
1 
 

Experiment #4 

Multi-Processing Environment under Unix/Linux 

Socket Programming 

 

1. Prerequisite 

ENCS 538, C programming language, basics of inter-process communications under Unix/Linux.  

2. Objectives 
 How to create a remote inter-process communication application using Berkely sockets. 

 How to implement socket based communication techniques in a real networked application. 

 

 

3. Background 

In the previous experiments, pipes, FIFOs, message queues, semaphores, and shared memory were 

looked in details, which were the classical methods of IPC provided by various UNIX systems. These 

mechanisms allow processes running on the same computer (same physical memory) to communicate 

with one another. In this experiment will look at the mechanisms that allow processes running on 

different computers (different physical memories ) to communicate with one another: network IPC. 

 

Because the most used IPCs under Unix are sockets and shared memory , Table 1 shows the advantages 

and disadvantages for each one. 

 
Table 1: Comparison between Shared Memory and Socket IPCs 

 Advantages Disadvantages 

Shared Memory  Non-linear storage. 

 Never block. 

 Multiple programs can access. 

 Need locking implementation. 

 Need manual freeing, even if 

unused by any program 

Sockets  Blocking and non-blocking mode 

 No need to free the sockets when 

the tasks are completed.  

 Must read and write in a linear 

fashion. 

 

 
The socket application programming interface (API) was developed at the University of California in 

Berkeley as part of the work on the BSD Unix system. The socket interface is a generic interface for 

inter-process communication using message passing. Sockets are abstract communication endpoints with 

a rather small number of associated function calls. 

Once a channel is established, the connected processes can use generalized file-system type access 

routines for communication. For the most part, when using a socket-based connection, the server process 

creates a socket, maps the socket to a local address, and waits (listens) for requests from clients. The 

client process creates its own socket and determines the location specifies  (such as the host name and 

port number) of the server. Depending upon the type of transport/connection specified, the client process 



2 
 

will begin to send and receive data either with or without receiving a formal acknowledgment 

(acceptance) from the server process. 

Socket Types 
For processes to communicate in a networked setting, data must be transmitted and received. We can 

consider the communicated data to be in a stream (i.e., a sequence of bytes) or in datagram format. 

Datagram are small, discrete packets that, at a gross level, contain header information (such as 

addresses), data, and trailer information (error correction, etc.). As datagrams are small in size, 

communications between processes may consist of a series of datagrams. 

When we create a socket, its type will determine how communications will be carried on between the 

processes using the socket. Sockets must be of the same type to communicate. There are two basic 

socket types the user can specify: 

 Stream sockets: These sockets are reliable. When these sockets are used, data is delivered in 

order, in the same sequence in which it was sent. There is no duplication of data, and some form 

of error checking and flow control is usually present. Stream sockets allow bidirectional (full 

duplex) communication. Stream sockets are connection-oriented. That is, the two processes 

using the socket create a logical connection (a virtual circuit). Information concerning the 

connection is established prior to the transmission of data and is maintained by each end of the 

connection during the communication. Data is transmitted as a stream of bytes. In a very limited 

fashion, these sockets also permit the user to place a higher priority urgent message ahead of the 

data in the current stream. 

 

Figure 1 : Connection-oriented data stream communication 



3 
 

Figure 1 shows how a server and a client make use of the socket primitives to provide and 

realize a connection-oriented application protocol. The server creates a listening local socket 

which is used to accept incoming connections. Once a connection has been accepted, a new 

local file descriptor is returned which can be used to read() or write() data. The close() function 

is called to close the connection. On the client side, the connect() function is used to connected 

the local socket to a remote (server) socket. When the connect() function returns successfully, 

normal read() or write() functions can be used to exchange data. The close() function is again 

called to close the connection. 

 Datagram sockets: Datagram sockets are potentially unreliable. Thus, with these sockets, 

received data may be out of order. Datagram sockets support bidirectional communications but 

are considered connectionless. There is no logical connection between the sending and receiving 

processes. Each datagram is sent and processed independently. Individual datagram may take 

different routes to the same destination. With connectionless service, there is no flow control. 

Error control, when specified, is minimal. Datagram packets are normally small and fixed in 

size. 

 
Figure 2 : Connection-less datagram communication 

Figure 2 shows how a server and a client make use of the socket primitives to provide and 

realize a connection-less datagram application protocol. After creating and binding a local 

socket, the processes use the recvfrom() and the sendto() primitives to receive and send 

datagrams. 

 



4 
 

Header Files  
The Berkeley socket interface is defined in several header files. The names and content of these files 

differ slightly between implementations. In general, they include: 

 

<sys/socket.h> 

Core BSD socket functions and data structures. 

 

<netinet/in.h> 

AF_INET and AF_INET6 address families and their corresponding protocol families PF_INET and 

PF_INET6. Widely used on the Internet, these include IP addresses and TCP and UDP port numbers. 

 

<sys/un.h> 

PF_UNIX/PF_LOCAL address family. Used for local communication between programs running on the 

same computer. Not used on networks. 

 

<arpa/inet.h> 

Functions for manipulating numeric IP addresses. 

 

<netdb.h> 

Functions for translating protocol names and host names into numeric addresses. Searches local data as 

well as DNS. 

 

Socket APIs 

 socket() 
 

 

 

socket() creates an endpoint for communication and returns a file descriptor for the socket. socket() 

takes three arguments: 

 domain, which specifies the protocol family of the created socket. For example: 

o AF_INET for network protocol IPv4.  

o AF_INET6 for IPv6. 

o AF_UNIX for local socket (using a file). 

 

 type, one of: 

o SOCK_STREAM (reliable stream-oriented service or Stream Sockets) 

o SOCK_DGRAM (datagram service or Datagram Sockets) 

o SOCK_SEQPACKET (reliable sequenced packet service) 

o SOCK_RAW (raw protocols atop the network layer). 

 protocol, specifying the actual transport protocol to use. The most common are 

IPPROTO_TCP, IPPROTO_SCTP, IPPROTO_UDP, IPPROTO_DCCP. 

 

The function returns -1 if an error occurred. Otherwise, it returns an integer representing the newly-

assigned descriptor. 

 

 bind() 
 

 

 

int socket(int domain, int type, int protocol); 

 

int bind(int sockfd,const struct sockaddr *my_addr,socklen_t addrlen); 

 

http://en.wikipedia.org/wiki/AF_INET
http://en.wikipedia.org/wiki/AF_INET6
http://en.wikipedia.org/wiki/Stream_Sockets
http://en.wikipedia.org/wiki/Datagram_Sockets


5 
 

bind() assigns a socket to an address. When a socket is created using socket(), it is only given a 

protocol family, but not assigned an address. This association with an address must be performed 

with the bind() system call before the socket can accept connections to other hosts. bind() takes 

three arguments: 

 sockfd, a descriptor representing the socket to perform the bind on. 

 my_addr, a pointer to a sockaddr structure representing the address to bind to. 

 addrlen, a socklen_t field specifying the size of the sockaddr structure. 

 

The function returns returns 0 on success and -1 if an error occurs. 
 

 listen() 
 

 

 

After a socket has been associated with an address, listen() prepares it for incoming connections. 

However, this is only necessary for the stream-oriented (connection-oriented) data modes, i.e., for 

socket types (SOCK_STREAM, SOCK_SEQPACKET). listen() requires two arguments: 

 

 sockfd, a valid socket descriptor. 

 backlog, an integer representing the number of pending connections that can be queued up at 

any one time. The operating system usually places a cap on this value. 

 

Once a connection is accepted, it is dequeued. On success, 0 is returned. If an error occurs, -1 is 

returned. 
 

 accept() 
 

 

 

When an application is listening for stream-oriented connections from other hosts, it is notified of 

such events  and must initialize the connection using the accept() function. The accept() function 

creates a new socket for each connection and removes the connection from the listen queue. It takes 

the following arguments: 

 sockfd, the descriptor of the listening socket that has the connection queued. 

 cliaddr, a pointer to a sockaddr structure to receive the client's address information. 

 addrlen, a pointer to a socklen_t location that specifies the size of the client address structure 

passed to accept(). When accept() returns, this location indicates how many bytes of the 

structure were actually used.  

 

The accept() function returns the new socket descriptor for the accepted connection, or -1 if an error 

occurs. All further communication with the remote host now occurs via this new socket. 
 

 connect() 
 

 

 

The connect() system call connects a socket, identified by its file descriptor, to a remote host 

specified by that host's address in the argument list. 

connect() returns an integer representing the error code: 0 represents success, while -1 represents an 

error. 

 

int listen(int sockfd, int backlog); 

 

int accept(int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen); 

 

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t 

addrlen); 

 



6 
 

 gethostbyname() and gethostbyaddr() 

 

 

The gethostbyname() and gethostbyaddr() functions are used to resolve host names and addresses 

in the domain name system or the local host's other resolver mechanisms (e.g., /etc/hosts lookup). 

They return a pointer to an object of type struct hostent, which describes an Internet Protocol host. 

The functions take the following arguments: 

 name specifies the name of the host. For example: www.maannews.net 

 addr specifies a pointer to a struct in_addr containing the address of the host. 

 len specifies the length, in bytes, of addr. 

 type specifies the address family type (e.g., AF_INET) of the host address. 

The functions return a NULL pointer in case of error, in which case the external integer h_errno 

may be checked to see whether this is a temporary failure or an invalid or unknown host. Otherwise 

a valid struct hostent * is returned. 

 

4. Procedure 

We intend to write a client-server application that uses Internet protocol with a connection oriented 

socket. In this example , the client connects to server via socket and the client retrieves the date and time 

from a server. 

1. Write the following program in a file and name it client.c 

#include<stdio.h> 

#include<stdlib.h> 

#include<string.h> 

#include<unistd.h> 

#include<errno.h> 

#include <sys/socket.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

 

static const char *progname = "daytime"; 

 

 

/* 

* Establish a connection to a remote TCP server. First get the list 

* of potential network layer addresses and transport layer port 

* numbers. Iterate through the returned address list until an attempt 

* to establish a TCP connection is successful (or no other 

* alternative exists). 

*/ 

 

static int tcp_connect(char *host, char *port) 

{ 

 int orig_sock, len; 

 static struct sockaddr_in serv_adr; 

struct hostent *gethostbyname(const char *name); 

struct hostent *gethostbyaddr(const void *addr, int len, int type); 

 



7 
 

 struct hostent *str_host; 

 //get server IP address 

 str_host = gethostbyname(host); 

  

 if ( str_host == (struct hostent *) NULL )  

  { 

  perror("gethostbyname "); 

  exit(2); 

  } 

 

 //initialize the serv_adr by zeros  

 memset(&serv_adr, 0, sizeof(serv_adr)); 

  

 //set address family with IP protocol 

 serv_adr.sin_family= AF_INET; 

  

 //set server IP address 

 memcpy(&serv_adr.sin_addr, str_host->h_addr, str_host->h_length); 

  

 //set port number 

 serv_adr.sin_port= htons(atoi(port)); 

  

  

//create endpoint communication where AF_INET for IPv4 , SOCK_STREAM for stream 

oriented socket, and 0 for TCP protocol  

 

 if ( (orig_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0 )  

  { 

  perror("Getting new Socket error"); 

  exit(3); 

  } 

  

 //connect to server using returned file descriptor , server address information  

  if ( connect(orig_sock, (struct sockaddr *) &serv_adr,sizeof(serv_adr)) < 0 )  

  { 

  perror("connect error"); 

  exit(4); 

  } 

  

 return orig_sock; 

 

 

} 

 

 

/* 

* Close a TCP connection. This function trivially calls close() on 

* POSIX systems, but might be more complicated on other systems. 

*/ 

 

static int tcp_close(int fd) 

{ 

 return close(fd); 



8 
 

} 

 

 

/* 

* Implement the daytime protocol, loosely modeled after RFC 867. 

*/ 

 

static void daytime(int fd) 

{ 

 struct sockaddr_storage peer; 

  

 socklen_t peerlen = sizeof(peer); 

 

 char host[NI_MAXHOST]; 

 

 char serv[NI_MAXSERV]; 

 

 char message[128], *p; 

 

 ssize_t n; 

 

/* Get the socket address of the remote end and convert it 

* into a human readable string (numeric format). */ 

 

 //return the address of the peer connected to the socket 

 n = getpeername(fd, (struct sockaddr *) &peer, &peerlen); 

 

 if (n)  

 { 

  fprintf(stderr, "%s: getpeername: %s\n",progname, strerror(errno)); 

  return; 

 } 

 

 // address-to-name translation in protocol-independent manner 

 n = getnameinfo((struct sockaddr *) &peer, peerlen,host, sizeof(host), serv,  

  sizeof(serv),NI_NUMERICHOST | NI_NUMERICSERV); 

 

 if (n) { 

 

  fprintf(stderr, "%s: getnameinfo: %s\n",progname, gai_strerror(n)); 

  

  return; 

  

 } 

 

  

 //read message from server  

 while ((n = read(fd, message, sizeof(message) - 1)) > 0)  

  

 { 

  //display the message on client shell 

  message[n] = '\0'; 

  p = strstr(message, "\r\n"); 



9 
 

   

  if (p) *p = 0; 

   

  //print the server address with port number and the recived message 

  printf("%s:%s\t %s\n", host, serv, message); 

 } 

 

} 

 

int main(int argc, char **argv) 

{ 

 

 int fd; 

 

 if (argc != 3) { 

 

 fprintf(stderr, "usage: %s host port\n", progname); 

 

 return EXIT_FAILURE; 

 

 } 

 

 

 fd = tcp_connect(argv[1], argv[2]); 

 daytime(fd); 

 tcp_close(fd); 

 

 return EXIT_SUCCESS; 

 

} 

 

 

2. Write the following program in a file and name it server.c 

/* 

* A simple TCP over IPv4/IPv6 daytime server. The server waits for 

* incoming connections, sends a daytime string as a reaction to 

* successful connection establishment and finally closes the 

* connection down again. 

*/ 

 

#include<stdio.h> 

#include<errno.h> 

#include<stdlib.h> 

#include<unistd.h> 

#include<syslog.h> 



10 
 

#include<string.h> 

#include<time.h> 

 

#include<sys/types.h> 

#include<sys/socket.h> 

#include<arpa/inet.h> 

#include<netdb.h> 

 

static const char *progname = "daytimed"; 

 

/* 

* Store the current date and time of the day using the local timezone 

* in the given buffer of the indicated size. Set the buffer to a zero 

* length string in case of errors. 

*/ 

 

static void daytime(char *buffer, size_t size) 

{ 

 time_t ticks; 

 struct tm *tm; 

 

 ticks = time(NULL); 

 

 tm = localtime(&ticks); 

 

 if (tm == NULL)  

 { 

  buffer[0] = '\0'; 

 

  syslog(LOG_ERR, "localtime failed"); 

 

  return; 

 } 

 

 strftime(buffer, size, "%F %T\r\n", tm); 

 

} 

 

/* 

* Create a listening TCP endpoint. First get the list of potential 

* network layter addresses and transport layer port numbers. Iterate 

* through the returned address list until an attempt to create a 

* listening TCP endpoint is successful (or no other alternative 

* exists). 

*/ 

 

static int tcp_listen(char *port) 

{ 

 int orig_sock, new_sock, clnt_len; 

  

 struct sockaddr_in clnt_adr, serv_adr; 

  

 int len, i; 



11 
 

  

 //creates  an endpoint for communication and returns a descriptor        

 if ( (orig_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0 )  

 { 

  perror("generate error"); 

  exit(1); 

 } 

 

 memset(&serv_adr, 0, sizeof(serv_adr)); 

 

 serv_adr.sin_family= AF_INET; 

 //INADDR_ANY is specified in the bind call to bind the socket to all local interfaces. 

 serv_adr.sin_addr.s_addr = htonl(INADDR_ANY); 

 //set port number 

 serv_adr.sin_port= htons(atoi(port)); 

  

 //bind or assgin the address of the sever to the created socket 

 if ( bind(orig_sock, (struct sockaddr *) &serv_adr,sizeof(serv_adr)) < 0 )  

 { 

  perror("bind error"); 

  close(orig_sock); 

  exit(2); 

 } 

  

 //listen for incoming connections 

 if ( listen(orig_sock, 5) < 0 )  

 { 

  perror("listen error"); 

  close(orig_sock); 

  exit(3); 

 } 

 

 //return the created file descriptor. 

 return orig_sock; 

 

} 

 

/* 

* Accept a new TCP connection and write a message about who was 

* accepted to the system log. 

*/ 

 

static int tcp_accept(int listen) 

{ 

 struct sockaddr_storage ss; 

 socklen_t ss_len = sizeof(ss); 

 char host[NI_MAXHOST]; 

 char serv[NI_MAXSERV]; 

 int n, fd; 

 

 //accept a connection on a socket 

 fd = accept(listen, (struct sockaddr *) &ss, &ss_len); 

 



12 
 

 if (fd == -1)  

 { 

  syslog(LOG_ERR, "accept failed: %s", strerror(errno)); 

  return -1; 

 } 

 

  n = getnameinfo((struct sockaddr *) &ss, ss_len,host, sizeof(host), serv,  

   sizeof(serv),NI_NUMERICHOST); 

 

 if (n)  

 { 

 

  syslog(LOG_ERR, "getnameinfo failed: %s", gai_strerror(n)); 

 } else  

 { 

  syslog(LOG_DEBUG, "connection from %s:%s", host, serv); 

 } 

 

 return fd; 

 

} 

 

/* 

* Close a TCP connection. This function trivially calls close() on 

* POSIX systems, but might be more complicated on other systems. 

*/ 

 

static int tcp_close(int fd) 

{ 

 return close(fd); 

} 

 

/* 

* Implement the daytime protocol, loosely modeled after RFC 867. 

*/ 

 

static void tcp_daytime(int listenfd) 

{ 

 size_t n; 

 int client; 

 char message[128]; 

 

 client = tcp_accept(listenfd); 

 

 if (client == -1) { 

  return; 

 } 

 

 daytime(message, sizeof(message)); 

 

 n = write(client, message, strlen(message)); 

 

 if (n != strlen(message))  



13 
 

 { 

  syslog(LOG_ERR, "write failed"); 

  return; 

 } 

 

  tcp_close(client); 

 

} 

 

int main(int argc, char **argv) 

{ 

 

 int tfd; 

 

 if (argc != 2)  

 { 

  fprintf(stderr, "usage: %s port\n", progname); 

  exit(EXIT_FAILURE); 

 } 

 

 //opens a connection to the system logger for a  program.   

 openlog(progname, LOG_PID, LOG_DAEMON); 

 

 // 

 tfd = tcp_listen(argv[1]); 

 

 while (tfd != -1) { 

 

  tcp_daytime(tfd); 

 } 

 

  tcp_close(tfd); 

 

  closelog(); 

 

 return EXIT_SUCCESS; 

 

} 

 

 

3. Compile the programs server.c and client.c to generate the executables  server and client 

respectively. 

4. To execute the sever process , you pass the port number as an argument  like(./sever 2000). 

5. To execute the client process , you pass the server IP address and the port number as an 

argument  like(./cleint 192.168.0.180  2000). 

 

 

    TODO: 

It will be given during the lab based on material covered in this section. 



14 
 

Appendix A. Socket 

A.1 Socket Addresses 

It is necessary to assign a name (an address) to a communication endpoint before it can be used. 

The socket API supports different name spaces with different address formats. The generic data 

structure for addresses (struct sockaddr) is defined as follows: 

 
 #include <sys/socket.h> 
 

 struct sockaddr  

 { 

  uint8_t sa_len /* address length (BSD) */ 

  sa_family_t sa_family; /* address family */ 

  char sa_data[...]; /* data of some size */ 
 }; 

 
 struct sockaddr_storage  

 { 

  uint8_t ss_len; /* address length (BSD) */ 

  sa_family_t ss_family; /* address family */ 

  char padding[...]; /* padding of some size */ 
}; 

 

 

Newer BSD systems support the (sa_len) field in the generic and the specific socket addresses 

which was not present in the older socket API. Other systems usually do not have this (sa_len) 

member (although it is generally a good idea to have this member). The currently most important 

name spaces are the name spaces for the Internet and a name space for local communication: 

  

 IPv4 Socket Addresses 
 

Sockets that represent IPv4 communication endpoints use the address family AF_INET and the 

protocol family PF_INET. IPv4 transport addresses are represented by the structure struct 

sockaddr in: 
 

#include <sys/socket.h> 
typedef ... sa_family_t; 
#include <netinet/in.h> 
typedef ... in_port_t; 
struct in_addr  

 { 

 uint8_t s_addr[4]; /* IPv4 address */ 
 }; 
 

struct sockaddr_in { 

 uint8_t sin_len; /* address length (BSD) */ 

 sa_family_t sin_family; /* address family */ 

 in_port_t sin_port; /* transport layer port */ 

 struct in_addr sin_addr; /* IPv4 address */ 
}; 

 

 

 



15 
 

A.2 Name Resolution 

Numeric addresses are usually hard to memorize for humans. It thus useful to introduce more 

human friendly symbolic names. The Internet protocols use the Domain Name System (DNS) to 

map symbolic names to Internet addresses. Note that DNS supports IPv4 as well as IPv6 

addresses. Furthermore, there is usually also a locally defined mapping of well-known port 

numbers to symbolic names (e.g., port number 80 has the well-known symbolic names http or 

www). The name to address mapping is supported by the functions getaddrinfo() and 

getnameinfo() which are described below. Many older programs still use the functions 

gethostbyname() and gethostbyaddr() which have been deprecated. 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netdb.h> 

#define AI_PASSIVE ... 

#define AI_CANONNAME ... 

#define AI_NUMERICHOST ... 

struct addrinfo 

{ 

 int ai_flags; 

 int ai_family; 

 int ai_socktype; 

 int ai_protocol; 

 size_t ai_addrlen; 

 struct sockaddr *ai_addr; 

 char *ai_canonname; 

 struct addrinfo *ai_next; 

}; 

 

int getaddrinfo(const char *node,const char *service, const struct 

addrinfo *hints, struct addrinfo **res); 

 

void freeaddrinfo(struct addrinfo *res); 

const char *gai_strerror(int errcode); 

 

The mapping of names to addresses is realized by the function getaddrinfo(). This function has 

three input parameters (node, service, hints) and returns a pointer to a list of struct addrinfo 

elements. This list must be released by calling freeaddrinfo() if it is not used anymore. In case 

of an error, getaddrinfo() returns a value unequal to 0 which can be passed to gaistrerror() in 

order to get a human readable error description. 

One of the arguments node and service can be NULL thus requesting only a name resolution of 

the other element. The name resolution process can be further controlled by passing some hints 

to the function. Hints can be used, for example, to request addresses of a certain address family 

or socket type. 

 

 



16 
 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netdb.h> 

#define NI_NOFQDN ... 

#define NI_NUMERICHOST ... 

#define NI_NAMEREQD ... 

#define NI_NUMERICSERV ... 

#define NI_NUMERICSCOPE ... 

#define NI_DGRAM ... 

int getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host, 

size_t hostlen, char *serv, size_t servlen, int flags); 

const char *gai_strerror(int errcode); 

 

The inverse mapping of addresses to symbolic names is supported by the function 

getnameinfo(). The first two parameters (sa, salen) are input parameters. The result of the 

mapping is a host name and a service name which is written to the memory location host with 

the length hostlen and serv with the length servlen. Additional flags can be passed to the 

mapping function in order to control the details of the mapping process. 


