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Why is speech recognition 

difficult? 

Intuitively... 

• Meaning is represented by sentences 

• A Sentence is a sequences of words 

• A Word is a sequences of phonemes 

• ... 

• This view of speech is based on text 

• But speech is NOT just “Acoustic text” 



Speech is.... 

• Continuous 

– “We were away a year ago” 

• Variable 

– “bread and butter” or “brembudder” 

• Ambiguous 

– “The grey tape can fix that leak” 

– “The great ape can fix that leek” 

– “The great ape can fix that league” 

– “The great tape can.  Fix that’ll eek!” 



“League” or “Leek”? 
• “league” = / l i g / 

• “leek” = / l i k / 

• Difference appears to be in the final consonant: 

– /g/ is voiced 

– /k/ is unvoiced 

• But in natural fluent speech, the duration of the vowel /i/ 

may be a more important cue to recognition! 



Approaches to Speech 

Recocognition 
• Many approaches to speech recognition have been tried in the 

past, including:  

– Artificial Intelligence (AI) 

– Artificial Neural Networks 

– … 

• The use of Artificial Intelligence (AI) based methods was 
widespread in the 1970s. 

• Researchers believed there was insufficient information in the 
acoustic data to recognise speech, and that additional sources 
of knowledge were necessary.   



Speech Recognition Approaches 

• By late 1970s, AI-based systems had been outperformed 

simple pattern matching techniques.   

• Most successful approach to-date is based on statistical 

modelling, and in particular hidden Markov models 

(HMMs).   

• HMMs are basis of all state-of-the-art commercial (and most 

laboratory) speech recognition systems. 



Speech Recognition Terminology 

• Basic problem in speech recognition is variability.   

• Early attempts to solve problem by removing it. 

• Speaker-dependent speech recognition systems train on, and 

subsequently recognise, a single speaker 

• Multiple-speaker systems work for a particular population 

of speakers 

• Speaker Independent systems work for any speaker, with 

no implicit or explicit training.   



Terminology (continued) 
• Speaker adaptive systems automatically adapt to a new 

speaker.  E.G: begin with a speaker-independent system, and 
then adapt the system to a particular speaker to obtain a 
speaker-dependent system. 

• Another source of variability is co-articulation between words.  
Isolated word recognition systems require the user to leave 
gaps between words  

• Connected speech recognition systems recognize isolated 
phrases or sentences. 

• Continuous speech recognition systems recognize continuous 
speech. 



Vocabulary Size 

• Another important issue is vocabulary size.   

• Small vocabulary systems work with vocabularies of 10-100 

words.   

• Medium vocabularies comprise around 100 to 5,000 words.   

• Large Vocabulary Continuous Speech Recognition 

(LVCSR) systems can cope with 60,000 words, while  

• Unlimited vocabulary systems have no vocabulary size 

limitation. 
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Hidden Markov Models (HMM) 

Review 



What is Covered 

• Observable Markov Model 

• Hidden Markov Model 

• Evaluation problem 

• Decoding Problem 



• Set of states:  

• Process moves from one state to another generating a          

 sequence of states :     

• Markov chain property:  probability of each subsequent state 

depends only on what was the previous state: 

  

 

• To define Markov model, the following probabilities have to be 

specified: transition probabilities                               and initial 

probabilities 

• The output of the process is the set of states at each instant of 

time 

Markov Models 
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• By Markov chain property, probability of state sequence can be 

found by the formula: 

 

 

 

 

 

Calculation of sequence probability 
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Rain Dry 

0.7 0.3 

0.2 0.8 

• Two states : „Rain‟ and „Dry‟. 

•Initial probabilities: say P(„Rain‟)=0.4 , P(„Dry‟)=0.6  

•  Suppose we want to calculate a probability of a sequence of 

states in our example,  {„Dry‟,‟Dry‟,‟Rain‟,Rain‟}.  

        P({„Dry‟,‟Dry‟,‟Rain‟,Rain‟} ) = ??. 

Example of Markov Model 



Hidden Markov models. 

  

• The observation is turned to be a probabilistic function (discrete 

or continuous) of a state instead of an one-to-one correspondence 

of a state   

•Each state randomly generates one of M observations (or visible 

states) 

• To define hidden Markov model, the following probabilities  

have to be specified: matrix of transition probabilities A=(aij), 

aij= P(si | sj) , matrix of observation probabilities B=(bi (vm )), 

bi(vm ) = P(vm | si) and a vector of initial probabilities  =(i),  

i = P(si) . Model is represented by M=(A, B, ). 
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HMM Assumptions 

• Markov assumption: the state transition depends only on 

the origin and destination 

• Output-independent assumption: all observation frames 

are dependent on the state that generated them, not on 

neighbouring observation frames 



Low High 

0.7 0.3 

0.2 0.8 

Dry Rain 

0.6 0.6 
0.4 0.4 

Example of Hidden Markov Model 



• Two states : „Low‟ and „High‟ atmospheric pressure. 

• Two observations : „Rain‟ and „Dry‟. 

• Transition probabilities: P(„Low‟|„Low‟)=0.3 , 

P(„High‟|„Low‟)=0.7 , P(„Low‟|„High‟)=0.2, 

P(„High‟|„High‟)=0.8 

• Observation probabilities : P(„Rain‟|„Low‟)=0.6 , 

P(„Dry‟|„Low‟)=0.4 , P(„Rain‟|„High‟)=0.4 , 

P(„Dry‟|„High‟)=0.3 . 

• Initial probabilities: say P(„Low‟)=0.4 , P(„High‟)=0.6 . 

Example of Hidden Markov Model 



•Suppose we want to calculate a probability of a sequence of 

observations in our example,  {„Dry‟,‟Rain‟}. 

•Consider all possible hidden state sequences:  

 P({„Dry‟,‟Rain‟} ) = P({„Dry‟,‟Rain‟} , {„Low‟,‟Low‟}) + 

P({„Dry‟,‟Rain‟} , {„Low‟,‟High‟}) + P({„Dry‟,‟Rain‟} , 

{„High‟,‟Low‟}) + P({„Dry‟,‟Rain‟} , {„High‟,‟High‟})  

 
where first term is :  

P({„Dry‟,‟Rain‟} , {„Low‟,‟Low‟})=  

P({„Dry‟,‟Rain‟} | {„Low‟,‟Low‟})  P({„Low‟,‟Low‟}) = ?? 

Calculation of observation sequence probability 



Hidden Markov Models 

A HMM consists of 

• A set of states S = {s1,...,sN} 

• A state transition probability matrix  A = [aij]i,j=1,...N,,  

     where aij =Prob(sj at time t | si at time t-1) 

• For each state si, a PDF bi defined on the set of possible 
observations O s.t. 

     bi(o) = Prob(yt=o | xt=si) 

• bi is called the state output PDF for state i (or the ith state 
output PDF) 



HMM Assumptions 

• Temporal Independence - the observation yt 

depends on the state st but is otherwise 

independent of the rest of the observation 

sequence O = {ot}! 

    ... so, the position of the vocal tract at time t 

is independent of its position at time t-1! 

• Piecewise stationarity - the underlying 

structure of speech is a sequence of stationary 

segments 

• Random variability - variations from this 

underlying structure are random 



HMM State Duration Model 

• Constant segments correspond to the HMM states 

 

 

 

 

 

 

• Probability of state duration D is given by 

     Pi (D) = (1 - aii)aii
(D - 1) 

aii 

} 
(1-aii) D 

Pi (D) 



Evaluation problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the probability that 

model M has generated sequence  O . 

• Decoding problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the most likely 

sequence of hidden states si that produced this observation sequence 

O. 

• Learning problem. Given some training observation sequences  

O=o1 o2 ... oK  and general structure of HMM (numbers of hidden 

and visible states), adjust M=(A, B, ) to maximize the 

probability.  

O=o1...oK denotes a sequence of observations ok{v1,…,vM}. 

 

 

Main issues using HMMs : 



Types of Conventional HMM 

Discrete

HMMs

Non-Gaussian

Continuous HMMs

Gaussian Mixture

HMMs

Gaussian

HMMs

Continuous

HMMs

Conventional

HMMs



Front-End Processing Re-Visited 

Speech

Recognition

Vector

Quantisation

Linear

Transform

e.g. cosine

transform

Front-end

Processing

e.g. filterbank

analysis

Vectors in d-dimensional 
(continuous) space 

Vectors in d-dimensional 
(continuous) space 

Symbols from a finite set 



Discrete HMMs 

• If VQ is used, then a state output PDF bi is defined by a list 

of probabilities- 

        bi (m) = Prob(yt = zm | xt = si ) 

• The resulting HMM is a discrete HMM 

• Common in mid-1980/ early-1990s 

• Computational advantages 

• Disadvantages 

– VQ may introduce non-recoverable errors 

– Choice of metric d for VQ? 

• Outperformed by Continuous HMM 



Continuous HMMs 

• Without VQ,  bi (y) must be defined for any y in the 
(continuous) observation set S 

• Hence discrete state output PDFs no longer viable 

• Use parametric continuous state output PDFs - Continuous 
HMMs 

• Choice of PDF restricted by mathematical tractability and 
computational usefulness (see “HMM training & 
recognition” later) 

• Most people begin with Gaussian PDFs 

• Resulting HMMs called Gaussian HMMs 



Gaussian HMMs 

• State output PDFs are multivariate 

Gaussian 

 

 

 

 

• µi and ∑i are the mean vector and 

covariance matrix which define bi  
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Gaussian PDF 

Gaussian PDF with µ i = 0 and ∑ i = 20 



Gaussian HMMs - Issues 

• Significant computational savings if 

covariance matrix can be assumed to be 

diagonal  

• In general, Gaussian PDFs are not flexible 

enough to model speech pattern variability 

accurately 

– In many applications (e.g. modelling speech from 

multiple speakers) a unimodal PDF is inadequate 

– Even if unimodal PDF is basically OK there may 

be more subtle inadequacies 



Gaussian Mixture Densities 

Example - 2 component Gaussian mixture 

f(y) = N(0,1)(y) 

g(y) = N(2,2)(y) 
m(y)=w.f(y) + (1-w).g(y) 



Gaussian Mixture HMMs 

• Any PDF can be approximated arbitrarily 

closely by a Gaussian mixture PDF with 

sufficient components 

• But... 

– More mixture components require more data for 

robust model parameter estimation 

– Parameter smoothing and sharing needed (e.g. 

„tied mixtures‟, „grand variance‟,...) 

• Gaussian mixture HMMs widely used in 

systems in research laboratories. 



Relationship with Neural Networks 

• „Classical‟ HMM training methods focus 
on fitting state output PDFs to data 
(modelling), rather than minimizing 
overlap between PDFs (discrimination). 

• NNs are good at discrimination 

• But NNs poor at coping with time-
varying data 

• Research interest in „hybrid‟ systems 
which use NNs to relate the observations 
to the states of the underlying Markov 
model. 


