
1

Experiment #3

Multi-Processing Environment under Unix/Linux

Process Management for Real-Time Applications

1. Prerequisite

ENCS 538, C programming language, basics of inter-process communications under Unix/Linux.

2. Objectives
 To learn how to create and manage processes on a multi-tasking environment.

 To learn how to establish inter-task communication between the different tasks.

 To learn and implement different control algorithms in embedded systems using software and

programming in a multi-tasking environment.

3. Background
The realization and control of embedded system needs some tools to manage multitasks and

concurrent processes. This experiment aims to introduce some of these concepts using Linux as multi-

tasking environment.

3.1 Semaphore
A semaphore isn't a form of IPC similar to the others that we've described (pipes, FIFOs, and

message queues). A semaphore is a counter used to provide access to a shared data object for

multiple processes.

The Single UNIX Specification includes an alternate set of semaphore interfaces in the

semaphore option of its real-time extensions. We do not discuss these interfaces in this text.

To obtain a shared resource, a process needs to do the following:

1. Test the semaphore that controls the resource.

2. If the value of the semaphore is positive, the process can use the resource. In this case,

the process decrements the semaphore value by 1, indicating that it has used one unit of

the resource.

3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the

semaphore value is greater than 0. When the process wakes up, it returns to step 1.

When a process is done with a shared resource that is controlled by a semaphore, the semaphore

value is incremented by 1. If any other processes are asleep, waiting for the semaphore, they are

awakened.

2

To implement semaphores correctly, the test of a semaphore's value and the decrementing of this

value must be an atomic operation. For this reason, semaphores are normally implemented

inside the kernel.

A common form of semaphore is called a binary semaphore. It controls a single resource, and its

value is initialized to 1. In general, however, a semaphore can be initialized to any positive

value, with the value indicating how many units of the shared resource are available for sharing.

 The kernel maintains a semid_ds structure for each semaphore set:

 struct semid_ds {

 struct ipc_perm sem_perm;

 unsigned short sem_nsems; /* # of semaphores in set */

 time_t sem_otime; /* last-semop() time */

 time_t sem_ctime; /* last-change time */

 .

 .

 .

 };

The Single UNIX Specification defines the fields shown, but implementations can define

additional members in the semid_ds structure.

Each semaphore is represented by an anonymous structure containing at least the following

members:

 struct {

 unsigned short semval; /* semaphore value, always >= 0 */

 pid_t sempid; /* pid for last operation */

 unsigned short semncnt; /*# processes awaiting semval>curval*/

 unsigned short semzcnt; /* # processes awaiting semval==0 */

 .

 .

 .

 };

The following header summarizes how the semaphore can be used:

Header file name #include <semaphore.h>

Semaphore data type sem_t

Initialization int sem_init(sem_t *sem, int pshared,

unsigned value);

Semaphore Operations int sem_destroy(sem_t *sem);
int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

3

sem_init function initializes the semaphore to have the value value. The value parameter

cannot be negative. If the value of pshared is not 0, the semaphore can be used between

processes (i.e. the process that initializes it and by children of that process). Otherwise it can be

used only by threads within the process that initializes it.

sem_wait is a standard semaphore wait operation. If the semaphore value is 0, the sem_wait

blocks unit it can successfully decrement the semaphore value.

sem_trywait is similar to sem_wait except that instead of blocking when attempting to

decrement a zero-valued semaphore, it returns -1.

sem_post is a standard semaphore signal operation. The POSIX.1b standard requires that

sem_post be reentrant with respect to signals, that is, it is asynchronous-signal safe and may be

invoked from a signal-handler.

3.2 Shared Memory

Shared memory allows two or more processes to share a given region of memory. This is the

fastest form of IPC, because the data does not need to be copied between the client and the

server. The only trick in using shared memory is synchronizing access to a given region among

multiple processes. If the server is placing data into a shared memory region, the client shouldn't

try to access the data until the server is done. Often, semaphores are used to synchronize shared

memory access.

The Single UNIX Specification includes an alternate set of interfaces to access shared memory

in the shared memory objects option of its real-time extensions. We do not cover the real-time

extensions in this text.

The kernel maintains a structure with at least the following members for each shared memory

segment:

 struct shmid_ds {

 struct ipc_perm shm_perm; /* see Section 15.6.2 */

 size_t shm_segsz; /* size of segment in bytes */

 pid_t shm_lpid; /* pid of last shmop() */

 pid_t shm_cpid; /* pid of creator */

 shmatt_t shm_nattch; /* number of current attaches */

 time_t shm_atime; /* last-attach time */

 time_t shm_dtime; /* last-detach time */

 time_t shm_ctime; /* last-change time */

 .

 .

 .

 };

The type shmatt_t is defined to be an unsigned integer at least as large as an unsigned short.

The first function called is usually shmget, to obtain a shared memory identifier.

4

#include <sys/shm.h>

int shmget(key_t key, size_t size, int flag);

Returns: shared memory ID if OK, 1 on error

The size parameter is the size of the shared memory segment in bytes. Implementations will

usually round up the size to a multiple of the system's page size, but if an application specifies

size as a value other than an integral multiple of the system's page size, the remainder of the last

page will be unavailable for use.

The shmctl function is the catchall for various shared memory operations.

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Returns: 0 if OK, 1 on error

The cmd argument specifies one of the following five commands to be performed, on the

segment specified by shmid.

IPC_STAT

Fetch the shmid_ds structure for this segment, storing it in the structure pointed to by buf.

IPC_SET

Set the following three fields from the structure pointed to by buf in the shmid_ds structure

associated with this shared memory segment: shm_perm.uid, shm_perm.gid, and

shm_perm.mode. This command can be executed only by a process whose effective user ID

equals shm_perm.cuid or shm_perm.uid or by a process with superuser privileges.

IPC_RMID

Remove the shared memory segment set from the system. Since an attachment count is

maintained for shared memory segments (the shm_nattch field in the shmid_ds structure), the

segment is not removed until the last process using the segment terminates or detaches it.

Regardless of whether the segment is still in use, the segment's identifier is immediately

removed so that shmat can no longer attach the segment. This command can be executed only

by a process whose effective user ID equals shm_perm.cuid or shm_perm.uid or by a process

with superuser privileges.

Once a shared memory segment has been created, a process attaches it to its address space by

calling shmat.

5

#include <sys/shm.h>

void *shmat(int shmid, const void *addr, int flag);

Returns: pointer to shared memory segment if OK, 1 on error

If the SHM_RDONLY bit is specified in flag, the segment is attached read-only. Otherwise, the

segment is attached readwrite.

The value returned by shmat is the address at which the segment is attached, or 1 if an error

occurred. If shmat succeeds, the kernel will increment the shm_nattch counter in the shmid_ds

structure associated with the shared memory segment.

When we're done with a shared memory segment, we call shmdt to detach it. Note that this does

not remove the identifier and its associated data structure from the system. The identifier

remains in existence until some process specifically removes it by calling shmctl with a

command of IPC_RMID.

#include <sys/shm.h>

int shmdt(void *addr);

Returns: 0 if OK, 1 on error

4. Procedure

Inter-process communication

1. Execute a man ipcs and discover what options can be used with it. Special attention should be

given to the -m, -s and -q options that print information about the active shared memory

segments, active semaphores and active message queues respectively.

2. Execute the command ipcs and notice how many message queues, semaphores and shared

memory segments are currently in use. Notice the different columns that are printed on the

screen.

3. To remove a message queue, semaphore or shared memory segment, use the command ipcrm

with the options -q, -s and -m respectively. Execute man ipcrm and discover the other options.

Semaphores

1. Execute man semget, man semctl, man semop, man ftok and check what these functions

do.

2. Type the following program that reads data from a user input and writes it to the file

input.txt. Name the file write sem.c. Note how writing to the file is protected using a

semaphore so as to inhibit the access to it if that file is being accessed by another process:

6

/*

* Writing in a file protected by a semaphore

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <unistd.h>

/* This declaration is *MISSING* is many solaris environments.

It should be in the <sys/sem.h> file but often is not! If you receive a

duplicate definition error message for semun then comment out the

union declaration.

*/

union semun {

int val;

struct semid_ds *buf; ushort

 *array;

};

struct sembuf acquire = {0, -1, SEM_UNDO},

release = {0, 1,

SEM_UNDO};

#define SEM_FILE 0

main(void)

{

int sem1;

key_t ipc_key;

char string[128]; static

ushort initSem[1] = {1};

union semun arg;

FILE *pFile;

ipc_key = ftok(".", ’W’);

/*

* Access the semaphore set.

*/

if ((sem1 = semget((int) ipc_key, 1,

IPC_CREAT | 0666)) != -1) {

arg.array = initSem;

if (semctl(sem1, 0, SETALL, arg) == -1) { perror("semctl --

write_sem -- initialization"); exit(1);

}

}

else {

perror("semget -- write_sem -- access file");

7

exit(1);

}

while (1) {

printf("New string: ");

scanf("%s", &string[0]);

acquire.sem_num = SEM_FILE;

/*

* Acquiring the semaphore set before writing to the file.

*/

if (semop(sem1, &acquire, 1) == -1) {

perror("semop -- write_sem -- acquire semaphore");

exit(1);

}

if ((pFile = fopen("./input.txt", "r")) != NULL) {

fclose(pFile);

/*

* Opening the file for appending.

*/

if ((pFile = fopen("./input.txt", "a")) == NULL) { perror("fopen --

write_sem -- append to file"); exit(2);

}

}

else {

/*

* Opening the file for writing.

*/

if ((pFile = fopen("./input.txt", "w")) == NULL) { perror("fopen --

write_sem -- write to file"); exit(3);

}

}

fprintf(pFile, "%s\n", string);

fclose(pFile);

/*

* Releasing the semaphore set after writing to the file.

*/

 release.sem_num = SEM_FILE;

if (semop(sem1, &release, 1) == -1) {

perror("semop -- write_sem -- release semaphore");

exit(4);

}

}

}

8

3. Type the following program that reads data from the file input.txt, displays that data to the

screen and erases the file. Name the file read sem.c. As mentioned above, note how the

access to the file is protected using a semaphore

/*

* Reading from a file protected by a semaphore

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <unistd.h>

/* This declaration is *MISSING* is many solaris environments.

It should be in the <sys/sem.h> file but often is not! If you receive a

duplicate definition error message for semun then comment out the

union declaration.

*/

union semun {

int val;

struct semid_ds *buf; ushort

 *array;

};

struct sembuf acquire = {0, -1, SEM_UNDO},

release = {0, 1,

SEM_UNDO};

#define SEM_FILE 0

main(void)

{

int sem1;

key_t ipc_key;

char string[128];

static ushort initSem[1] = {1};

union semun arg;

FILE *pFile;

ipc_key = ftok(".", ’R’);

/*

* Access the semaphore set.

*/

if ((sem1 = semget((int) ipc_key, 1,

IPC_CREAT | 0666)) != -1) {

arg.array = initSem;

if (semctl(sem1, 0, SETALL, arg) == -1) {

perror("semctl -- read_sem -- initialization"); exit(1);

9

}

}

else {

perror("semget -- read_sem -- access file");

exit(2);

}

while (1) {

acquire.sem_num = SEM_FILE;

/*

* Acquiring the semaphore set before reading from the file.

*/

if (semop(sem1, &acquire, 1) == -1) { perror("semop -- read_sem

-- acquire semaphore"); exit(3);

}

/*

* Opening the file for reading.

*/

if ((pFile = fopen("./input.txt", "r")) != NULL) {

while (! feof(pFile)) { fscanf(pFile, "%s",

&string[0]); printf("%s\n", string);

memset(string, 0, 128);

}

fclose(pFile);

unlink("input.txt");

}

/*

* Releasing the semaphore set after reading from the file.

*/

release.sem_num = SEM_FILE;

if (semop(sem1, &release, 1) == -1) { perror("semop -- read_sem

-- release semaphore");

 exit(4);

}

}

}

4. Compile the two programs using the gcc compiler to create the executables write sem and

read sem respectively.

5. From a shell window, run the program write sem. From a different shell window, run then

program read sem. Type any sequence of characters and numbers in the window where you

ran the write sem program. Notice what happens in the read sem window.

10

6. Can you see that the 2 processes are communicating correctly?

7. Execute the command ps -ef in a different window. Notice that the 2 programs are active.

8. Terminate the 2 processes write sem and read sem either by using the kill command as

described above or using Ctrl-C (in case they run in the foreground).

9. Execute the command ps -ef. Are your processes still active?

 TODO:

It will be given during the lab based on material covered in this section.

Shared Memory

1. Execute man shmget, man shmctl, man shmat and check what these functions do. Check

also the different arguments these functions require.

2. We intend to implement a producer-consumer communication technique using Shared

Memory. Both the producer and consumer applications run on the same platform. Briefly, the

steps taken by the processes involved are as follows:

 A parent process forks the producer and consumer processes.

 The producing process generates a series of random messages that are stored in a shared

memory segment for the consumer process to read.

 Since the producer and consumer may operate at different rates, an array with six

message buffers is used.

 The message buffer array is treated as a queue, whereby new messages are added to the tail

of the list and messages to be processed are removed from the head of the list.

 The two integer indices, referencing the head and tail of the list respectively, are also stored

in the shared memory segment.

3. Type the following program which creates the parent part. Name the file parent shmem.c:

/*

* The PARENT

*/

#include "local_shmem.h"

main(int argc, char *argv[])

{

static struct MEMORY memory;

static ushort start_val[2] = {N_SLOTS, 0};

int semid, shmid, croaker;

char *shmptr;

pid_t p_id, c_id, pid = getpid();

union semun arg;

memory.head = memory.tail = 0;

11

if (argc != 3) {

fprintf(stderr, "%s producer_time consumer_time\n", argv[0]);

exit(-1);

}

/*

* Create, attach and initialize the memory segment

*/

if ((shmid = shmget((int) pid, sizeof(memory),

IPC_CREAT | 0600)) != -1) {

if ((shmptr = (char *) shmat(shmid, 0, 0)) == (char *) -1) {

perror("shmptr -- parent -- attach");

exit(1);

}

memcpy(shmptr, (char *) &memory, sizeof(memory));

}

else {

perror("shmid -- parent -- creation");

exit(2);

}

/*

* Create and initialize the semaphores

*/

if ((semid = semget((int) pid, 2, IPC_CREAT | 0666)) != -1) {

arg.array = start_val;

if (semctl(semid, 0, SETALL, arg) == -1) {

perror("semctl -- parent -- initialization");

 exit(3);

}

}

else {

perror("semget -- parent -- creation");

exit(4);

}

/*

* Fork the producer process

*/

if ((p_id = fork()) == -1) {

perror("fork -- producer");

exit(5);

}

else if (p_id == 0) {

execl("./producer", "./producer", argv[1], (char *) 0);

perror("execl -- producer");

12

exit(6);

}

/*

* Fork the consumer process

*/

if ((c_id = fork()) == -1) {

perror("fork -- consumer");

exit(7);

}

else if (c_id == 0) {

execl("./consumer", "./consumer", argv[2], (char *) 0);

perror("execl -- consumer");

exit(8);

}

croaker = (int) wait((int *) 0); /* wait for 1 to die */

kill((croaker == p_id) ? c_id : p_id, SIGKILL);

shmdt(shmptr);

shmctl(shmid, IPC_RMID, (struct shmid_ds *) 0); /* remove */

semctl(semid, 0, IPC_RMID, 0);

exit(0);

 }

4. Type the following program which creates the producer part. Name the file producer.c:

/*

* The PRODUCER

*/

#include "local_shmem.h"

 main(int argc, char *argv[])

{

static char *source[ROWS][COLS] = {

 {"A", "The", "One"},

{" red", " polka-dot", " yellow"},

{" spider", " dump truck", " tree"},

{" broke", " ran", " fell"},

{" down", " away", " out"}

};

static char local_buffer[SLOT_LEN];

int i, r, c, sleep_limit, semid, shmid;

pid_t ppid = getppid();

char *shmptr;

struct MEMORY *memptr;

13

if (argc != 2) {

fprintf(stderr, "%s sleep_time\n", argv[0]);

exit(-1);

}

/*

* Access, attach and reference the shared memory

*/

if ((shmid = shmget((int) ppid, 0, 0)) != -1) {

if ((shmptr = (char *) shmat(shmid, (char *)0, 0)) == (char *) -1) {

perror("shmat -- producer -- attach");

exit(1);

}

memptr = (struct MEMORY *) shmptr;

}

else {

perror("shmget -- producer -- access");

exit(2);

}

/*

* Access the semaphore set

*/

if ((semid = semget((int) ppid, 2, 0)) == -1) {

perror("semget -- producer -- access");

exit(3);

}

sleep_limit = atoi(argv[1]) % 20; i = 20

- sleep_limit; srand((unsigned) getpid());

while (i--) {

memset(local_buffer, ’\0’, sizeof(local_buffer));

for (r = 0; r < ROWS; ++r) { /* Make a random string */

c = rand() % COLS;

strcat(local_buffer, source[r][c]);

}

acquire.sem_num = AVAIL_SLOTS;

if (semop(semid, &acquire, 1) == -1) {

perror("semop -- producer -- acquire");

 exit(4);

}

strcpy(memptr->buffer[memptr->tail], local_buffer);

printf("P: [%d] %s.\n", memptr->tail, memptr->buffer[memptr->tail]);

14

memptr->tail = (memptr->tail + 1) % N_SLOTS;

release.sem_num = TO_CONSUME;

if (semop(semid, &release, 1) == -1) {

perror("semop -- producer -- release");

 exit(5);

}

sleep(rand() % sleep_limit + 1);

}

exit(0);

}

5. Type the following program which creates the consumer part. Name the file consumer.c:

/*

* The CONSUMER

*/

#include "local_shmem.h" main(int

argc, char *argv[])

{

static char local_buffer[SLOT_LEN];

int i, sleep_limit, semid, shmid;

pid_t ppid = getppid();

char *shmptr;

struct MEMORY *memptr;

if (argc != 2) {

fprintf(stderr, "%s sleep_time\n", argv[0]);

exit(-1);

}

/*

* Access, attach and reference the shared memory

*/

if ((shmid = shmget((int) ppid, 0, 0)) != -1) {

if ((shmptr = (char *) shmat(shmid, (char *)0, 0)) == (char *) -1) {

perror("shmat -- consumer -- attach");

exit(1);

}

memptr = (struct MEMORY *) shmptr;

}

else {

perror("shmget -- consumer -- access");

exit(2);

}

15

/*

* Access the semaphore set

*/

if ((semid = semget((int) ppid, 2, 0)) == -1) {

perror("semget -- consumer -- access");

exit(3);

}

sleep_limit = atoi(argv[1]) % 20; i = 20

- sleep_limit;

srand((unsigned) getpid());

while (i) {

acquire.sem_num = TO_CONSUME;

if (semop(semid, &acquire, 1) == -1) {

perror("semop -- consumer -- acquire");

 exit(4);

}

memset(local_buffer, ’\0’, sizeof(local_buffer));

strcpy(local_buffer, memptr->buffer[memptr->head]);

 printf("C: [%d] %s.\n", memptr->head, local_buffer);

memptr->head = (memptr->head + 1) % N_SLOTS;

release.sem_num = AVAIL_SLOTS;

if (semop(semid, &release, 1) == -1) {

perror("semop -- consumer -- release");

 exit(5);

}

sleep(rand() % sleep_limit + 1);

}

exit(0);

}

6. Type the following header file which is common between the producer and consumer

processes. Name the file local shmem.h:

#ifndef LOCAL_SH_H_

#define LOCAL_SH_H_

 /** Common header file: parent, producer and consumer*/

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

16

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/shm.h>

#include <wait.h>

#include <signal.h>

#define ROW

S

5

#define COLS 3

#define SLOT_LEN 50

#define N_SLOTS 6

/* This declaration is *MISSING* is many solaris environments.

It should be in the <sys/sem.h> file but often is not! If you

receive a duplicate definition error message for semun then

comment out the union declaration.

*/

union semun {

int val;

struct semid_ds *buf;

ushort *array;

};

struct MEMORY {

char buffer[N_SLOTS][SLOT_LEN];

int head, tail;

};

struct sembuf acquire = {0, -1, SEM_UNDO},

release = {0, 1,

SEM_UNDO};

enum {AVAIL_SLOTS, TO_CONSUME};

 #endif

7. Compile the parent, the producer and the consumer files to create the programs parent shmem,

producer and consumer respectively.

8. Run the parent process and notice the output you get. Change the sleeping time for the producer

and consumer processes and notice how the output differs in each case.

 TODO:

It will be given during the lab based on material covered in this section.

17

