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Lexical Ambiguity

• Many words in natural languages have multiple 
possible meanings.
– “pen” (noun)

• The dog is in the pen.

• The ink is in the pen.

– “take” (verb)
• Take one pill every morning.

• Take the first right past the stoplight.

• Context greatly helps disambiguation

• Syntax helps distinguish meanings for different 
parts of speech of an ambiguous word.
– “conduct” (noun or verb)

• John’s conduct in class is unacceptable.

• John will conduct the orchestra on Thursday.
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Motivation for

Word Sense Disambiguation (WSD)

• Many tasks in natural language processing require 

disambiguation of ambiguous words.

– Question Answering

– Information Retrieval

– Machine Translation

– Text Mining

– Phone Help Systems

• Understanding how people disambiguate words is 

an interesting problem that can provide insight in 

psycholinguistics.
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Sense Inventory

• What is a “sense” of a word?

– Homonyms (disconnected meanings) 

• bank: financial institution

• bank: sloping land next to a river

– Polysemes (related meanings with joint etymology) 

• bank: financial institution as corporation

• bank: a building housing such an institution

• Sources of sense inventories

– Dictionaries

– Lexical databases (WordNet)

Entity/concept disambiguation in Wikipedia!

Gloss: concise description of word sense (Human)
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WordNet-English and Arabic

• A detailed database of semantic relationships 
between words (English/Arabic).

• Developed by famous cognitive psychologist 
George Miller and a team at Princeton University.

• About 155,287/23481 English/Arabic words 
(11/19/2017).

• Nouns, adjectives, verbs, and adverbs grouped into 
about 117,659/11,269 synonym sets called synsets.

• Each expressing a distinct concept. 

• Synsets are interlinked by means of conceptual-
semantic and lexical relations
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WordNet Synset Relationships

• Antonym: front  back

• Attribute: benevolence  good (noun to adjective)

• Pertainym: alphabetical  alphabet (adjective to noun)

• Similar: unquestioning  absolute

• Cause: kill  die

• Entailment: breathe  inhale

• Holonym: chapter  text (part to whole)

• Meronym: computer  cpu (whole to part)

• Hyponym: plant  tree (specialization)

• Hypernym: apple  fruit (generalization)
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WordNet Senses

• WordNets senses (like many dictionary senses) tend to be 
very fine-grained.

• “play” as a verb has 35 senses, including

– play a role or part: “Gielgud played Hamlet”

– pretend to have certain qualities or state of mind: “John played 
dead.”

• Difficult to disambiguate to this level for people and 
computers. Only expert lexicographers are perhaps able to 
reliably differentiate senses.

• Not clear such fine-grained senses are useful for NLP.

• Several proposals for grouping senses into coarser, easier 
to identify senses (e.g. homonyms only).



WDS from WNet

Noun

• {pipe, tobacco pipe} (a tube with a small bowl at one end; used for smoking 

tobacco) 

• {pipe, pipage, piping} (a long tube made of metal or plastic that is used to 

carry water or oil or gas etc.) 

• {pipe, tube} (a hollow cylindrical shape) 

• {pipe} (a tubular wind instrument) 

• {organ pipe, pipe, pipework} (the flues and stops on a pipe organ) 

Verb

• {shriek, shrill, pipe up, pipe} (utter a shrill cry) 

• {pipe} (transport by pipeline) “pipe oil, water, and gas into the desert”

• {pipe} (play on a pipe) “pipe a tune”g) “pipe the skirt”
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• Noun

•  (Generosity) {كرم}

•  (Grapevine) {كرم}

•  (Masculine name) {كرم}

• Verb

•  (Honor) {كرم}

• (Made an act of generosity) {كرم}
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Senses Based on Needs of Translation

• Only distinguish senses that are translate to 
different words in some other language.

– play: مسرحية vs. يلعب

– :bank ضفة vs. مصرف

– leave: يغادر vs اوراق

– take: ياخذvs. مرة

– ذهب gold vs past of Go

– غادر Left vs traitorous 

• May still require overly fine-grained senses

– river in French is either:

• fleuve: flows into the ocean

• rivière: does not flow into the ocean



How big is the problem?

• Most words in English have only one sense

– 62% in Longman’s Dictionary of Contemporary 

English (LDOCE)

– 79% in WordNet

• But the others tend to have several senses

– Average of 3.83 in LDOCE

– Average of 2.96 in WordNet

• Ambiguous words are more frequently used

– In the British National Corpus, 84% of instances

have more than one sense

• Some senses are more frequent than others



Baseline + Upper Bound

• Baseline: most frequent sense

– Equivalent to “take first sense” in WordNet

– Does surprisingly well!

• Upper bound:

– Fine-grained WordNet sense: 75-80% human agreement

– Coarser-grained inventories: 90% human agreement 

possible

• What does this mean?

62% accuracy in this case!



WSD Approaches

• Depending on use of manually created 

knowledge sources

– Knowledge-lean

– Knowledge-rich

• Depending on use of labeled data

– Supervised

– Semi- or minimally supervised

– Unsupervised



Lesk’s Algorithm

• Intuition: note word overlap between 

context and dictionary entries (glosses)

– Unsupervised, but knowledge rich

WordNet

The

bank can guarantee deposits will eventually cover future tuition costs 

because it invests in adjustable-rate mortgage securities.  



Lesk’s Algorithm

• Simplest implementation:

– Count overlapping content words between glosses

and context

• Lots of variants:

– Include the examples in dictionary definitions

– Include hypernyms and hyponyms

– Give more weight to larger overlaps (e.g., bigrams)

– Give extra weight to infrequent words (e.g., idf

weighting)
– …

• Works reasonably well!



Supervised WSD: NLP meets ML

• WSD as a supervised classification task

– Train a separate classifier for each word

• Three components of a machine learning 

problem:

– Training data (corpora)

– Representations (features)

– Learning method (algorithm, model)



Supervised Classification

label1 label2 label3 label4

Classifiersupervised machine 

learning algorithm

?
unlabeled 

document

label1?

label2?

label3?

label4?

TestingTraining

training data

Representation Function



Care with Machine Learning

• Thou shalt not mingle training data with test 

data

• Have user annotated data: careful with your 

own

• Be objective!



Features

• Possible features

– POS (Part Of Speech) and surface form of the word itself

– Surrounding words and POS tag

– Positional information of surrounding words and POS tags

– Same as above, but with n-grams

– Grammatical information
– …

• Richness of the features?

– Richer features = ML algorithm does less of the work

– More impoverished features = ML algorithm does more of 

the work



Classifiers

• Once we cast the WSD problem as 

supervised classification, many learning 

techniques are possible:

– Naïve Bayes (the thing to try first)

– Decision trees

– MaxEnt

– Support vector machines

– Nearest neighbor methods

– …



Classifiers Tradeoffs

• Which classifier should I use?

• It depends:

– Number of features

– Types of features

– Number of possible values for a feature

– Noise,…..

• General advice:

– Start with Naïve Bayes

– Use decision trees/lists if you want to understand what 

the classifier is doing

– SVMs often give state of the art performance
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Learning for WSD

• Assume part-of-speech (POS), e.g. noun, verb, 
adjective, for the target word is determined:

ذهب being a verb may solve the WSD problem!

• Treat as a classification problem with the 
appropriate potential senses for the target word, 
given its POS as the categories.

• Encode context using a set of features to be used 
for disambiguation.

• Train a classifier on labeled data encoded using 
these features.

• Use the trained classifier to disambiguate future 
instances of the target word given their contextual 
features (same as do while testing).



Baseline + Upper Bound

• Baseline: most frequent sense

– Equivalent to “take first sense” in WordNet

– Does surprisingly well!

• Upper bound:

– Fine-grained WordNet sense: 75-80% human agreement

– Coarser-grained inventories: 90% human agreement 

possible

62% accuracy in this case!
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Feature Engineering

• The success of machine learning requires 
instances to be represented using an effective set 
of features that are correlated with the categories 
of interest.

• Feature engineering can be a laborious process 
that requires substantial human expertise and 
knowledge of the domain.

• In NLP it is common to extract many (even 
thousands of) potential features and use a learning 
algorithm that works well with many relevant and 
irrelevant features.
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Contextual Features

• Surrounding bag of words.

• POS of neighboring words

• Local collocations

• Syntactic relations

Experimental  evaluations indicate that all of 

these features are useful; and the best results 

comes from integrating all of these cues in the 

disambiguation process.

This is for English. What about Arabic?
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Surrounding Bag of Words

• Unordered individual words near the ambiguous 
word. E.g. Words in the same sentence.

• May include words in the previous sentence or 
surrounding paragraph (how far?).

• Gives general topical cues of the context.

• May use feature selection to determine a smaller set 
of words that help discriminate possible senses.

• May just remove common “stop words” such as 
articles, prepositions, etc.

• If have parallel data (English/Arabic): can use that!
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POS of Neighboring Words

• Use part-of-speech of immediately 
neighboring words.

• Provides evidence of local syntactic context.

• P-i is the POS of the word i positions to the 
left of the target word.

• Pi is the POS of the word i positions to the 
right of the target word.

• Typical to include features for:

P-3, P-2, P-1, P1, P2, P3
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Local Collocations

• Specific lexical context immediately adjacent to the word.

• For example, to determine if “interest” as a noun refers to 
“readiness to give attention” or “money paid for the use of 
money”, the following collocations are useful:
– “in the interest of”

– “an interest in”

– “interest rate”

– “accrued interest”

• Ci,j is a feature of the sequence of words from local position i to
j relative to the target word.
– C-2,1 for “in the interest of” is “in the of” [2 before to 1 after, No word]

• Typical to include:
– Single word context: C-1,-1 , C1,1, C-2,-2, C2,2

– Two word context: C-2,-1, C-1,1 ,C1,2

– Three word context: C-3,-1, C-2,1, C-1,2, C1,3
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Syntactic Relations

(Ambiguous Verbs)

• For an ambiguous verb [have POS!], it is very useful to 
know its direct object [play: instrument/game?].
– “played the game” 

– “played the guitar”

– “played the risky and long-lasting card game”

– “played the beautiful and expensive guitar”

– “played the big brass tuba at the football game”

– “played the game listening to the drums and the tubas”

• May also be useful to know its subject:
– “The game was played while the band played.”

– “The game that included a drum and a tuba was played on 
Friday.”
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Syntactic Relations

(Ambiguous Nouns)

• For an ambiguous noun, it is useful to know 

what verb it is an object of:

– “played the piano and the horn”

– “wounded by the rhinoceros’ horn”

• May also be useful to know what verb it is 

the subject of:

– “the bank near the river loaned him $100”

– “the bank is eroding and the bank has given the 

city the money to repair it”
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Syntactic Relations

(Ambiguous Adjectives)

• For an ambiguous adjective, it useful to 

know the noun it is modifying.

– “a brilliant young man”

– “a brilliant yellow light”

– “a wooden writing desk”

– “a wooden acting performance”
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Using Syntax in WSD

• Produce a parse tree for a sentence using a syntactic 
parser.

• For ambiguous verbs, use the head word of its direct 
object and of its subject as features.

• For ambiguous nouns, use verbs for which it is the 
object and the subject as features.

• For ambiguous adjectives, use the head word (noun) 
of its NP as a feature.

John

ProperN

NP

S

VP

V

played

NP

DET N

the piano
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Evaluation of WSD

• “In vitro”:  
– Corpus developed in which one or more ambiguous words 

are labeled with explicit sense tags according to some sense 
inventory.

– Corpus used for training and testing WSD and evaluated 
using accuracy (percentage of labeled words correctly 
disambiguated).

• Use most common sense selection as a baseline.

• “In vivo”:
– Incorporate WSD system into some larger application 

system, such as machine translation, information retrieval, or 
question answering.

– Evaluate relative contribution of different WSD methods by 
measuring performance impact on the overall system on final 
task (accuracy of MT, IR, or QA results).
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Lexical Sample vs. All Word Tagging

• Lexical sample:  

– Choose one or more ambiguous words each with a 

sense inventory.

– From a larger corpus, assemble sample occurrences of 

these words.

– Have humans mark each occurrence with a sense tag.

• All words:

– Select a corpus of sentences.

– For each ambiguous word in the corpus, have humans 

mark it with a sense tag from an broad-coverage lexical 

database (e.g. WordNet).
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SenseEval

• Standardized international “competition” on WSD.

• Organized by the Association for Computational 

Linguistics (ACL) Special Interest Group on the Lexicon 

(SIGLEX).

• After 2007, evolved in broader “SemEval” competition: 

semantics/meaning.

• Started with word senses, now to semantic role, 

coreference, smenatic relations and sentiment analysis

• Arabic appeared in Semeval2016 
(https://en.wikipedia.org/wiki/SemEval)
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Senseval 1: 1998

• Datasets for

– English

– French 

– Italian

• Lexical sample in English

– Noun: accident, behavior, bet, disability, excess, float, giant, knee, 
onion, promise, rabbit, sack, scrap, shirt, steering

– Verb: amaze, bet, bother, bury, calculate, consumer, derive, float, 
invade, promise, sack, scrap, sieze

– Adjective: brilliant, deaf, floating, generous, giant, modest, slight, 
wooden

– Indeterminate: band, bitter, hurdle, sanction, shake

• Total number of ambiguous English words tagged: 8,448
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Senseval 1 English Sense Inventory

• Senses from the HECTOR lexicography 

project.

• Multiple levels of granularity

– Coarse grained (avg. 7.2 senses per word)

– Fine grained (avg. 10.4 senses per word)
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Senseval Metrics

• Fixed training and test sets, same for each system.

• System can decline to provide a sense tag for a 

word if it is sufficiently uncertain.

• Measured quantities:

– A: number of words assigned senses

– C: number of words assigned correct senses

– T: total number of test words

• Metrics:

– Precision = C/A

– Recall = C/T
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Senseval 1 Overall English Results

Fine grained

precision (recall)

Course grained

precision (recall)

Human 

Lexicographer

Agreement

97%  (96%) 97%  (97%)

Most common

sense baseline

57% (50%) 63% (56%)

Best system 77% (77%) 81% (81%)
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Senseval 2: 2001

• More languages: Chinese, Danish, Dutch, Czech, 

Basque, Estonian, Italian, Korean, Spanish, 

Swedish, Japanese, English

• Includes an “all-words” task as well as lexical 

sample.

• Includes a “translation” task for Japanese, where 

senses correspond to distinct translations of a 

word into another language.

• 35 teams competed with over 90 systems entered.
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Senseval 2 Results
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Senseval 2 Results
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Senseval 2 Results
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Issues in WSD

• What is the right granularity of a sense inventory?

• Integrating WSD with other NLP tasks

– Syntactic parsing

– Semantic role labeling

– Semantic parsing

• Does WSD actually improve performance on 
some real end-user task?

– Information retrieval

– Information extraction

– Machine translation

– Question answering


