Audio Feature Extraction
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Pattern Modelling/Recognition

* Training stage — using training data set, create a
model of each class (object) to be recognized

* Recognition stage — perform a pattern matching —

given an unknown piece of audio, assign it to the
class of the model which fits best (or find the model

which is most likely to have produced that audio)



Pattern Recognition

* Typically we have:

— A setof classes C,, ..., Cy, each class
characterised by a model

— A sequence of feature vectors Y=y, ...yt

— The classifier computes probability P(Y|C,) that
the class C, is the correct explanation of Y

* Classes in our case |
— Speech, Music, (other)

» \WWhat model we should use to describe each
class?



Acoustic Modeling

Signal i Vector
— : > . : —
Representation Quantization
Waveform Feature Vectors Symbols

e Signal representation produces feature vector sequence
e Multi-dimensional sequence can be processed by:

- Methods that directly model continuous space

- Quantizing and modelling of discrete symbols
e Main advantages and disadvantages of quantization:

- Reduced storage and computation costs

— Potential loss of information due to quantization



Vector Quantization (VQ)

Used in signal compression, speech and image coding

More efficient information transmission than scalar quantization
(can achieve less that 1 bit/parameter)

Used for discrete acoustic modelling since early 1980s
Based on standard clustering algorithms:

— Individual cluster centroids are called codewords

— Set of cluster centroids is called a codebook

— Basic VQ is K-means clustering

— Binary VQ is a form of top-down clustering
(used for efficient quantization)



VQ and clustering
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e Clustering is an example of unsupervised learning
— Number and form of classes {C;} unknown
- Available data samples {x;} are unlabeled

- Useful for discovery of data structure before classification or
tuning or adaptation of classifiers

e Results strongly depend on the clustering algorithm



Acoustic Modeling Example




Clustering Issues

What defines a cluster?

- |s there a prototype representing each cluster?
What defines membership in a cluster?

— What is the distance metric, d(x, y)?

How many clusters are there?

— |s the number of clusters picked before clustering?
How well do the clusters represent unseen data?

- How is a new data point assighed to a cluster?



K-means clustering

e Used to group data into K clusters, {Cy,..., Ck}
e Each cluster is represented by mean of assigned data
e [terative algorithm converges to a local optimum:
— Select K initial cluster means, {u1,..., Uk}
— Iterate until stopping criterion is satisfied:
1. Assign each data sample to the closest cluster
xeCj, d(x,p;) <dxpj), Vi#]j
2. Update K means from assigned samples
Ui=E(x), XxeC;, 1<i<K

e Nearest neighbor quantizer used for unseen data



K-means example: K=3

¢ Random selection of 3 data samples for initial means

e Euclidean distance metric between means and samples
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K-means Prosperities

Usually used with a Euclidean distance metric
d(x, pi) = [1x—Mill* = (x— ;i)' (% — 47)
The total distortion, D, is the sum of squared error

K
D= lIx-pl?

=1 xeCj

D decreases between nt? and n + 15t iteration
Dn+1)<D(n)

Also known as Isodata, or generalized Lloyd algorithm

Similarities with Expectation-Maximization (EM) algorithm for
learning parameters from unlabeled data



K-means clustering: Initialization

e K-means converges to a local optimum
— Global optimum is not guaranteed

— Initial choices can influence final result
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e |nitial K-means can be chosen randomly
— Clustering can be repeated multiple times

e Hierarchical strategies often used to seed clusters
— Top-down (divisive) (e.q., binary VQ)

— Bottom-up (agglomerative)



K-means clustering: Stopping Criterion

Many criterion can be used to terminate K-means :

e No changes in sample assignments
e Maximum number of iterations exceeded

e Change in total distortion, D, falls below a threshold

Dn+1)
— <

D(n) !

1




K-means Issues: Number of clusters

e In general, the number of clusters is unknown
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e Dependent on clustering criterion, space, computation or
distortion requirements, or on recognition metric



Clustering Issues: Distance metric

Distance metrics strongly influence cluster shapes:
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e Normalized dot-product:
X[/ yll

Euclidean: ||x — ;% = (x — u;) (x = u;)
e Weighted Euclidean: (x—u;)W(x—pu;) (e.g., W=31)

Minimum distance (chain): min d(x, x;), X;€C;

e Representation specific...



Clustering Issues: Training and Testing Data

e Training data performance can be arbitrarily good e.g.,

[im Dg =0
K—oo K
e Independent test data needed to measure performance

- Performance can be measured by distortion, D, or some more
relevant speech recognition metric

- Robust training will degrade minimally during testing
- Good training data closely matches test conditions

e Development data are often used for refinements, since through
iterative testing they can implicitly become a form of training data



Hierarchical Clustering

e Clusters data into a hierarchical class structure

e Top-down (divisive) or bottom-up (agglomerative)

e Top-down (divisive)

e Creates hierarchy by successively splitting clusters into smaller
groups

e On each iteration, one or more of the existing clusters are split
apart to form new clusters

e The process repeats until a stopping criterion is met

e Divisive techniques can incorporate pruning and merging
heuristics which can improve the final result



Example of Non-Uniform Divisive clustering
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Example of Uniform Divisive clustering
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Divisive clustering Example: Binary VQ

Often used to create M = 2B size codebook
(B bit codebook, codebook size M)

Uniform binary divisive clustering used

On each iteration each cluster is divided in two

pi = pi(l +€)

MHi =HUi(l —¢€)

K-means used to determine cluster centroids
Also known as LBG (Linde, Buzo, Gray) algorithm

A more efficient version does K-means only within each binary
split, and retains tree for efficient lookup



Agglomerative Clustering

Structures N samples or seed clusters into a hierarchy

On each iteration, the two most similar clusters are merged
together to form a new cluster

After N — 1 iterations, the hierarchy is complete
Structure displayed in the form of a dendrogram

By keeping track of the similarity score when new clusters are
created, the dendrogram can often yield insights into the natural
grouping of the data



Dendrogram Example: (One dimension)

Distance




Pattern Classification

Goal: To classify objects (or patterns) into categories (or classes)

Feature o
™| Extraction ~ Classifier

)

Observation Feature Vector Class
s X W

Types of Problems:

. Supervised: Classes are known beforehand, and data samples of
each class are available

2. Unsupervised: Classes (and/or number of classes) are not known
beforehand, and must be inferred from data



Probability Basics

e Discrete probability mass function (PMF): P(w;)

> P(w;) =1

e Continuous probability density function (PDF): p(x)

[ px)dx =1

e Expected value: E(x)
E(x) =J xp(X)dx



Bayes Theorem

PDF

X

Define: {w;t  a set of M mutually exclusive classes
P(wj) a priori probability for class wj
p(x|w;) PDF for feature vector x in class w;
P(wijilx) a posteriori probability of w; given x

p(x|w;)P(w;)
p(X)

M
where p(x)= Z p(x|w;)P(wi)
i=1

From Bayes Rule: P(wi|x) =




Bayes decision Theory

The probability of making an error given x is:

Plerror|x) =1 —P(w;|x) if decide class w;

To minimize P(error|Xx) (and P(error)):

Choose w; if P(w;|x) > P(wj|Xx) Vj#I

For a two class problem this decision rule means:

fﬁ?(xlwl}P(wl} - p(x|w>)P(w?)

D(X) px) o else w2

Choose w1 i

This rule can be expressed as a likelihood ratio:

p(x[cw1) - P(w3) .

s else choose w
p(x[wz) ~ P(w) ?

Choose wg if




(Classification Problem

The problem of classification 1s to 1dentify the correct class, C
corresponding to given data, X from a given a set of classes,
C={Cy,Cy, ..., Cy}.

The most obvious way to make a decision 1n a statistical
framework 18

C = arg max P(C;|X)

1.e., Select the class with the highest probability given the data.

How do we get P(C;|X) ?



Classification Problem

How do we get P(C;|X) ?
Bayes Theorem
P(X|C;)P(C;)

P(X)

P(C;|X) =

Therefore,

C = arg max P(C;|X) = arg max P(X|C;)P(C;)

AN

Likelihoods Priors

P(C;) - Determined by the problem at hand and does not depend
on the data being classified

P(X|C;) - Estimated for the data that is being classified. What is
it?



Classification Problem

What is P(X|C;) ?

[t 1s the probability distribution of data corresponding to class C;
and 1s usually estimated from lots and lots of data which 1s
known to belong to class C;. This data 1s referred to as tramning
data and 1s required for all C; € C.

How do we estimate P(X|C;)?
How do we represent it?

Gaussian Mixture Model (GMM) — One way of doing so.



Discriminant functions

Alternative formulation of Bayes decision rule

Define a discriminant function, g;j(x), for each class w;
Choose w; if gi(x) > g;(x) Vj#i

Functions yielding identical classification results:

gi(x) = P(wijlx)
p(x|w;i)P(wj)
log p(x|wj) +1log P(wj)

Choice of function impacts computation costs

Discriminant functions partition feature space into decision
regions, separated by decision boundaries



Parametric Classifiers

Gaussian distributions
Maximum likelihood (ML) parameter estimation
Multivariate Gaussians

Gaussian classifiers



Gaussian Distribution

e Gaussian PDF’s are reasonable when a feature vector can be
viewed as perturbation around a reference

o
L= ]

03

0.2
]

Probability Density
0.1

0.0

e Simple estimation procedures for model parameters
e Classification often reduced to simple distance metrics

e Gaussian distributions also called Normal



Gaussian Distribution: One Dimension

e One-dimensional Gaussian PDF’s can be expressed as:

(x=p)?
p(X) = —=——=—e 20° ~N(u o?)

e The PDF is centered around the mean

u=E(x) = [ xp(x)dx

e The spread of the PDF is determined by the variance

02 =E((x=w?) = | (x=w?px)dx



Maximum Likelihood Parameter Estimation

Maximum likelihood parameter estimation determines an
estimate @ for parameter € by maximizing the likelihood L(€) of
observing data X ={x1,..., Xn!}

0 =arg max L(O)

Assuming independent, identically distributed data

L(0) = p(X10) =p(x1,...,xnl0) =]]p(xil0)
i=1

ML solutions can often be obtained via the derivative

-

{_'__i

591’_(9) =0

For Gaussian distributions log L(8) is easier to solve



Gaussian ML Estimation: One Dimension

e The maximum likelihood estimate for u is given by:

" ., _(xi —p)?
L(p) = (x = e 2072
u) EE‘ ilu) l:! xf2rr.':;r

—nlog\2mo

o CI'EZ —H =0

G2 == (xi— )



Gaussian ML Estimation: One Dimension

[s] Duration (1000 utterances, 100 speakers)

Probability Density
6
|

0.05 0.10 0.15 0.20 0.25 0.30
Duration (sec)

(=120 ms, 6 =40 ms)




Gaussian Distributions: Multiple Dimension

e A multi-dimensional Gaussian PDF can be expressed as:

1 —%{x—u)fz—lu—m

- 2marzEnz’ 2

p(X)

e d is the number of dimensions
e X=1{X1,...,X4}1s the input vector
o U=FE(Xx)={u1,..., g} is the mean vector

o X=E((x—u)(x—u)") is the covariance matrix with elements gjj,
inverse £-1 and determinant |Z|

e 0jj =0jj = E((Xj — Uj)(Xj — Uj)) = E(XiXj) — Uil



Gaussian Distributions:
Multi-Dimensional Properities

e If the ith and jt" dimensions are statistically or linearly
independent then E(x;Xx;) = E(X;)E(Xj) and g =0

e If all dimensions are statistically or linearly independent, then
ogij=0 VIi#jand X has non-zero elements only on the diagonal

e If the underlying density is Gaussian and X is a diagonal matrix,
then the dimensions are statistically independent and
d 2
p(szl_[fr}(x;) p(xi) ~ N(uj, 0jj) Tij = O
=1

I
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Diagonal Covariance Matrix: o =0
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General Covariance Matrix: oj;
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3-Dimensional PDF PDF Contour




Multivariate ML Estimation

e The ML estimates for parameters 8 ={64,..., 0;} are determined by
maximizing the joint likelihood L(0) of a set of i.i.d. data
X={x]!"‘!‘x}1}

L(0) =p(X|0) =p(x1, - - -, %410) =] | p(x:10)
=1

e To find @ we solve VgL(0) = 0, or Vg logL(@)=0
{'_‘-

0
Vo = {57—

a(_)lr' e Ja_gj}

e The ML estimates of 4 and X are:

o1 .1 . .
H=E§xf Ezﬁz(ﬁ'j_ﬂ)(n’ff—ﬂ)



Multivariate Gaussian Classifier

For distributions with a common covariance structure the decision
regions are hyper-planes.
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Gaussian Mixture Model (GMM)

e PDF is composed of a mixture of m component densities
{w1,..., Wm}:
M
p(x) =D p(x|lwj)P(w))
j=1

e Component PDF parameters and mixture weights P(wj) are
typically unknown, making parameter estimation a form of
unsupervised learning

e Gaussian mixtures assume Normal components:

p(x|wk) ~ N(Ug, Zk)



Gaussian Mixture Example: One Dimension

0.25
|

0.20
I
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Probability Density
0.10
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0.05
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|

p(x)=0.6p;(x)+ 0.4p>(x)

p1(x)~N(-=0,0%)  p2(x)~N(1.50, 02)



Probility Density Prabatility Densly

Protability Density

Gaussian Example

First 9 MFCC’s from [s]: Gaussian PDF
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Independent Mixtures
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Probability Density
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EM Algorithm

Introduction to the EM algorithm

— The Expectation Maximization algorithm begins
with an initial parameter set

— Iteratively updates the parameter set such that
the likelihood increases with each iteration

— Converges to a local optimum

* As with clustering algorithms, convergence to the
global optimum can not generally be achieved



EM Algorithm

Introduction to the EM algorithm
— Two steps:
— Expectation step:

* Evaluate the expectation of the complete data log-
likelihood conditional on the tramning data and the
current value of the parameters @, denoted Q(e,

e(“]‘)
— Maximisation step:

« Find an updated parameter set @D that maximises

chv e'(rz))



EM Algorithm

EM algorithm for GMMs — general case
— E-step:

* Calculate the probabaility that tramning data x; belongs
to mixture component m

P(m|x,0"™) = E(x, belongs to mixture | xf._et”})
{H}P(X |p{n) C{nj)

ZH{H)P(‘L ™ ) m m
mi=1
R ]' ]' n - n
Wy ———— exp[ ~(x =) () (- ”ﬂ
(27)* c“ﬂ 2 ,
Z“{”} L exp| - Lm0y € )]
— )ng CE_:j 1/2 ‘ 2 m ,




EM Algorithm

EM algorithm for GMMs — general case
— M-step:
» Update of each parameter is weighted by @,,= P(G_ | x,,60™)

[n+1]| L
H’ ()
N Z

N
(n+1) _ Z-;‘=1 Oim X,
W, N

i=1 (‘{)ﬁ}?

(M) ( ( )
( (r:' 1) Zf -1 m: !‘lr:: )(Ki . )

N
2'5:1 Oy,




EM Algorithm
The EM algorithm for GMMs: Notes

— Clearly an mitial set of parameters
W 4 O \m=1,.., M}

need to be provided

* Means: Typically use K-means or other clustering
initialisation techniques

« Variances: Either set all to 1. or calculate based on
variance of training data assigned to each cluster

« Weights: Start with equal weights, or calculate based
on cluster membership of traming data



EM Algorithm

The EM algorithm for GMMs: Notes

— Stopping criterion

* Calculate likelihood at each 1teration, and stop when
relative change 1s small

* Fixed number of iterations



Example: 4 Samples, 2 Components

1. Data: X ={xy, Xy, X3, X4}t =12,1,-1,-2}
2. Init: p(x|w1) ~N(1,1) p(x|lw)~N(-1,1) P(wj)=0.5

3. Estimate:

X1 X2 X3 X4
P(w1|x) 0.98 0.88 0.12 0.02
P(w2|x) 0.02 0.12 0.88 0.98

4. Recompute mixture parameters (only shown for wq):

f’(wl} _ .98+.88L+1.12+.02 - 05
N 08(2)+.88(1)+.12(=1)+.02(=2) — 134
1 OB+ RB+.12+.02 .
~2 _ .08(2-1.34)24.88(1-1.34)2+.12(=1-1.34)2+.02(-=2-1.34)2  _
o1 = 98+.88+.12+.02 =0.70

5. Repeat steps 3,4 until convergence



Notes on Implementation

Full vs diagonal covariances

— Diagonal covariances are convenient

* Avoild the need for matrix inversion

— Better suited for small training data sets

* By mcreasing the number of muixtures. similar
performance to full matrix can be achieved

* Total number of parameters approximately same

Threshold variances

— Variances can — 0

* Set a minimum value: “variance flooring’



Some Notes on Modeling

Undertitting / Overtitting of GMMs
— Essentially two design choices m modelling
using GMMs:
* Dimension of feature vector (K)

 Number of mixtures (M)
— Total number of parameters =
« M+ M x K+ M x K7 (full covariance matrix)
* M+ M x K+ M x K (diagonal covariance matrix)
— Trade off total parameters against amount of
training data



Some Notes on Modeling

Underfitting / Overfitting of GMMs

— Huge amounts of training data

* Small number of parameters may not capture all
available information

— Small amounts of training data

* Too many parameters cause GMMs to be biased
towards tramning data

* GMM will not generalise well to other data
* Known as overfitting

* One of the fundamental 1ssues of any classifier design



Under Training (Over Fitting)

A major practical problem in maximum likelihood
parameter estimation is under training

Suppose a class w gives rise to measurements
uniformly distributed over the interval [0,1].

Unfortunately we don’t know this and try to

model the distribution using a Gaussian mixture
PDF.

First, we obtain a training set of S samples x,,..., X,
Suppose S=4



Under training (continued)
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4 component PDF gives best fit to training data, but will not generalise to
unseen test data

1 component PDF performs worse on training data, but is a better
model!



Under training

* Given a finite training set X, and a ML estimate M of the
parameters of a model, p(X| M) will increase, in general, as the
number of parameters in M increases

 Asnumber of parameters increases, model begins to
characterise detail in the training set which is not presentin
unseen data. The model begins to “remember the training
set”

 As number of parameters increases, performance on test data
will improve at first, but will then start to degrade as the
number of parameters increases and the model focuses on
specific detail in the training set



Under training

Performance on
training data

v

Number of model parameters

T~

Number of model parameters

Performance on
test data




Experimental method

Available data is divided into 3 sets:

— the training set, the evaluation set and the test
set

For each number of parameters, the ML

estimate of the parameters is made using the

training set

Classification experiments are run on the
evaluation set, and the number of parameters
which gives best performance is chosen for
the final system

This system is evaluated using the test set



GMMs: Summary

»  (zaussian Mixture Models (GMMs) are a convenient and flexible

gppmﬁch to defining arbitrary (non Gaussian) PDFs to model
ata

» To calculate the ‘probability’ of a single vector y, we add
together the contnbutions p,_(y,) from each of the Gaussian

components M
" p(3)= 2 w,2.(5,)

i B
* To calculate the probability of a sequence Y=y,,...y; we

multiply together the probabilihes of the individual vectors in the
sequence

g (1) = log T 1 p0:)| = T tog| o )

L ;he parameters of the GMM are estimated automatically from
ata



Pattern Recognition using GMMs

A set of classes C,, ..., Ck, each class modelled by
GMM

= A sequence of feature vectors Y=y, ... ¥r

The sound corresponding to the sequence of
feature vectors Y should be assigned to the class

Cy which maximises P(C,]Y)
Bayes theorem

PY |G, )P(C; )
P(Y)

P{Ek |F}=

»  C" =argmax P(C, | T)oc argmax P(Y | C; )P(C, )



