
1

Experiment #2

Multi-Processing Environment under Unix/Linux

Process Management for Real-Time Applications

1. Prerequisite

ENCS 538, C programming language, basics of inter-process communications under Unix/Linux.

2. Objectives
 To learn how to create and manage processes on a multi-tasking environment.

 To learn how to establish inter-task communication between the different tasks.

 To learn and implement different control algorithms in embedded systems using software and

programming in a multi-tasking environment.

3. Background
The realization and control of embedded system needs some tools to manage multitasks and

concurrent processes. This experiment aims to introduce some of these concepts using Linux as multi-

tasking environment.

3.1 FIFOs
A FIFO ("First In, First Out") is sometimes known as a named pipe. It's like a pipe, except that

it has a name and process pipes can only be shared among the parent process and its "children".

Also, it is a one-way (half-duplex) flow of data. But unlike pipes, a FIFO has a pathname

associated with it, allowing unrelated processes to access a single FIFO.

A FIFO is created by the mkfifo function.

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname , mode_t mode);

// Return: 0 if OK , -1 on error

The pathname is a normal Unix pathname , and this is the name of the FIFO.

The mode argument specifies the file permission bits, similar to the second argument to open.

The mkfifo function implies O_CREAT | O_EXCL. It creates a new FIFO or returns an error

of EEXIST if the named FIFO already exists. If the creation of a new FIFO is not desired , call

open instead of mkfifo. To open an existing FIFO or create a new FIFO if it does not already

exist , call mkfifio, check for an error of EEXIST, and if this occurs, call open instead.

2

The mkfifo command also creates a FIFO. This can be used from shell scripts or from the

command line.

Once a FIFO is created , it must be opened for reading or writing , using either the open

function , or one of the standard I/O open functions such as fopen. A FIFO must be opened

either read-only or write-Only. It must not be opened for read-write , because a FIFO is half

duplex.

A write to pipe or FIFO always appends the data , and a read always returns what is at the

beginning of the pipe of FIFO.

3.2 Message Queues

A message queue is a linked list of messages stored within the kernel and identified by a

message queue identifier. We'll call the message queue just a queue and its identifier a queue ID.

The Single UNIX Specification includes an alternate IPC message queue implementation in the

message-passing option of its real-time extensions. We do not cover the real-time extensions in

this text.

A new queue is created or an existing queue opened by msgget. New messages are added to the

end of a queue by msgsnd. Every message has a positive long integer type field, a non-negative

length, and the actual data bytes (corresponding to the length), all of which are specified to

msgsnd when the message is added to a queue. Messages are fetched from a queue by msgrcv.

We don't have to fetch the messages in a first-in, first-out order. Instead, we can fetch messages

based on their type field.

 Each queue has the following msqid_ds structure associated with it:

 struct msqid_ds {

 struct ipc_perm msg_perm;

 msgqnum_t msg_qnum; /* # of messages on queue */

 msglen_t msg_qbytes; /* max # of bytes on queue */

 pid_t msg_lspid; /* pid of last msgsnd() */

 pid_t msg_lrpid; /* pid of last msgrcv() */

 time_t msg_stime; /* last-msgsnd() time */

 time_t msg_rtime; /* last-msgrcv() time */

 time_t msg_ctime; /* last-change time */

 .

 .

 .

 };

This structure defines the current status of the queue. The members shown are the ones defined

by the Single UNIX Specification. Implementations include additional fields not covered by the

standard.

The first function normally called is msgget to either open an existing queue or create a new

queue.

3

#include <sys/msg.h>

int msgget(key_t key, int flag);

Returns: message queue ID if OK, 1 on error

On success, msgget returns the non-negative queue ID. This value is then used with the other

three message queue functions.

The msgctl function performs various operations on a queue.

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Returns: 0 if OK, 1 on error

The cmd argument specifies the command to be performed on the queue specified by msqid.

IPC_STAT

Fetch the msqid_ds structure for this queue, storing it in the structure pointed to by buf.

IPC_SET

Copy the following fields from the structure pointed to by buf to the msqid_ds structure

associated with this queue: msg_perm.uid, msg_perm.gid, msg_perm.mode, and msg_qbytes.

This command can be executed only by a process whose effective user ID equals

msg_perm.cuid or msg_perm.uid or by a process with superuser privileges. Only the superuser

can increase the value of msg_qbytes.

IPC_RMID

Remove the message queue from the system and any data still on the queue. This removal is

immediate. Any other process still using the message queue will get an error of EIDRM on its

next attempted operation on the queue. This command can be executed only by a process whose

effective user ID equals msg_perm.cuid or msg_perm.uid or by a process with superuser

privileges.

Data is placed onto a message queue by calling msgsnd.

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr, size_t nbytes , int flag);

Returns: 0 if OK, 1 on error

4

As we mentioned earlier, each message is composed of a positive long integer type field, a non-

negative length (nbytes), and the actual data bytes (corresponding to the length). Messages are

always placed at the end of the queue.

The ptr argument points to a long integer that contains the positive integer message type, and it

is immediately followed by the message data. (There is no message data if nbytes is 0.) If the

largest message we send is 512 bytes, we can define the following structure:

struct mymesg {

 long mtype; /* positive message type */

 char mtext[512]; /* message data, of length nbytes */

 };

A flag value of IPC_NOWAIT can be specified. specifying IPC_NOWAIT causes msgsnd to

return immediately with an error of EAGAIN. If IPC_NOWAIT is not specified, we are

blocked until there is room for the message, the queue is removed from the system, or a signal is

caught and the signal handler returns.

 Messages are retrieved from a queue by msgrcv.

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *ptr, size_t nbytes

, long type, int flag);

Returns: size of data portion of message if OK, 1 on error

As with msgsnd, the ptr argument points to a long integer (where the message type of the

returned message is stored) followed by a data buffer for the actual message data. nbytes

specifies the size of the data buffer.

The type argument lets us specify which message we want.

type == 0 : The first message on the queue is returned.

type > 0 : The first message on the queue whose message type equals type is returned.

type < 0 : The first message on the queue whose message type is the lowest value less than or

equal to the absolute value of type is returned.

A nonzero type is used to read the messages in an order other than first in, first out. For

example, the type could be a priority value if the application assigns priorities to the messages.

Another use of this field is to contain the process ID of the client if a single message queue is

being used by multiple clients and a single server (as long as a process ID fits in a long integer).

5

4. Procedure

4.1 Part A: Named Pipes : FIFOs

1. Execute man mknod and man mkfifo and check how these commands can create a FIFO.

2. We intend to implement a client-server communication technique using FIFOs. Both the client

and server applications run on the same platform. Briefly, the steps taken by the processes

involved are as follows:

 Server generates the public FIFO (available to all participating client processes).

 Client process generates its own private FIFO.

 Client prompts for, and receives, a shell command from the user.

 Client writes the name of its private FIFO and the shell command to the public FIFO.

 Server reads the public FIFO and obtains the private FIFO name and the shell command.

 Server uses a popen-pclose sequence to execute the shell command. The output of the shell

command is sent back to the client via the private FIFO.

 Client displays the output of the command.

 If the user types the command quit at the client’s prompt, the client process exits. The server

process continues to run indefinitely waiting for requests from the clients. It can be stopped

or killed by the user.

3. Type the following program which creates the server part. Name the file server fifo.c:

/*

* The server process

*/

#include "local_fifo.h" void main(void)

{

int n, done, dummyfifo, publicfifo, privatefifo;

struct message msg; FILE *fin;

static char buffer[PIPE_BUF];

/* Generate the public FIFO */

mknod(PUBLIC, S_IFIFO | 0666, 0);

/* Open the public FIFO for reading and writing */

if ((publicfifo = open(PUBLIC, O_RDONLY)) == -1 ||

(dummyfifo = open(PUBLIC, O_WRONLY | O_NDELAY)) == -1)

{

perror(PUBLIC);

exit(1);

}

/* message can be read from the PUBLIC pipe */

while (read(publicfifo, (char *) &msg, sizeof(msg)) > 0) {

n = done = 0; /* clear counters / flags */

do {

 if ((privatefifo = open(msg.fifo_name, O_WRONLY | O_NDELAY)) ==

-1)

 sleep(3);

 else {

6

 fin = popen(msg.cmd_line, "r"); /* execute the cmd */

 write(privatefifo, "\n", 1); /* keep output pretty */

 while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

 {

 write(privatefifo, buffer, n); /* to private fifo */

 memset(buffer, 0x0, PIPE_BUF); /* clear it out */

 }

 pclose(fin);

 close(privatefifo);

 done = 1;

 }

} while (++n < 5 && ! done);

 if (! done)

 write(fileno(stderr), "\nSERVER NEVER accessed private fifo\n", 48);

}

}

4. Type the following program which creates the client part. Name the file client fifo.c:

/*

* The client process

*/

#include "local_fifo.h" void

main(void)

{

int n, privatefifo, publicfifo;

static char buffer[PIPE_BUF];

struct message msg;

/*Make the name for the private fifo */

sprintf(msg.fifo_name, "/tmp/fifo%d", getpid());

/* Generate the private FIFO */

if (mknod(msg.fifo_name, S_IFIFO | 0666, 0) < 0) {

perror(msg.fifo_name);

exit(1);

}

/* Open the public FIFO for writing */

if ((publicfifo = open(PUBLIC, O_WRONLY)) == -1) {

perror(PUBLIC);

exit(2);

}

while (1) { /* FOREVER */

write(fileno(stdout), "\ncmd>", 6); /* prompt */

7

memset(msg.cmd_line, 0x0, B_SIZ); /* clear first */

n = read(fileno(stdin), msg.cmd_line, B_SIZ); /* Get cmd */

if (! strncmp("quit", msg.cmd_line, n - 1)) /* EXIT ? */

break;

write(publicfifo, (char *) &msg, sizeof(msg));

/* Open private fifo to read returned command output */

if ((privatefifo = open(msg.fifo_name, O_RDONLY)) == -1) {

perror("msg.fifo_name");

exit(3);

}

/* Read private FIFO and display on standard error */

while ((n = read(privatefifo, buffer, PIPE_BUF)) > 0)

write(fileno(stderr), buffer, n);

close(privatefifo);

}

close(publicfifo);

unlink(msg.fifo_name); /* Remove */

}

5. Type the following header file which is common between the server and client processes.

Name the file local fifo.h:

/*

* local header file for fifo client-server

*/

#ifndef LOCAL_F_H_

#define LOCAL_F_H_

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <string.h>

#include <limits.h>

#include <stdlib.h>

#define PUBLIC "/tmp/PUBLIC"

#define B_SIZ (PIPE_BUF / 2)

struct message {

char fifo_name[B_SIZ];

char cmd_line[B_SIZ];

};

#endif

8

6. Compile the server part to create the program server fifo. Run it in the background in one of the

shell terminals.

7. Compile the client part to create the program client fifo. Run multiple clients in different

shell terminals.

8. Run different commands in the client processes, such as ls, pwd and check the output.

9. If you run a command that doesn’t exist in one of the client terminals, check the message that

you get in the server terminal.

 TODO:

It will be given during the lab based on material covered in this section.

4.2 Part B: Inter-process communication

1. Execute a man ipcs and discover what options can be used with it. Special attention should be

given to the -m, -s and -q options that print information about the active shared memory

segments, active semaphores and active message queues respectively.

2. Execute the command ipcs and notice how many message queues, semaphores and shared

memory segments are currently in use. Notice the different columns that are printed on the

screen.

3. To remove a message queue, semaphore or shared memory segment, use the command ipcrm

with the options -q, -s and -m respectively. Execute man ipcrm and discover the other options.

Message Queues

1. Execute man msgget, man msgsnd, man msgrcv, man msgctl and check what these functions

do.

2. We intend to implement a client-server communication technique using Message Queues. Both

the client and server applications run on the same platform. Briefly, the steps taken by the

processes involved are as follows:

 Client invokes the server process.

 Client prompts for, and receives, a string from the user.

 Client issues a message to the server containing the string.

 Server reads the message, converts the string to upper case and sends it back to the

client through a message.

 Client displays the string received from the server.

3. Type the following program which creates the server part. Name the file server queue.c:

/*

* SERVER-receives messages from clients

*/

#include "local_queue.h"

int main(int argc, char *argv[])

{

int mid, n;

9

MESSAGE msg;

void process_msg(char *, int);

if (argc != 3) {

fprintf(stderr, "Usage: %s msq_id &\n", argv[0]);

return 1;

}

mid = atoi(argv[1]);

while (1) {

if ((n = msgrcv(mid, &msg, BUFSIZ, SERVER, 0)) == -1) {

perror("Server: msgrcv");

return 2;

}

else if (n == 0)

break;

process_msg(msg.buffer, strlen(msg.buffer));

msg.msg_to = msg.msg_fm;

msg.msg_fm = SERVER;

n += sizeof(msg.msg_fm);

if (msgsnd(mid, &msg, n, 0) == -1) {

perror("Server: msgsnd");

return 3;

}

}

msgctl(mid, IPC_RMID, (struct msqid_ds *) 0);

exit(0);

}

/*

* Convert lowercase alphabetics to uppercase

*/

void process_msg(char *b, int len)

{

int i;

for (i = 0; i < len; ++i)

if (isalpha(*(b + i)))

(b + i) = toupper((b + i));

}

4. Type the following program which creates the client part. Name the file client queue.c:

/*

* CLIENT ... sends messages to the server

*/

10

#include "local_queue.h"

int main()

{

key_t key; pid_t

 cli_pid; int

 mid, n;

MESSAGE msg;

static char m_key[10];

cli_pid = getpid();

if ((key = ftok(".", SEED)) == -1) {

perror("Client: key generation"); return 1;

}

if ((mid = msgget(key, 0)) == -1) {

mid = msgget(key,IPC_CREAT | 0660);

switch (fork()) {

case -1:

perror("Client: fork");

return 2;

case 0:

sprintf(m_key, "%d", mid);

execlp("./server", "server", m_key, "&", 0);

perror("Client: exec");

return 3;

}

}

while (1) {

msg.msg_to = SERVER; msg.msg_fm =

cli_pid; write(fileno(stdout), "cmd> ", 6);

memset(msg.buffer, 0x0, BUFSIZ);

if ((n = read(fileno(stdin), msg.buffer, BUFSIZ)) == 0)

break;

n += sizeof(msg.msg_fm);

if (msgsnd(mid, &msg, n, 0) == -1) {

perror("Client: msgsend");

return 4;

}

if((n = msgrcv(mid, &msg, BUFSIZ, cli_pid, 0)) != -1)

write(fileno(stdout), msg.buffer, n);

}

msgsnd(mid, &msg, 0, 0);

return 0;

}

11

5. Type the following header file which is common between the server and client processes.

Name the file local queue.h:

/*

* Common header file for Message Queue Example

*/

 #ifndef LOCAL_Q_H_

 #define LOCAL_Q_H_

 #include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <string.h>

#include <ctype.h>

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#define SEED ’g’/* seed for ftok */

#define SERVER 1L /* message for the server */

typedef struct {

long msg_to; /* Placed in the queue for */

long msg_fm; /* Placed in the queue by */

char buffer[BUFSIZ];

} MESSAGE;

#endif

6. Compile the server and the client files to create the programs server queue and client queue

respectively.

7. Run the client process and type strings at the prompt. Check the returned string from the

server.

8. If you stop the client using Ctrl-C, re-start the client and type strings, nothing happens. Explain

why.

TODO:

It will be given during the lab based on material covered in this section.

12

