be sent to a process from another process, from the kernel, or from devices such as
terminals. The ^C, ^Z, ^S and ^Q terminal commands all generate signals which are sent to the
foreground process when pressed.
The kernel handles the delivery of signals to a process. Signals are checked for whenever a
process is being rescheduled, put to sleep, or re-executing in user mode after a system call.

5.4 Pipes
Pipes are the oldest form of UNIX System IPC and are provided by all UNIX systems. Pipes
have two limitations.

1. Historically, they have been half duplex (i.e., data flows in only one direction). Some
systems now provide full-duplex pipes, but for maximum portability, we should never
assume that this is the case.

4

2. Pipes can be used only between processes that have a common ancestor. Normally, a
pipe is created by a process, that process calls fork, and the pipe is used between the
parent and the child.

Despite these limitations, half-duplex pipes are still the most commonly used form of IPC.
Every time you type a sequence of commands in a pipeline for the shell to execute, the shell
creates a separate process for each command and links the standard output of one to the standard
input of the next using a pipe.

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe(int filedes[2]); // Returns: 0 if OK, –1 on error

Two file descriptors are returned through the filedes argument: filedes[0] is open for reading,
and filedes[1] is open for writing. The output of filedes[1] is the input for filedes[0].

Pipes are implemented using UNIX domain sockets in 4.3BSD, 4.4BSD, and Mac OS X 10.3.
Even though UNIX domain sockets are full duplex by default, these operating systems hobble
the sockets used with pipes so that they operate in half-duplex mode only.

POSIX.1 allows for an implementation to support full-duplex pipes. For these implementations,
filedes[0] and filedes[1] are open for both reading and writing.

Two ways to picture a half-duplex pipe are shown in Figure 1 The left half of the figure shows
the two ends of the pipe connected in a single process. The right half of the figure emphasizes
that the data in the pipe flows through the kernel.

Figure 1

Fork and a pipe
A pipe in a single process is next to useless. Normally, the process that calls pipe then calls
fork, creating an IPC channel from the parent to the child or vice versa. Figure 2 shows this
scenario.

Before fork

5

After fork

Figure 2

This gives two read ends and two write ends. The read end of the pipe will not be
closed until both of the read ends are closed, and the write end will not be closed until
both the write ends are closed.
Either process can write into the pipe, and either can read from it. Which process will
get what is not known.

Suppose the parent wants to write down a pipeline to a child. The parent closes its read
end, and writes into the other end. The child closes its write end and reads from the other
end. Then it will become a simple pipeline again as shown in Figure 3.

Figure 3

6

6. Procedure
6.1 Part A: Process creation and termination

1. Type the following program in a text editor. Name the file create.c, compile it using gcc
to generate the executable create and run it. Notice the function getpid() which returns the
process ID and the function getppid() which returns the parent process ID.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 printf("My PID is %d\n", getpid());
 printf("My parent PID is %d\n", getppid());

 while (1);
}

2. Execute the command ps -ef and make sure the process is active. Notice that the process parent
ID is the PID of the shell window where the process has been launched.

3. Terminate the process create using the command kill PID. Replace PID by the current process
ID.

4. Execute the command ps -ef and make sure the process has ceased to exist.

5. Type the following program in a text editor. Name the file fork1.c, compile it using gcc
to generate the executable fork1 and run it in the background:

#include <stdio.h>
#include <unistd.h>

int main()
{

int i;
/*
* Generating 5 children processes
*/
for (i = 0; i < 5; i++) {
if (fork() == 0) {
 printf("Child: My PID is %d\n", getpid());
 while (1);
}
else

{
 printf("In the PARENT process\n");

 if (i == 4)
 while (1);
}

}
return 0;

}

7

 To run the program fork1 in the background, do the following:

 > ./fork1 &

6. Execute the command ps -ef and notice how many processes that hold the name fork1 are
active. Determine which one is the parent using the PPID.

7. Terminate the parent process fork1 using the command kill PID. Replace PID by the
current process ID. Notice the new parent ID for the forked children.

8. Terminate all fork1 processes using the command kill PID as explained above.

9. Type the following program in a text editor. Name the file exec1.c, compile it using gcc to
generate the executable exec1 and run it.

/*
* Running the cat utility via an exec system call
*/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

if (argc != 2) {
printf("Usage: %s fileName\n", argv[0]);
exit(-1);

}

execlp("/bin/cat", "cat", argv[1], (char *) NULL);
perror("exec failure ");
exit(-2);

}

10. Run the program exec1 by giving it any text file as an argument.

11. Explain the main difference between the fork and exec function calls.

 TODO:
It will be given during the lab based on material covered in this section.

6.2 Part B: Inter-process communication

Signals

1. Execute man sigset, man sighold, man sigrelse, man sigpause, sigignore and check what
these functions do.

2. Check the different signal types such as SIGABRT (6), SIGALRM (14), SIGKILL (9),
SIGQUIT (3), SIGINT (2), SIGUSR1 and SIGUSR2. Execute kill -l to check the other
signal types.

8

3. Check the command kill that you can call from a terminal and the function kill(pid, sig) that
can be called from within your C-file. Note that the function kill(pid, sig) is used to send a
signal to a process or a group of processes.

4. Type the following program that catches the signals SIGINT and SIGQUIT and displays the
signals numbers. Name the file signals1.c.

/*
* Catching signals with sigset
*/
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
 int i;
 void signal_catcher(int);
 if (sigset(SIGINT, signal_catcher) == SIG_ERR)
 {
 perror("Sigset cannot set SIGINT");
 exit(SIGINT);
 }
 if (sigset(SIGQUIT, signal_catcher) == SIG_ERR)
 {
 perror("Sigset cannot set SIGQUIT");
 exit(SIGQUIT);
 }

 for (i = 0; ; ++i)
 {
 printf("%i\n", i);
 sleep(1);
 }
}

void signal_catcher(int the_sig)
{
 printf("\nSignal %d received.\n", the_sig);

 if (the_sig == SIGQUIT)
 exit(1);
}

5. Compile signals1.c using the gcc compiler to create the executable signals1 and run it.

6. Note that the signals SIGINT and SIGQUIT can be sent to the signals1 process by typing Ctrl-
C and Ctrl-\ respectively.

9

7. Type the following program that catches signal SIGUSR2 and holds SIGUSR1. Name the
file signals2.c.

/*
* Catching signals with sigset
*/
#include <stdio.h>
#include <signal.h>
#include <unistd.h>

int main(void)
{

void sigset_catcher(int);

sighold(SIGUSR1);
sigset(SIGUSR2, sigset_catcher);
printf("Waiting for signal\n");
pause();
printf("Done\n");
exit(0);

}

void sigset_catcher(int n)
{

printf("\nReceived signal %d will release SIGUSR1\n", n);
sigrelse(SIGUSR1);
printf("SIGUSR1 released!\n");

}

8. Compile signals2.c using the gcc compiler to create the executable signals2 and run it.

9. In a different terminal, execute the command kill -USR2 pid and check the process
output. Replace pid by the actual process pid.

10. As a remark, note that the signals SIGKILL and SIGSTOP cannot be ignored or held.

11. Type the following program and name the file alarm.c. Compile alarm.c to create the
executable alarm and run it.

/*
* Testing the alarm signal (SIGALRM)
*/
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>

int val = 0;

int main(void)
{
 int i;

10

 void signal_catcher(int);

 alarm(1);

 if (sigset(SIGALRM, signal_catcher) == SIG_ERR)
 {

 perror("Sigset cannot set SIGALRM");
 exit(SIGINT);

 }

 while (1);
}

void signal_catcher(int the_sig)
{
 val++;
 printf("val = %d\n", val);
 alarm(1);
}

12. Check that you have created a timer that is being updated once every second.

 TODO:

It will be given during the lab based on material covered in this section.

Pipes

1. Execute man pipe, man popen, man pclose, man read, man write, man close and check
what these functions do.

2. Execute the following command:

> ps -ef | grep anyProcess

Where anyProcess represents any process currently active on your system. Notice the
output that you get when executing the above command and compare it to the output you
get when executing the command:

> ps -ef

Note that the symbol | represents a pipe. Explain briefly how does it function.

3. Type the following program that forks a parent and a child processes and establishes a

communication channel through a pipe. Name the file pipe1.c:

/*
* Using a pipe to send data from parent to a child
*/

#include <stdio.h>
#include <unistd.h>

11

#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])
{
 int f_des[2];
 static char message[BUFSIZ];

 if (argc != 2)
 {
 fprintf(stderr, "Usage: %s message\n", *argv);
 exit(1);
 }

 if (pipe(f_des) == -1)
 {
 perror("Pipe");
 exit(2);
 }

 switch (fork())
 {
 case -1: perror("Fork"); exit(3);

 case 0: /* In the child */
 close(f_des[1]);
 if (read(f_des[0], message, BUFSIZ) != -1)
 {
 printf("Message received by child: [%s]\n", message);
 fflush(stdout);
 }
 else
 {
 perror("Read");
 exit(4);
 }

 break;

 default: /* In the parent */
 close(f_des[0]);
 if (write(f_des[1], argv[1], strlen(argv[1])) != -1)
 {
 printf("Message sent by parent: [%s]\n", argv[1]);
 fflush(stdout);
 }
 else
 {
 perror("Write"); exit(5);
 }
 }
 exit(0);
}

12

4. Compile pipe1.c using the gcc compiler to create the executable pipe1 and run it.

5. Explain how the communication between the parent and child processes took place.

6. Type the following program that makes use of the function popen. Name the file popen1.c:

/*
* Using the popen and pclose I/O commands
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <limits.h>

int main(int argc, char *argv[])
{
 FILE *fin,*fout;
 char buffer[PIPE_BUF];
 int n;

 if (argc < 3)
 {
 fprintf(stderr, "Usage: %s cmd1 cmd2\n", argv[0]);
 exit(1);
 }

 fin= popen(argv[1], "r");
 fout = popen(argv[2], "w");

 while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

 write(fileno(fout), buffer, n);

 pclose(fin);
 pclose(fout);
 exit(0);
}

7. Compile popen1.c using the gcc compiler to create the executable popen1. Execute the
following command:

> popen1 "cat popen1.c" "grep include"

Explain the output that you get.

8. Execute the command:

> cat popen1.c | grep include

Compare the output that you get in steps 7 and 8 above.

 TODO:
It will be given during the lab based on material covered in this section.

13

Appendix A. Process Creation and Execution

A.1 Program compilation and Process management
 To compile a program , use gcc command to generate the executable file. See the following

example:
> gcc example.c -o example

 To use a debugger (like the ddd debugger), you need to tell the compiler gcc to create the
symbols table for the program. You do that by using the option -g with the compiler as follows:
> gcc -g example.c -o example.

 To run the program, you call the executable file as follows:
> ./ example

 To run the executable file using debugger, execute the following command:
> ddd example

A.2 Process Identification:

The pid_t data type represents process IDs which is basically a signed integer type (int). You can
get the process ID of a process by calling getpid(). The function getppid() returns the process ID of
the parent of the current process (this is also known as the parent process ID). Your program should
include the header files ‘unistd.h’ and ‘sys/types.h’ to use these functions.

 Function: pid_t getpid (void)
The getpid() function returns the process ID of the current process.

 Function: pid_t getppid (void)
The getppid() function returns the process ID of the parent of the current process.

A.3 Process Completion:

The functions described in this section are used to wait for a child process to terminate or stop, and
determine its status. These functions are declared in the header file "sys/wait.h".

 Function: pid_t wait (int *status_ptr)
wait() will force a parent process to wait for a child process to stop or terminate. wait() return
the pid of the child or -1 for an error. The exit status of the child is returned to status_ptr.

 Function: void exit (int status)

exit() terminates the process which calls this function and returns the exit status value. Both
UNIX and C (forked) programs can read the status value.

By convention, a status of 0 means normal termination. Any other value indicates an error or
unusual occurrence. Many standard library calls have errors defined in the sys/stat.h header file. We
can easily derive our own conventions.

14

If the child process must be guaranteed to execute before the parent continues, the wait system call is
used. A call to this function causes the parent process to wait until one of its child processes exits.
The wait call returns the process id of the child process, which gives the parent the ability to wait
for a particular child process to finish.

A process may suspend for a period of time using the sleep command

 Function: unsigned int sleep (seconds)

A.4 File Execution:

A child process can execute another program using one of the exec functions. The program that the
process is executing is called its process image. Starting execution of a new program causes the
process to forget all about its previous process image; when the new program exits, the process exits
too, instead of returning to the previous process image.

This section describes the exec family of functions, for executing a file as a process image. You can
use these functions to make a child process execute a new program after it has been forked.

The functions in this family differ in how you specify the arguments, but otherwise they all do the
same thing. They are declared in the header file "unistd.h".

 Function: int execv (const char *filename, char *const argv[])

The execv() function executes the file named by filename as a new process image. The argv
argument is an array of null-terminated strings that is used to provide a value for the argv argument
to the main function of the program to be executed. The last element of this array must be a null
pointer. By convention, the first element of this array is the file name of the program sans directory
names.

The environment for the new process image is taken from the environ variable of the current process
image.

 Function: int execl (const char *filename, const char *arg0, ...)

This is similar to execv, but the argv strings are specified individually instead of as an array. A null
pointer must be passed as the last such argument.

 Function: int execvp (const char *filename, char *const argv[])

The execvp function is similar to execv, except that it searches the directories listed in the PATH
environment variable to find the full file name of a file from filename if filename does not contain a
slash.

This function is useful for executing system utility programs, because it looks for them in the places
that the user has chosen. Shells use it to run the commands that user’s type.

 Function: int execlp (const char *filename, const char *arg0, ...)

15

This function is like execl, except that it performs the same file name searching as the execvp
function.

Appendix B. Signals

B.1 Types Of Signals:

There are 31 different signals defined in "/usr/include/signal.h". A programmer may choose for a
particular signal to trigger a user-supplied signal handler, trigger the default kernel-supplied handler,
or be ignored.

Some signals are widely used, while others are extremely obscure and used by only one or two
programs. The following list gives a brief explanation of each signal:

SIGHUP
Hangup. Sent when a terminal is hung up to every process for which it is the control terminal. Also
sent to each process in a process group when the group leader terminates for any reason. This
simulates hanging up on terminals that can't be physically hung up, such as a personal computer.

SIGINT
Interrupt. Sent to every process associated with a control terminal when the interrupt key (Control-
C) is hit. This action of the interrupt key may be suppressed or the interrupt key may be changed
using the stty command. Note that suppressing the interrupt key is completely different from
ignoring the signal, although the effect (or lack of it) on the process is the same.

SIGTSTP
Interrupt. Sent to every process associated with a control terminal when the interrupt key (Control-
Z) is hit. This action of the interrupt key may be suppressed or the interrupt key may be changed
using the stty command. Note that suppressing the interrupt key is completely different from
ignoring the signal, although the effect (or lack of it) on the process is the same.

SIGQUIT
Quit. Similar to SIGINT, but sent when the quit key (normally Control-\) is hit. Commonly sent in
order to get a core dump.

SIGILL
Illegal instruction. Sent when the hardware detects an illegal instruction. Sometimes a process using
floating point aborts with this signal when it is accidentally linked without the -f option on the cc
command. Since C programs are in general unable to modify their instructions, this signal rarely
indicates a genuine program bug.

SIGTRAP
Trace trap. Sent after every instruction when a process is run with tracing turned on with ptrace.

SIGIOT
I/O trap instruction. Sent when a hardware fault occurs, the exact nature of which is up to the
implementer and is machine-dependent. In practice, this signal is preempted by the standard
subroutine abort, which a process calls to commit suicide in a way that will produce a core dump.

16

SIGEMT
Emulator trap instruction. Sent when an implementation-dependent hardware fault occurs.
Extremely rare.

SIGFPE
Floating-point exception. Sent when the hardware detects a floating-point error, such as a floating
point number with an illegal format. Almost always indicates a program bug.

SIGKILL
Kill. The one and only sure way to kill a process, since this signal is always fatal (can't be ignored or
caught). To be used only in emergencies; SIGTERM is preferred.

SIGBUS
Bus error. Sent when an implementation-dependent hardware fault occurs. Usually means that the
process referenced at an odd address data that should have been word-aligned.

SIGSEGV
Segmentation violation. Sent when an implementation-dependent hardware fault occurs. Usually
means that the process referenced data outside its address space. Trying to use NULL pointers
will usually give you a SIGSEGV.

SIGPIPE
Write on a pipe not opened for reading. Sent to a process when it writes on a pipe that has no
reader. Usually this means that the reader was another process that terminated abnormally. This
signal acts to terminate all processes in a pipeline: When a process terminates abnormally, all
processes to its right receive an end-of-file and all processes to its left receive this signal. Note that
the standard shell (sh) makes each process in a pipeline the parent of the process to its left.
Hence, the writer is not the reader's parent (it's the other way around), and would otherwise not
be notified of the reader's death.

SIGALRM
Alarm clock. Sent when a process's alarm clock goes off. The alarm clock is set with the alarm
system call.

SIGTERM
Software termination. The standard termination signal. It's the default signal sent by the kill
command, and is also used during system shutdown to terminate all active processes. A program
should be coded to either let this signal default or else to clean up quickly (e.g., remove temporary
files) and call exit.

SIGUSR1
User defined signal 1. This signal may be used by application programs for inter-process
communication. This is not recommended however, and consequently this signal is rarely used.

SIGUSR2
User defined signal 2. Similar to SIGUSR1.

SIGPWR
Power-fail restart. Exact meaning is implementation-dependent. One possibility is for it to be sent
when power is about to fail (voltage has passed, say, 200 volts and is falling). The process has a very
brief time to execute. It should normally clean up and exit (as with SIGTERM). If the process wishes
to survive the failure (which might only be a momentary voltage drop), it can clean up and then sleep
for a few seconds. If it wakes up it can assume that the disaster was only a dream and resume
processing. If it doesn't wake up, no further action is necessary.

